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ABSTRACT: Exact solutions are derived for three-dimensional, anisotropic,
linearly elastic, and functionally graded rectangular composite laminates under
simply supported edge conditions. The solutions are expressed in terms of an elegant
formalism that resembles the Stroh formalism, and the composite laminates can be
made of multilayered functionally graded materials with their properties varying
exponentially in the thickness direction. The present solution extends Pagano’s
solution to the functionally graded material, and can serve as a benchmark to the
modeling of functionally graded composite laminates based on various numerical
methods. Typical results of the present solution are discussed for a single
functionally graded plate and a bi-layer plate with a functionally graded layer
overlying a homogeneous layer. For both plates, a simple load is applied on their top
surfaces. It is shown that with a suitable functionally graded layer, the tensile stress
on the top surface (or the compressive stress on the bottom surface for a
homogeneous layer overlying a functionally graded layer) of the bi-layer plate can be
reduced. This interesting feature could be useful in the design of functionally graded
composite laminates.

KEY WORDS: functionally graded material, composite laminate, anisotropic
elasticity, exact three-dimensional solution, simply supported plate.

INTRODUCTION

A
RTIFICIAL MATERIALS WITH multilayered structures, such as composite laminates,
have been successfully applied to various material science and engineering fields.

However, the mismatch of the material properties between the adjacent layers renders a
stress concentration at the free edge, which has been long noticed to be the source for
delamination and other failures (see e.g., [1–3]). In particular, when the conventional
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thermal barrier coatings were used for high temperature applications, the mismatch of
the thermal expansion coefficients between the coating and substrate materials may
initiate debonding, delamination, and micro-cracks [4–6]. Thus, the functionally graded
materials (FGMs) were introduced [7] to overcome the disadvantages associated with
homogeneous coating materials and to reduce the residual stresses in layered composites
by serving as tailored interfacial zone materials with continuously varying mechanical
properties.

Owing to its special features with potential applications to many science and engineering
fields, the FGM structure has attracted wide and increasing attentions of scientists and
engineers in broad areas of research. So far, various numerical simulations have been
carried out on the mechanical and fracture behaviors of such a structure [4,8–27].
Furthermore, certain analytical solutions have been also derived for FGMs. For instance,
for geo-materials, such as soils and rocks where the elastic properties vary as a function
of depth beneath the surface, Booker et al. [28] studied the static response of an iso-
tropic elastic and inhomogeneous half-space subject to a line and point load, while
Ben-Menahem [29] derived the Green’s tensor and its potentials for the corresponding
time-harmonic deformation. In other areas, Giannakopoulos and Suresh [30] studied the
indentation on the surface of an FGM half space, and Kim and Noda [31] and Gray et al.
[32] investigated the thermal conduction in FGMs. Very recently, Martin et al. [33] derived
an analytical expression for the Green’s function in anisotropic elastic FGMs where the
material properties vary exponentially in a fixed direction, whilst Wang et al. [34] solved
the symmetric problem of a point force in a transversely isotropic FGM half-space.
Furthermore, for an FGM cylinder or disk, Horgan and Chan [35] derived an exact
closed-form solution for the stress field and showed certain stress behaviors in the FGM
cylinder; Vel and Batra [36], on the other hand, obtained the analytical solution for a
simply supported multilayered FGM plate made of isotropic materials by using the
Fourier series expansion method.

In this paper, we derive exact solutions for three-dimensional (3D), anisotropic elastic
FGM (with exponentially varying material properties), simply supported, rectangular
plates under surface loads, an extension of Pagano’s previous solution [37,38] to the FGM
case. The homogeneous solution in a single FGM plate is obtained in terms of a new and
simple formalism similar to the Stroh formalism [39–41]. Solutions for the corresponding
multilayered FGM plates are obtained using the propagator matrix method [42,43]. To the
best of the author’s knowledge, it is the first time that an anisotropic elastic FGM plate
under simply supported edge conditions is studied analytically. Since the present solutions
are exact, they can serve as benchmarks to various numerical methods, such as the finite
and boundary element methods [44,45], used for the modeling of FGM composite
structures.

