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Abstract

Analytical solutions are derived for the cylindrical bending of multilayered, linear, and anisotropic magneto-electro-

elastic plates under simple-supported edge conditions. We construct the general solution in terms of a simple formalism

for any homogeneous layer, from which any physical quantities can be solved for the given boundary conditions. For

multilayered plates, we derive the solution in terms of the propagator matrices. A special feature of cylindrical bending,

which distinguishes itself from the three-dimensional plate problem, is that the associated eigenvalues for any homo-

geneous layer are independent of the sinusoidal mode, and thus need to be solved only once. Typical numerical ex-

amples are also presented for a piezomagnetic plate, a two-layered piezoelectric/piezomagnetic plate, and a four layered

piezoelectric/piezomagnetic plate, with different span-to-thickness ratios. In particular, the piezoelectric and piezo-

magnetic fields show certain interesting features, which give guidance on the development of piezoelectric/piezomag-

netic thin-plate theories. Furthermore, it is shown that the variations of the elastic, electric, and magnetic quantities

with thickness depend strongly upon the material property and layering, which could be useful in the analysis and

design of smart composite structures with sensors/actuators.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Multilayered smart structures made of piezoelectric and piezomagnetic materials offer certain potential
performance advantages over conventional composites, largely due to their unique capability of converting

the system energy from one type to the other (among magnetic, electric, and mechanical energies) (Ber-

lingcourt et al., 1964; Landau and Lifshitz, 1984; Harshe et al., 1993; Avellaneda and Harshe, 1994; Nan,

1994; Benveniste, 1995). While various numerical studies have been carried out to assist the design of

composite laminates consisted of elastic and piezoelectric materials (Pagano, 1969, 1970; Tzou, 1993; Tzou

and Tseng, 1990; Tzou and Ye, 1996; Bisegna and Maceri, 1996; Heyliger and Brooks, 1996; Lee and Jiang,

1996; Heyliger, 1997; Lee and Saravanos, 1997, 2000; Vel and Batra, 2000), investigation for the
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corresponding multilayered piezoelectric and piezomagnetic structures has only been started recently.

Under the assumption of static deformation, Pan (2001) derived an exact closed-form solution for the

multilayered piezoelectric and piezomagnetic plates based on the quasi-Stroh formalism and the propagator

matrix method. It was observed that under a surface mechanical load, the piezoelectric (piezomagnetic)
fields could be substantially enhanced in the piezoelectric (piezomagnetic) layer (Pan, 2001). More recently,

Pan and Heyliger (2002) solved the corresponding vibration problem where they identified several modes

that are purely elastic and independent of the piezoelectric/piezomagnetic coupling.

In this paper, we apply the analytical method to the static bending analysis of anisotropic, magneto-

electro-elastic, and multilayered plates with simply supported edges. First, we derive the general solution

for a homogeneous plate in terms of the Stroh-type formalism. A very distinguishing feature between the

two-dimensional (2D) bending and three-dimensional (3D) deformation is that the eigenvalues for

the homogeneous plate in the 2D bending need to be solved only once since they are independent of the
eigenmode p (to be defined later). This is particularly useful when the solution is expressed in terms of the

Fourier series and then summed together (Timoshenko and Woinowsky-Krieger, 1987; Bisegna and Ma-

ceri, 1996). To handle multilayered plates, the propagator matrix method (Gilbert and Backus, 1966; Pan,

1991, 1997) is again employed with which the corresponding multilayered solution has an elegant and

simple expression.