As numerical illustrations, a single FGM plate and a bi-layer plate with an FGM
layer overlying a homogeneous layer (named FGM/homo bi-layer plate) are analyzed.
For both cases, a simple surface load is applied on the top surface of the plate.
Numerical results are given for the variation of the displacements and stresses along the
thickness direction of the plate for five different exponential factor values (i.e., �¼�1,
�0.5, 0, 0.5, 1, as defined below). Typical features observed from these numerical results
should be of special interest to the design of FGM composite laminates. In particular,
our numerical examples clearly show that with a suitable lay-up and an exponential
factor � for the FGM, one could achieve an optimal design for the FGM composite
laminates.
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PROBLEM DESCRIPTION AND BASIC EQUATIONS

Let us consider an anisotropic, linearly elastic, and layered rectangular FGM plate with
horizontal dimensions Lx and Ly and thickness H (in the vertical direction). The four sides
of the plate are simply supported. Each layer of the plate can be homogeneous or FGM
with exponentially varying material properties. A Cartesian coordinate system (x, y, z) is
attached to the plate in such a way that its origin is at one of the four corners on the
bottom surface and the plate is in the positive z-region. Only surface loading will be
considered, while internal loading case can be treated similarly as in Pan [46]. Without
loss of generality, we also assume that the surface load is applied on the top surface of the
plate.

The constitutive relation for each layer can be written as

�i ¼ Cik�k ð1Þ

where �i are the stress, �i the strain, and Cij the elastic stiffness matrix.
For an FGM layer with exponentially varying material properties in the z-direction, the

elastic stiffness matrix in Equation (1) can be expressed as

CikðzÞ ¼ C0
ike

�z ð2Þ

where � is the exponential factor characterizing the degree of material gradient in the
z-direction. It is further noted that the exponential factor � has the dimension 1/L, where L
is the characteristic length of the problem. Figure 1 illustrates the variation of the expon-
ential function e�z along the z-direction for five different � values (¼�1, �0.5, 0, 0.5, 1).
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Figure 1. Variation of exponential function e�z over z2[0,1] for factor �¼�1, �0.5, 0, 0.5, and 1 (z in m and �
in 1/m).
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We remark that �¼ 0 corresponds to the homogeneous case, �<0 to the graded soft
material, and �>0 to the graded stiff material.

For an orthotropic elastic solid, the stiffness matrix in Equation (1) is reduced to

½C� ¼

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

Sym C55 0
C66

2
6666664

3
7777775

ð3Þ

The other two sets of equations are the strain (using tensor symbol � ik)–displacement
relation

�ij ¼ 0:5ðui, j þ uj, iÞ ð4Þ

with ui being the displacement; and the equations of equilibrium

�ij, j þ fi ¼ 0 ð5Þ

with fi being the body force.

GENERAL SOLUTIONS

For a simply supported FGM plate, we seek the solution of the displacement vector in
the form of

u �

ux
uy
uz

2
4

3
5 ¼ esz

a1 cos px sin qy
a2 sin px cos qy
a3 sin px sin qy

2
4

3
5 ð6Þ

where

p ¼ n�=Lx, q ¼ m�=Ly ð7Þ

and n and m are two positive integers.
Substitution of Equation (6) into the strain–displacement relation (4), the constitutive

relation (2), and finally into the equations of equilibrium (5) with zero body force, yields
the following eigenequation

½Q� �Rt þ sðR� Rt þ �TÞ þ s2T �a ¼ 0 ð8Þ

where superscript t denotes the transpose of matrix. Also in Equation (8),

a ¼ ½a1, a2, a3�
t

ð9Þ
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R ¼

0 0 pC0
13

0 0 qC0
23

�pC0
55 �qC0

44 0

2
64

3
75, T ¼

C0
55 0 0

0 C0
44 0

0 0 C0
33

2
64

3
75 ð10Þ

Q ¼

�ðC0
11p

2 þ C0
66q

2Þ �pqðC0
12 þ C0

66Þ 0

�pqðC0
12 þ C0

66Þ �ðC0
66p

2 þ C0
22q

2Þ 0

0 0 �ðC0
55p

2 þ C0
44q

2Þ

2
64

3
75 ð11Þ

Equation (8) is a new eigenequation for the FGM, and when �¼ 0, is reduced to the
eigenequation for the corresponding homogeneous case [46].