Numerical examples are presented for different span-to-thickness ratios and for three representative

plates: a single homogeneous magnetostrictive plate made of CoFe2O4, a two-layered plate of equal

thickness with magnetostrictive CoFe2O4 in the top layer and piezoelectric BaTiO3 in the bottom layer, and
a four-layered plate Orth)45/BaTiO3/CoFe2O4 /Orth+45 where Orth ± 45 are the orthotropic piezoelectric

PZT-4 rotated ±45 degrees with respect to the global x-axis. When approaching the thin-plate limit, we

observed that while the behaviors of the elastic fields (elastic displacements and stresses) follow those in the

purely elastic plate, the electric and magnetic fields showed certain different and new features that require

particular consideration. Specifically, we find that the variation along the thickness-direction for the electric

and magnetic potentials is usually of polynomial behavior with the order higher than that for the elastic

displacements. Similarly, the electric displacement and magnetic flux fields are higher order polynomial

functions of the thickness coordinates than those of the stresses. This implies that in the development of a
thin-plate theory for the magneto-electro-elastic structure, a high order polynomial is needed for the electric

and magnetic quantities. Finally, we have observed that different lay-ups result in totally different responses

on the elastic, electric, and magnetic quantities. These general characteristics could be useful in the analysis

and design of magneto-electro-elastic composite laminates.
2. Problem description and governing equations

We consider an anisotropic, magneto-electro-elastic, and N -layered rectangular plate with a finite hori-

zontal dimension l in the y-direction. The plate is infinite in the x-direction and the thickness is in the
(vertical) z-direction with a total thickness h. We assume that its two edges are simply supported as

described by the end conditions on the laminate. A Cartesian coordinate system ðx; y; zÞ ¼ ðx1; x2; x3Þ is

attached to the plate in such a way that its origin is at the left-bottom corner and plate is in the positive

z region. Layer j is bonded by the lower interface zj and the upper interface zjþ1 with thickness

hj ¼ zjþ1 � zj. It is obvious that z1 ¼ 0 and zNþ1 ¼ h. Along the interface, the extended displacement and

traction vectors (to be defined later) are assumed to be continuous. On the top and bottom surfaces of the

layered plate, suitable boundary conditions can be described as will be discussed later on.

We start with a linear, anisotropic, and magneto-electro-elastic solid for which the coupled constitutive
relation can be written as (Harshe et al., 1993; Nan, 1994; Benveniste, 1995; Pan, 2001)
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ri ¼ Cikck � ekiEk � qkiHk

Di ¼ eikck þ eikEk þ dikHk

Bi ¼ qikck þ dikEk þ likHk

ð1Þ
where ri, Di, and Bi are the stress, electric displacement, and magnetic induction (i.e., magnetic flux), re-

spectively; ci, Ei and Hi are the strain, electric field and magnetic field, respectively; Cij, eij and lij are the

elastic, dielectric, and magnetic permeability coefficients, respectively; eij, qij, and dij are the piezoelectric,

piezomagnetic, and magnetoelectric coefficients, respectively. It is apparent that various uncoupled cases
can be reduced from Eq. (1) by setting the appropriate coupling coefficients (eij, qij, and dij) to zero.

For a monoclinic material with poling direction coincident with the x3 (or z) axis to be considered in this

paper, the material constant matrices of Eq. (1) are expressed by
½C� ¼

C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0

Sym C55 0

C66

2
6666664

3
7777775
; ½e� ¼

0 0 e31
0 0 e32
0 0 e33
e14 e24 0

e15 e25 0

0 0 e36

2
6666664

3
7777775
; ½q� ¼

0 0 q31
0 0 q32
0 0 q33
q14 q24 0

q15 q25 0

0 0 q36

2
6666664

3
7777775

ð2Þ

½e� ¼
e11 e12 0

e12 e22 0
0 0 e33

2
4

3
5; ½d� ¼

d11 d12 0

d12 d22 0
0 0 d33

2
4

3
5; ½l� ¼

l11 l12 0

l12 l22 0
0 0 l33

2
4

3
5 ð3Þ
The general strain (using tensor symbol for the elastic strain cik)–displacement relation is
cij ¼ 0:5ðui;j þ uj;iÞ
Ei ¼ �/;i; Hi ¼ �w;i

ð4Þ
where ui, /, and w are the elastic displacement, electric potential, and magnetic potential, respectively.