Taking into consideration the simply supported edge conditions, along with the
exponential variation of the stiffness matrix described by Equation (2), the traction vector
can then be assumed as

t �
�xz
�yz
�zz

2
4

3
5 ¼ eðsþ�Þz

b1 cos px sin qy
b2 sin px cos qy
b3 sin px sin qy

2
4

3
5 ð12Þ

To find the relation between ai in Equation (6) and bi in Equation (12), we first take the
derivatives of the displacement (6) to obtain the strain field; we then substitute the result
into Equations (1) and (2) to derive the stress field. Comparison of the coefficients of the
same trigonometric functions finally gives us the following relation between the vectors a
and b

b ¼ ð�Rt þ sTÞa ð13Þ

with

b ¼ ½b1, b2, b3�
t

ð14Þ

Similarly, the in-plane stresses can be expressed as

�xx
�xy
�yy

2
4

3
5 ¼ eðsþ�Þz

c1 sin px sin qy
c2 cos px cos qy
c3 sin px sin qy

2
4

3
5 ð15Þ

where

c1

c2

c3

2
64

3
75 ¼

�C0
11p �C0

12q C0
13s

C0
66q C0

66p 0

�C0
12p �C0

22q C0
23s

2
64

3
75

a1

a2

a3

2
64

3
75 ð16Þ

In Pan [46], we have discussed the distinguished structure of an equation similar to
Equation (8), and its solution for the homogeneous material case. Here, we further remark
that, due to the involvement of the exponential factor � in Equation (8), certain features
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discussed in [40] and [46] do not hold for the present FGM case. However, the following
two features are still useful in the analysis: (1) If s is an eigenvalue of Equation (8), so is �s;
and (2) If s is a complex (or purely imaginary) eigenvalue, then its complex conjugate is
also an eigenvalue since all the coefficient matrices in Equation (8) are real.

With the aid of Equation (13), Equation (8) can now be recast as a 6� 6 linear
eigensystem

N
a
b

� �
¼ s

a
b

� �
ð17Þ

where

N ¼
T�1Rt T�1

�Q� RT�1Rt �RT�1 � �I

� �
ð18Þ

with I being a 3� 3 unit matrix.
It is of particular interest to notice that the only difference between the present matrix N

for the FGM case and that for the homogeneous material case [46] is the involvement of
the exponential factor �. However, because of this difference, the eigenpairs of Equation
(17) are completely different from those corresponding to the homogeneous material case.
Thus, the structure of the solution to Equation (17) is different from that in [40] or [46].

Depending upon the given material property, the six eigenvalues of Equation (17) may
not be distinct. Should repeated roots occur, a slight change in the material constants
would result in distinct roots with negligible error [47] so that the following simple solution
structure can be applied to any material. Let us assume that the first three eigenvalues
have positive real parts (if the root is purely imaginary, we then pick up the one with
positive imaginary part) and the rest have opposite signs to the first three. We distinguish
the corresponding 6 eigenvectors by attaching a subscript to a and b. Then the general
solutions for the displacement and traction vectors, expressed by Equations (6) and (12),
are derived as (taking the z-dependent factor only)

u
t

� �
¼

A1 e
s�z

� �
A2 e

�s�z
� �

B1 e
ðs�þ�Þz

� �
B2 e

ð�s�þ�Þz
� �

� �
K1

K2

� �
ð19Þ

where

A1 ¼ ½a1, a2, a3�, A2 ¼ ½a4, a5, a6�

B1 ¼ ½b1, b2, b3�, B2 ¼ ½b4, b5, b6�

es
�z

� �
¼ diag½es1z, es2z, es3z�

ð20Þ

and K1 and K2 are two 3� 1 complex constant column matrices to be determined. In
Equation (20), the column matrices ai and bi, defined as

ai ¼ ½a1i, a2i, a3i�
t

bi ¼ ½b1i, b2i, b3i�
t

ð21Þ
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are the eigenvectors of Equation (17), corresponding to the eigenvalue si (i¼ 1, 2, 3); whilst
for i¼ 4, 5, 6 the column matrices ai and bi are the eigenvectors corresponding to the
eigenvalue �si�3.

Equation (19) is a general solution for an FGM plate under simply supported edge
conditions of a certain type. We should also point out that only the real part of the right-
hand side of Equation (19) is chosen for the displacement and traction vector solutions.
We further remark that, when �¼ 0, this equation reduces to the solution for the
corresponding homogeneous material case [37,38,46]. With Equation (19) serving as a
general solution for the FGM plate, solutions for the corresponding multilayered FGM
plate can be obtained using the continuity conditions along the interface and the boundary
conditions on the top and bottom surfaces of the multilayered FGM plate. In doing so, a
system of linear equations for the unknowns can be formed and solved [38,48].
Alternatively, the propagator matrix method can be utilized [42,43,46] which can
substantially simplify the final solution, in particular, when the FGM plate consists of
many layers. These analytical results could be beneficial to the design analysis using the
thin FGM layer as coating material to protect the core and inner structures.