Assuming absence of the body force, electric charge, and current, the equilibrium equations are
rij;j ¼ 0; Dj;j ¼ 0; Bj;j ¼ 0 ð5Þ
3. General solutions

We seek the general two-dimensional solution of the extended displacement uðy; zÞ in the following form
u �

u1
u2
u3
/
w

2
66664

3
77775 ¼ epsz

a1 cos py
a2 cos py
a3 sin py
a4 sin py
a5 sin py

2
66664

3
77775 ð6Þ
where s is the eigenvalue and ai (i ¼ 1–5) the corresponding eigenvector to be determined, and
p ¼ np=l ð7Þ
with n being a positive integer.

Substitution of Eq. (6) into the strain–displacement relation (4) and subsequently into the constitutive
relation (1) yields the extended traction vector
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t �

r13

r23

r33

D3

B3

2
666664

3
777775
¼ p epsz

b1 cos py
b2 cos py
b3 sin py
b4 sin py
b5 sin py

2
666664

3
777775

ð8Þ
Introducing two vectors
a ¼ ½a1; a2; a3; a4; a5�t; b ¼ ½b1; b2; b3; b4; b5�t ð9Þ
we then find that vector b is related to a by the following relation
b ¼ ð�Rt þ sTÞa ¼ � 1

s
ðQ þ sRÞa ð10Þ
where the superscript �t� denotes matrix transpose, and
R ¼

0 0 C36 e36 q36
0 0 C23 e32 q32

�C45 �C44 0 0 0

�e25 �e24 0 0 0

�q25 �q24 0 0 0

2
66664

3
77775; T ¼

C55 C45 0 0 0
C44 0 0 0

C33 e33 q33
Sym �e33 �d33

�l33

2
66664

3
77775 ð11Þ
Q ¼

�C66 �C26 0 0 0

�C22 0 0 0

�C44 �e24 �q24
Sym e22 d22

l22

2
66664

3
77775 ð12Þ
The in-plane stresses and electric and magnetic displacements can be found using the strain–displacement

relation (4), Eqs. (6) and (8), which are given below as
r11

r12

r22

D1

D2

B1

B2

2
666666664

3
777777775
¼ p epsz

c1 sin py
c2 sin py
c3 sin py
c4 cos py
c5 cos py
c6 cos py
c7 cos py

2
666666664

3
777777775

ð13Þ
where
c1
c2
c3
c4
c5
c6
c7

2
666666664

3
777777775
¼

�C16 �C12 C13s e31s q31s
�C66 �C26 C36s e36s q36s
�C26 �C22 C23s e32s q32s
e15s e14s e14 �e12 �d12
e25s e24s e24 �e22 �d22
q15s q14s q14 �d12 �l12

q25s q24s q24 �d22 �l22

2
666666664

3
777777775

a1
a2
a3
a4
a5

2
66664

3
77775 ð14Þ
Satisfaction of Eq. (5) yields the following eigenproblem for the eigenvalue s and the corresponding ei-

genvector a,
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½Q þ sðRþ R0Þ þ s2T�a ¼ 0 ð15Þ
where R0 ¼ �Rt.

It is noted that Eq. (15), derived for a simply supported plate, resembles the Stroh formalism (Stroh,

1958; Ting, 1996). However, their solution structures are different because of the slightly different features

of the involved matrices (Pan, 2001).

To solve the eigenproblem (15), we can first recast it, with aid of Eq. (10), into a 10 · 10 linear eigen-

system
N
a
b

� �
¼ s

a
b

� �
ð16Þ
where
N ¼ �T�1R0 T�1

�Q þ RT�1R0 �RT�1

� �
ð17Þ
It has been proved (Pan, 2001) that if s is an eigenvalue of Eq. (16), so is �s. Therefore, we can assume that

the first five eigenvalues have positive real parts (if the real part is zero, then we pick the eigenvalue with

positive imaginary part) and the last five have opposite signs to the first five. We distinguish the corre-
sponding 10 eigenvectors by attaching a subscript to a and b. Then the general solution for the extended

displacement and traction vectors (of the z-dependent, y-independent factor) are derived as
u
t

� �
¼ A1 A2

B1 B2

� �
heps� zi K1

K2

� �
ð18Þ
where
A1 ¼ ½a1; a2; a3; a4; a5�; A2 ¼ ½a6; a7; a8; a9; a10�
B1 ¼ ½b1; b2; b3; b4; b5�; B2 ¼ ½b6; b7; b8; b9; b10�
heps�zi ¼ diag½eps1z; eps2z; eps3z; eps4z; eps5z; e�ps1z; e�ps2z; e�ps3z; e�ps4z; e�ps5z�

ð19Þ
and K1 and K2 are 5 · 1 column matrices to be determined.