Before carrying out numerical studies using the present formulation, we emphasize
again that the present solution is valid for any integers n and m as defined by Equation (7).
In other words, the solution we have derived can be regarded as for one of the terms in a
Fourier series expansion. Because of the linearity, the solution corresponding to a general
loading (uniform or point loading) can be obtained by expanding the loading as a finite
double Fourier series [49,50] and adding the responses together term by term.

NUMERICAL EXAMPLES

As the first example, let us consider a single FGM plate of orthotropy. The constant
factors of the material properties (elastic modulus E, shear modulus G, and Poisson’s
ratios �) are taken from Pagano [38]

EL ¼ 25� 106 psi ET ¼ 106 psi

GLT ¼ 0:5� 106 psi GTT ¼ 0:2� 106 psi

�LT ¼ �TT ¼ 0:25

ð22Þ

where L (different from the length scale L used elsewhere in this paper) denotes the
direction parallel to the fibers and T the transverse direction. Also, �LT is the Poisson’s
ratio measuring strain in the T-direction under the uniaxial normal stress in the L-
direction. In the examples, L is chosen to be along the y-direction. Therefore, the constant
stiffness matrix in Equation (2) in the (x, y, z)-coordinates can be expressed as

C0
ij ¼

7:3802 2:3121 1:8682 0 0 0
173:406 2:3121 0 0 0

7:3802 0 0 0
3:445 0 0

Sym 1:378 0
3:445

2
6666664

3
7777775
ð109 N=m2Þ ð23Þ
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We also assume that the dimensions of the plate are Lx�Ly�H¼ 1� 1� 1m3, and a
traction in the z-direction is applied on the top surface of the plate z¼H, as given by

tðHÞ ¼ ½0, 0, �0 sin px sin qy�
t

ð24Þ

with m¼ n¼ 1 (i.e., p¼�/Lx, q¼�/Ly) and �0¼ 1N/m2. The bottom surface is assumed to
be traction-free. Responses are calculated in the thickness direction, with fixed horizontal
coordinates (x, y) at (0.75Lx, 0.25Ly).

Figure 2(a)–(c) show the variation of the displacement components (ux, uy, and uz) along
the thickness direction of the FGM plate. Numerical values are also given in Table 1 at
z¼ 0 and 1.0m for all three displacement components and also at z¼ 0.5m for uz. It is
observed that on the top and bottom surfaces, the magnitudes of the horizontal
displacements (i.e., ux and uy) decrease with increasing exponential factor � (i.e., �
increases from �1 to 1, with �¼ 0 corresponding to the homogeneous case). This is what
we expected: a graded stiff material (�>0) will be hard to deform. Furthermore, since on
the top surface the horizontal displacements are negative, while on the bottom surface they
are positive, there is a location within the plate where curves intersect each other. This
location is roughly at z¼ 0.4m for ux and at z¼ 0.2m for uy. The distribution of uz is given
in Figure 2(c), where again as we can see that the magnitude of uz decreases with increasing
exponential factor �.

Shown in Figure 3(a)–(f) are the variations of the stress components �xx, �yy, �zz, �yz,
�zx, and �xy along the thickness direction of the plate. Numerical values are also given in
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Figure 2. (a) Variation of displacement component ux along the thickness direction in single FGM plate for
factor �¼�1, �0.5, 0, 0.5, and 1 (ux in m and � in 1/m); (b) Variation of displacement component uy along the
thickness direction in single FGM plate for factor �¼�1, �0.5, 0, 0.5, and 1 (uy in m and � in 1/m); (c) Variation
of displacement component uz along the thickness direction in single FGM plate for factor �¼�1,�0.5, 0, 0.5,
and 1 (uz in m and � in 1/m).
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Table 2 for the normal stress components �xx and �yy at z¼ 0, 0.5m and 1.0m, and for the
normal stress component �zz at z¼ 0.5m. Table 3 lists numerical values for the shear stress
components �yz and �zx at z¼ 0.3m and 0.7m, and the shear stress component �xy at
z¼ 0, 0.5m and 1.0m.
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Figure 2. Continued.
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It is interesting that while for the horizontal displacements there is only one location in
the z-direction where two curves intersect each other, for the horizontal stresses (�xx, �yy,
and �xy) there are two locations along the z-direction where curves intersect each other
(Figure 3(a), (b) and (f)). For �xx and �xy, these intercept locations are roughly at z¼ 0.2m
and 0.8m, whilst for �yy, they are at z¼ 0.15m and z¼ 0.85m. It is also observed that on the
top surface, �xx and �yy are tensile, and �xy is negative; on the bottom surface, on the other
hand, �xx and �yy are compressive, and �xy is positive. While �xx and �xy have the same
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Sigma_xx
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Figure 3. (a) Variation of stress component �xx along the thickness direction in single FGM plate for factor
�¼�1, �0.5, 0, 0.5, and 1 (�xx in N/m2 and � in 1/m); (b) Variation of stress component �yy along the thickness
direction in single FGM plate for factor �¼�1, �0.5, 0, 0.5, and 1 (�yy in N/m2 and � in 1/m); (c) Variation of
stress component �zz along the thickness direction in single FGM plate for factor �¼�1, �0.5, 0, 0.5, and 1
(�zz in N/m2 and � in 1/m); (d) Variation of stress component �yz along the thickness direction in single FGM
plate for factor �¼�1, �0.5, 0, 0.5, and 1 (�yz in N/m2 and � in 1/m); (e) Variation of stress component �zx
along the thickness direction in single FGM plate for factor �¼�1,�0.5, 0, 0.5, and 1 (�zx in N/m2 and � in 1/m);
(f) Variation of stress component �xy along the thickness direction in single FGM plate for factor �¼�1, �0.5,
0, 0.5, and 1 (�xy in N/m2 and � in 1/m).

Table 1. Displacements (in 10�11m) for different � at different z-levels (in m).

Z¼� 1 Z¼� 0.5 Z¼0 Z¼0.5 Z¼1

ux z¼0.0 6.48758 5.46503 4.54910 3.74002 3.03593
z¼1.0 �7.09212 �5.32779 �3.94922 �2.88987 �2.08884

uy z¼0.0 2.68529 2.19394 1.77373 1.41893 1.12321
z¼1.0 �3.64298 �2.75880 �2.07327 �1.54532 �1.14191

uz z¼0.0 21.1343 16.7250 13.0954 10.1442 7.77486
z¼0.5 22.7567 18.0238 14.1290 10.9611 8.41538
z¼1.0 28.4116 21.7324 16.5679 12.5702 9.48080
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magnitude, they both are one order small than �yy, due to the fact that the y-direction is
along the fiber direction (Equations (22) and (23)). As for other shear stress components �yz
and �zx (Figure 3(d) and (e)), we notice that the magnitude of �yz, which is in the same order
of �xy, is much large than �zx (about 4 times). However, they both show similar variation
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Figure 3. Continued.
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along the z-direction; that is, with the increasing exponential factor �, their magnitude
increases in the bottom half (z<0.5m) but decreases in the top half of the plate (z>0.5m).

Naturally, one would ask: how could these displacement and stress behaviors in the
FGM plate be applicable or beneficial to the design of FGMs? Actually, an in-depth study
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Figure 3. Continued.
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on the normal stresses �xx and �yy, in particular �yy, on the surfaces of the FGM plate
reveals some interesting features which might be directly useful to the design of FGMs.
From Figure 3(a) and (b), one observes that, the tensile stress on the top surface can be
reduced substantially by using a graded soft material (i.e., �<0); on the other hand
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Figure 3. Continued.

Table 3. Shear stresses (in N/m2) for different � at different z-levels (in m).

Z¼�1 Z¼� 0.5 Z¼ 0 Z¼0.5 Z¼1

�yz z¼0.3 0.526202 0.488592 0.448736 0.407614 0.366208
z¼0.7 0.401106 0.444140 0.487241 0.529387 0.569522

�zx z¼0.3 0.127576 0.119228 0.110029 0.100224 0.090089
z¼0.7 0.101806 0.109083 0.115878 0.121939 0.127046

�xy z¼0.0 0.330920 0.276305 0.228102 0.186114 0.150045
z¼0.5 �0.001847 0.012356 0.027015 0.041542 0.055348
z¼1.0 �0.142472 �0.176944 �0.217267 �0.263801 �0.316823

Table 2. Normal stresses (in N/m2) for different � at different z-levels (in m).