We note a distinct difference between the cylindrical deformation here and the rectangular plate de-

formation studied in Pan (2001): While the ten roots in the rectangular plate case depend on the defor-

mation modes ðp; qÞ, for the cylindrical case, they are independent of the model parameter p defined in (7).

In other words, the roots in the cylindrical case depend only on the material properties. This is particularly
advantageous when solving a general boundary value problem where the given loading will be expressed in

terms of the Fourier series, and the solution is the sum of each Fourier term.

With Eq. (18) being served as a general solution for a homogeneous and magneto-electro-elastic plate,

the solution for the corresponding layered plate can be derived using the continuity conditions along the

interface and the boundary conditions on the top and bottom surfaces of the plate. In so doing, a system of

linear equations for the unknowns can be formed and solved (Heyliger and Brooks, 1996; Heyliger, 1997).

For structures with relatively large numbers of layers (up to a hundred layers), however, the system of linear

equations becomes very large, and the propagator matrix method developed exclusively for layered
structures can be conveniently and efficiently applied (for a brief review, see Pan, 1997). We discuss this

approach in the next section.
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4. Propagator matrix for a layered system

Since the matrix N , defined in Eq. (17), is not symmetric, the eigenvectors of Eq. (16) are actually the

right ones. The left eigenvectors are found by solving the following eigenvalue system
Table

Mater

C11

286

q31 ¼
580.

e11 ¼
0.08
N tg ¼ kg ð20Þ

It is known that if s and ½a; b�t are the eigenvalue and eigenvector solutions of Eq. (16), then k ¼ �s and
g ¼ ½�b; a�t are the corresponding solutions of Eq. (20). The orthogonality of the left and right eigenvectors

yields the following important relation:
�Bt
2 At

2

Bt
1 �At

1

� �
A1 A2

B1 B2

� �
¼ I 0

0 I

� �
ð21Þ
where I is a 5 · 5 identical matrix, and the eigenvectors have been normalized according to
�Bt
2A1 þ At

2B1 ¼ I ð22Þ

Eq. (21) resembles the orthogonal relation in the Stroh formalism (Ting, 1996) and provides us a simple

way of inverting the eigenvector matrix, which is required in forming the propagator matrix.

Let us assume that Eq. (18) is a general solution in the homogeneous layer j, with top and bottom

boundaries at z and 0 (locally). Letting z ¼ 0 in Eq. (18) and solving for the unknown column matrices, we

find
K1

K2

� �
¼ A1 A2

B1 B2

� ��1
u
t

� �
0

¼ �Bt
2 At

2

Bt
1 �At

1

� �
u
t

� �
0

ð23Þ
The second equation follows from Eq. (21). Therefore, the solution in the homogeneous layer j at any z can
be expressed by that at z ¼ 0, i.e.,
u
t

� �
z

¼ PðzÞ u
t

� �
0

ð24Þ
where
PðzÞ ¼ A1 A2

B1 B2

� �
heps�zi �Bt

2 At
2

Bt
1 �At

1

� �
ð25Þ
is called the propagator matrix (Gilbert and Backus, 1966; Pan, 1997).

The propagating relation (24) can be used repeatedly so that we can propagate the physical quantities

from the bottom surface z ¼ 0 to the top surface z ¼ h of the layered plate. Consequently, we have
u
t

� �
H

¼ PN ðhN ÞPN�1ðhN�1Þ � � �P2ðh2ÞP1ðh1Þ
u
t

� �
0

ð26Þ
where hj ¼ zjþ1 � zj is the thickness of layer j and Pj the propagator matrix of layer j.
1

ial coefficients of the magnetostrictive CoFe2O4 (Cij in 109 N/m2, qij in N/(Am), eij in 10�9 C2/(Nm2), and lij in 10�6 N s2/C2)

¼ C22 C12 C13 ¼ C23 C33 C44 ¼ C55 C66 ¼ 0:5ðC11 � C12Þ
173 170.5 269.5 45.3 56.5

q32 q33 q24 ¼ q15
3 699.7 550

e22 e33 l11 ¼ l22 l33

0.093 )590 157
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Fig. 1. (a) Variation of elastic displacement component uy (in m) along the thickness direction of the single magnetostrictive CoFe2O4

plate for four different span-to-thickness ratios S. (b) Variation of elastic displacement component uz (in m) along the thickness

direction of the single magnetostrictive CoFe2O4 plate for four different span-to-thickness ratios S.
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Fig. 2. Variation of magnetic potential w (in C/s) along the thickness direction of the single magnetostrictive CoFe2O4 plate for four

different span-to-thickness ratios S.
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Fig. 3. (a) Variation of stress component rxx (in N/m2) along the thickness direction of the single magnetostrictive CoFe2O4

plate for four different span-to-thickness ratios S. (b) Variation of stress component ryy (in N/m2) along the thickness direc-

tion of the single magnetostrictive CoFe2O4 plate for four different span-to-thickness ratios S. (c) Variation of stress component

ryz (in N/m2) along the thickness direction of the single magnetostrictive CoFe2O4 plate for four different span-to-thickness

ratios S.
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Eq. (26) is a surprisingly simple relation and, for given boundary conditions, can be solved for the
unknowns involved. In the following examples, we assume that the bottom surface ðz ¼ 0Þ is traction free
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Fig. 4. (a) Variation of magnetic flux component By (in Wb/m2) along the thickness direction of the single magnetostrictive CoFe2O4

plate for four different span-to-thickness ratios S. (b) Variation of magnetic flux component Bz (in Wb/m2) along the thickness direction

of the single magnetostrictive CoFe2O4 plate for four different span-to-thickness ratios S.

Table 2

Material coefficients of the piezoelectric BaTiO3 (Cij in 109 N/m2, eij in C/m2, eij in 10�9 C2/(Nm2), and lij in 10�6 N s2/C2)

C11 ¼ C22 C12 C13 ¼ C23 C33 C44 ¼ C55 C66 ¼ 0:5ðC11 � C12Þ
166 77 78 162 43 44.5

e31 ¼ e32 e33 e24 ¼ e15
)4.4 18.6 11.6

e11 ¼ e22 e33 l11 ¼ l22 l33

11.2 12.6 5 10
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(i.e., the elastic traction and the z-direction electric displacement and magnetic induction are zero) and that
on the top surface ðz ¼ hÞ, we give
tðHÞ ¼ ½0; 0; r0 sin py; 0; 0�t ð27Þ
5. Numerical examples

In the examples presented below, the span-to-thickness ratios S � l=h (h ¼ 1m) are equal to 2.5, 5, 10,

and 20. A sinusoidal load is applied at the top surface z ¼ h (in meter), as given by Eq. (27) with r0 ¼ 1 N/

m2 Furthermore, n in Eq. (7) is fixed at 1 and y is at S=4. To study the thin-plate limit, we follow Pagano

(1969, 1970) to normalize ux and uy by dividing S3, uz by multiplying 100=S4, rxx, ryy , and rxy by dividing S2,

and ryz and rxz by dividing S. Furthermore, the piezoelectric and piezomagnetic fields are also normalized,

with / and w being divided by S2, Dx, Dy , Bx, and By divided by S. It is noted that in so doing all the physical
quantities are still dimensional with the elastic displacement in m, stress in N/m2, electric potential in V,
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Fig. 5. (a) Variation of electric potential / (in V) along the thickness direction of the two-layered F/B plate for four different span-to-