Z¼�1 Z¼�0.5 Z¼0 Z¼ 0.5 Z¼1

�xx z¼0.0 �0.517825 �0.434976 �0.361124 �0.296185 �0.239909
z¼0.5 0.068474 0.040066 0.010842 �0.018116 �0.045730
z¼1.0 0.339523 0.390569 0.449718 0.517278 0.593411

�yy z¼0.0 �4.97318 �4.06616 �3.28973 �2.63350 �2.08601
z¼0.5 0.316919 0.125018 �0.073896 �0.273434 �0.467122
z¼1.0 2.62729 3.24093 3.97718 4.85003 5.87242

�zz z¼0.5 0.283086 0.262026 0.240560 0.219018 0.197730
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however, the compressive stress on the bottom surface will be increased (in approximately
the same ratio as on the top surface for the tensile stress). Similarly, a substantial reduction
on the compressive stress on the bottom surface can be achieved by using a graded stiff
material, which on the other hand increases the tensile stress on the top surface. We
remark that our results are for a single FGM plate; a multilayered FGM laminate could be
designed to reduce the variation of the normal stress along one of the surfaces of the FGM
(actually it is the interface between the FGM and the plate). Therefore, it is possible that,
by adjusting the exponential factor �, one can achieve an optimal design for the FGM
composite. To further elaborate our points, numerical modeling has been also carried
out for a bi-layer plate made of an FGM layer overlying a homogeneous layer (i.e., the
FGM/homo bi-layer plate), which is explained below in certain details.

For the second example, the geometry of the FGM/homo bi-layer plate is very similar to
the single FGM plate. The dimensions of the plate are still Lx�Ly�H¼ 1� 1� 1m3.
However, the bottom part of the FGM/homo bi-layer plate, i.e., 0� z� 0.7m, is now
a homogeneous layer with elastic constants being given by Equation (23); while for its top
part, i.e., 0.7� z� 1m, we use the FGM material given by

CikðzÞ ¼ C0
ike

�ðz�0:7Þ ð25Þ

In so doing, the material properties (and thus the displacement and stress components) are
continuous along the interface between the FGM layer and the homogenous layer. Again,
the bottom surface (z¼ 0) is traction free, and the top surface (z¼ 1m) is under the load
given by Equation (24). For m¼ n¼ 1 (i.e., p¼�/Lx, q¼�/Ly) and �0¼ 1N/m2, we
calculated the displacement and stress fields in the thickness direction, with fixed
horizontal coordinates (x, y)¼ (0.75Lx, 0.25Ly).

Shown in Figure 4(a) and (b) are the variations of the normal stress components �xx and
�yy along the thickness direction of the FGM/homo bi-layer plate for the five different
exponential factors �¼ (�1, �0.5, 0, 0.5, 1). It is clearly shown that, using a graded soft
layer (i.e., �<0), the tensile stress on the top surface of the FGM/homo bi-layer plate can
be reduced by 13% for �xx and 18% for �yy, while at the same time the stress variation
along the interface (z¼ 0.7m) is minor. In particular, the compressive stresses along the
bottom surface are nearly the same for the five different exponential factor values.
Similarly, a bi-layer plate with a homogeneous layer overlying a graded stiff layer,
i.e., the homo/FGM bi-layer, will reduce the compressive stress along the bottom surface
of the bi-layer plate.

CONCLUSIONS

In this paper, we have derived the exact solution for 3D anisotropic, linearly elastic, and
FGM rectangular composite laminates under simply supported edge conditions. We
expressed the solution in terms of a simple formalism similar to the Stroh formalism. The
composite laminates can be made of multilayered FGMs with their properties varying
exponentially in the thickness direction. When the exponential factor �¼ 0, the present
solution is reduced to Pagano’s solution [37,38].

Numerical results are also presented for a single FGM plate and an FGM/homo
bi-layer plate, both under a simple load on the top surface. Several interesting features
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were observed for the displacement and stress variations within the FGM plates. In
particular, it is clearly shown that with a suitable FGM layer bonded to a homogeneous
layer, one could reduce the tensile stress on the top surface (for the FGM/homo bi-layer)
or the compressive stress on the bottom surface (for the homo/FGM bi-layer) of the
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Figure 4. (a) Variation of stress component �xx along the thickness direction in FGM/homo bi-layer plate for
factor �¼�1, �0.5, 0, 0.5, and 1 (�xx in N/m2 and � in 1/m); (b) Variation of stress component �yy along the
thickness direction in FGM/homo bi-layer plate for factor �¼�1, �0.5, 0, 0.5, and 1 (�yy in N/m2 and � in 1/m).
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bi-layer plate. Therefore, using an FGM layer with a suitably selected exponential factor �,
an optimal design for FGM laminates could be achieved for the best performance. We
finally remark that, although the FGM used in this study is hypothetical, fabrication of
anisotropic FGM with controlled variables is possible [51].
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