thickness ratios S. (b) Variation of magnetic potential w (in C/s) along the thickness direction of the two-layered F/B plate for four

different span-to-thickness ratios S.
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Fig. 6. (a) Variation of electric displacement component Dy (in C/m2) along the thickness direction of the two-layered F/B plate for four

different span-to-thickness ratios S. (b) Variation of electric displacement component Dz (in C/m2) along the thickness direction of the

two-layered F/B plate for four different span-to-thickness ratios S.
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magnetic potential in C/s, electric displacement in C/m2 and magnetic flux (or induction) in Wb/m2. We also

remark that results from our analytical model have been compared with those from a continuum-based

discrete-layer plate theory with excellent agreement being obtained (Heyliger et al., 2002).

Example 1. The first example is a single layer model, which is made of the magnetostrictive CoFe2O4. The

material properties of the layer are given in Table 1 (Pan, 2001).

The variation of the displacement components uy and uz along the thickness direction for different span-

to-thickness ratios S are shown in Fig. 1a and b. As can be clearly observed, while uy is a linear function of z
in the thin-plate limit ðS ¼ 20Þ, uz is constant, demonstrating the general features for the purely elastic thin-

plate theory. However, the magnetic potential is a quadratic function of z, as shown in Fig. 2.

The stress components are plotted in Fig. 3a–c, which show, in the thin-plate limit, a linear variation

along the z-direction for the normal stress components rxx and ryy (Fig. 3a and b), and a quadratic variation
for ryz (Fig. 3c). Again, these thin-plate stress distribution features are the same for the purely elastic case.
Table 3

Material coefficients of the orthotropic piezoelectric PZT-4 (Cij in 109 N/m2, eij in C/m2, eij in 10�9 C2/(Nm2)

C11 C22 C33 C44 C55 C66

238 23.6 10.6 2.15 4.4 6.43

C12 C13 C23 e11 e11 ¼ e22
3.98 2.19 1.92 0.110625 0.106023

e31 e32 e33 e24 ¼ e15
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The distributions of the magnetic flux components, however, are different. While By is quadratic in z (Fig.
4a), Bz is cubic in z (Fig. 4b). Therefore, in the thin-plate theory for the magneto-electro-elastic laminate,

the magnetic and electric quantities would generally require a high-order polynomial approximation.
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Example 2. The second example is a two-layered plate made of piezoelectric BaTiO3 with material pro-
perties given in Table 2 (Pan, 2001) and magnetostrictive CoFe2O4. The piezoelectric BaTiO3 is in the

bottom layer ð0 < z < 0:5hÞ and the magnetostrictive CoFe2O4 is in the top layer ð0:5h < z < hÞ. Starting
from the top, this two-layered plate is named as F/B plate.

Shown in Fig. 5a and b are, respectively, the variations of the electric and magnetic potentials along the

z-direction for different span-to-thickness ratios S. It is interesting that, in the thin-plate limit, the electric

(magnetic) potential in the thickness direction is nearly constant in the magnetostrictive (electric) layer, and

is quadratic in the electric (magnetostrictive) layer. Similarly, the electric displacement components are

either constant or linear in the magnetostrictive layer but are quadratic in the electric layer (Fig. 6a and b).
An opposite behavior is observed for the magnetic flux components as shown in Fig. 7a and b, where they

are quadratic functions of z in the magnetostrictive layer but constant or linear functions of z in the electric

layer. We finally remark that the variation of the displacement components uy and uz along the thickness

direction for different span-to-thickness ratios S is similar to the single plate case as shown in Fig. 1a and b.

Example 3. In the third example, the plate is made of four layers of equal thickness with each having a

thickness of 0:25h. The stacking sequence from the top to bottom is Orth+45/CoFe2O4/BaTiO3/Orth)45, or
+45/F/B/)45 for simplicity. While BaTiO3 and CoFe2O4 are the materials used in Examples 1 and 2,
materials Orth±45 are from PZT-4 by rotating ±45 degrees with respect to the x-axis. The properties of the
orthotropic piezoelectric PZT-4 (Heyliger, 1997) are given in Table 3.

Fig. 8a–c show the variations of the elastic displacements along the z-direction for different span-to-

thickness ratios S. As can be observed, they are either constant or linear functions of the thickness coor-

dinate z.
While Fig. 9a shows the variation of the electric potential along the thickness direction, Fig. 9b plots that

for the magnetic potential. A special feature is noticed for the variation of the electric potential in the top

Orth+45 layer where it experiences a very large gradient from the top surface to the interface (Fig. 9a).
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Fig. 10. (a) Variation of stress component rxx (in N/m2) along the thickness direction of the four-layered +45/F/B/)45 plate for four
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The variations of the stress components along the thickness direction are shown in Fig. 10a–e. It is
clearly observed, they are either a linear function of z (Fig. 10a, b, d, and e for rxx, ryy , rxz and rxy) or a
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quadratic function of z (Fig. 10c for ryz). Again, these features are consistent with those observed from the
purely elastic composite plates.

Finally, Fig. 11a–c and Fig. 12a–c show the variations of the electric displacement and magnetic flux. As

can be seen, their variations are similar to those in the two-layered plate presented in Example 2. That is,

the electric displacement has higher order variation in the electric layer than that in the magnetic layer (Fig.

11a–c). On the other hand, the magnetic flux has higher order variation in the magnetostrictive layer than

that in the electric layer (Fig. 12a–c).
6. Conclusions

In this paper, we have derived an analytical solution for the static bending of an anisotropic, magneto-

electro-elastic, and multilayered plate with simply supported edges. Similar to the analysis for the corre-

sponding 3D plate problem, the homogeneous solutions are expressed in terms of the simple quasi-Stroh

formalism and the solution in the multilayered plate in terms of the propagator matrix method. It is noted,

however, while for the 3D plate case, the eigenvalues of the homogeneous plate depend on the eigenmode
pair ðp; qÞ, for the 2D cylindrical bending, the eigenvalues are independent of the eigenmode p. Thus the
homogeneous solution for each layer needs to be solved only once, independently of the eigenmode p. This
is particularly efficient when superposing all the sinusoidal responses together as in the Fourier series

summation.

Numerical examples are presented for three representative plates: a single homogeneous magnetostric-

tive plate made of CoFe2O4, a two-layered plate made of magnetostrictive CoFe2O4 in the top layer and

piezoelectric BaTiO3 in the bottom layer, and a four-layered plate Orth+45/CoFe2O4/BaTiO3/Orth)45. For
different span-to-thickness ratios, we have observed that, in the thin-plate limit, while the elastic fields
(elastic displacements and stresses) follow those in the purely elastic plate, the electric and magnetic fields



-2.8E-011 -2.4E-011 -2.0E-011 -1.6E-011 -1.2E-011 -8.0E-012 -4.0E-012 -4.8E-027

Dx

0.00

0.25

0.50

0.75

1.00

z/
h

S = 2.5
S = 5
S = 10
S = 20

+45

F

B

-45

-3E-011 -2E-011 -1E-011 -3E-027 1E-011 2E-011

Dy

0.00

0.25

0.50

0.75

1.00

z/
h

S = 2.5
S = 5
S = 10
S = 20

+45

F

B

-45

-6E-012 -4E-012 -2E-012 -8E-028 2E-012
Dz

0.00

0.25

0.50

0.75

1.00

z/
h

s=2.5
s=5
s=10
s=20

+45

F

B

-45

(a) (b)

(c)

Fig. 11. (a) Variation of electric displacement component Dx (in C/m2) along the thickness direction of the four-layered +45/F/B/)45
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showed very different features. In particular, their variations along the thickness direction are usually high-

order polynomial functions of the thickness coordinate. In other words, in the development of a thin-plate
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theory for the magneto-electro-elastic plate, a high-order polynomial is needed for the electric and magnetic
quantities. Finally, we have observed that different lay-ups could predict totally different responses on the

elastic, electric, and magnetic quantities. These general features should be useful in the analysis and design

of magneto-electro-elastic composite laminates.
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