
10.1098/rspa.2003.1174

Eshelby problem of polygonal inclusions in
anisotropic piezoelectric bimaterials

By E. Pan

Department of Civil Engineering, The University of Akron,
Akron, OH 44325-3905, USA (pan2@uakron.edu)

Received 3 February 2003; revised 9 April 2003; accepted 23 April 2003;
published online 4 December 2003

This paper studies the two-dimensional Eshelby problem in anisotropic piezoelec-
tric bimaterials. Assuming that the inclusion is an arbitrarily shaped polygon with
uniform eigenstrain and eigenelectric fields, we derive the exact closed-form solu-
tion by integrating analytically the line-source Green functions in the corresponding
bimaterials. The required line-source Green functions are obtained in terms of the
Stroh formalism and include six different interface models. Since the induced elastic
and piezoelectric fields due to the eigenstrain and eigenelectric fields are given in
the exact closed form in terms of simple elementary functions, those due to multi-
ple inclusions can be superposed together. Benchmark numerical examples are also
presented for the induced elastic and piezoelectric fields within a square inclusion
due to a uniform hydrostatic eigenstrain with the bimaterials being made of typical
quartz and ceramic.

Keywords: Eshelby problem; Green’s function; anisotropic piezoelectric bimaterials;
Stroh formalism; imperfect interface; quantum wires

1. Introduction

It is well known that the Eshelby problem (Eshelby 1957, 1959, 1961; Willis 1981;
Mura 1987; Dunn & Taya 1993) is fundamental to various engineering and physical
fields, and thus is the subject of continuing studies (Bacon et al . 1978; Mura 1987;
Ting 1996; Buryachenko 2001). In recent years, the Eshelby problem of any shaped
inclusion has been found to be particularly useful in the study of nanoscale semicon-
ductor quantum devices (Gosling & Willis 1995; Faux & Pearson 2000; Glas 2001).
The embedded quantum dot (QD) and quantum wire (QWR) can induce large elastic
and piezoelectric fields which in turn can have a strong influence on the electronic
and optical properties of the semiconductor nanostructures (see, for example, Singh
1993; Davies 1998a, b; Bimberg et al . 1999; Ram-Mohan 2002; Freund & Johnson
2001; Waltereit et al . 2002). It is further noted that piezoelectric coupling could be
an important contribution to the electronic and optical properties of the semicon-
ductor structure, due to the fact that most semiconductor materials are piezoelectric
(Davies & Larkin 1994; Jogai 2001; Pan 2002a, b; Pan & Yang 2003).

In the study of the Eshelby problem, material anisotropy poses great difficulty.
While, for the three-dimensional (3D) case, Yu et al . (1994) derived the solution
for inclusions in a transversely isotropic and elastic bimaterial space, Ru (2000,
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2001) proposed a conformal mapping solution for an arbitrarily shaped inclusion
in an anisotropic piezoelectric full plane, half-plane, or bimaterial full plane, under
the assumption of two-dimensional (2D) deformation. For the purely elastic cubic bi-
material full plane, on the other hand, Yu (2001) obtained exact closed-form solutions
for the Eshelby problem. More recently, the author derived an exact closed-form solu-
tion for an arbitrarily shaped polygonal inclusion in an anisotropic piezoelectric full
plane and half-plane (Pan 2004). Until now, however, an exact closed-form solution
of the Eshelby problem in the corresponding anisotropic piezoelectric bimaterial full
plane has still been unavailable in the literature. Yet, such a solution, if obtained in
an exact closed form, is very desirable in current nanoscale QWR structure analysis
as well as in various engineering and physical fields. Furthermore, the exact closed-
form solution to the Eshelby problem can serve directly as the kernel function in
various boundary-integral-equation formulations.

In this paper, we thus present the exact closed-form solution for an arbitrarily
shaped polygonal inclusion in anisotropic piezoelectric bimaterials. We first express
the induced elastic and piezoelectric fields in terms of a line integral on the bound-
ary of the inclusion, based on the equivalent body-force concept of eigenstrain and
eigenelectric fields. In the line-integral expression, the integrand is the line-source
Green functions of the bimaterials, which have been also derived in this paper for six
different interface models. We then carry out the line integral analytically assuming
that the inclusion is a polygon. The most striking feature is that the final exact
closed-form solution involves only elementary functions. Consequently, the elastic
and piezoelectric fields due to multiple inclusions or an array of QWRs can be
obtained easily by the superposition method. Furthermore, the induced field due
to an elliptical inclusion can also be obtained by approximating the curvilinear ele-
ment on the boundary of the inclusion with the straight-line element. Numerical
results are presented as benchmarks where the inclusion is a square-shaped QWR
under a hydrostatic eigenstrain, with the bimaterials being made of typical quartz
and ceramic. We further remark that the present exact closed-form solution for the
Eshelby problem in anisotropic piezoelectric bimaterials also includes the Eshelby
solution corresponding to the anisotropic elastic bimaterials as a special case, for
which the exact closed-form solution is also unavailable.

This paper is organized as follows: In § 2, the Eshelby problem in anisotropic
piezoelectric bimaterials is described using shorthand notation. In § 3, we first define
the equivalent body force of the eigenstrain and eigenelectric field, and then derive
the boundary integral expression for the induced elastic and piezoelectric fields in
terms of the line-source Green functions. In § 4, the exact closed-form solution for
the induced elastic and electric fields due to a polygonal inclusion of arbitrary shape
is derived. While benchmark numerical examples are presented in § 5, certain con-
clusions are drawn in § 6. The six different interface models are briefly described in
Appendix A, and the related bimaterial Green functions are derived in Appendix B.
Finally, the exact closed-form expressions for the line integral of the bimaterial Green
functions on the boundary of the inclusion are presented in Appendix C.

2. Description of the Eshelby problem in bimaterial full plane

Consider an anisotropic and piezoelectric bimaterial full-plane (x, z), where z > 0 and
z < 0 are occupied by materials 1 and 2, respectively, with the interface being on the
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z = 0 plane. Let us assume that there is an extended general eigenstrain γ∗
Ij(γ

∗
ij , −E∗

j )
within the domain V bounded by the surface ∂V in material α (α = 1, 2) (see figure 1
for an inclusion in material 2). Our task is to find the induced elastic and piezoelectric
fields due to the inclusion.

To facilitate our discussion, let us define the extended field quantities, including
the displacement, strain, stress, and stiffness matrix, as (Barnett & Lothe 1975; Dunn
& Taya 1993; Pan 1999)

uI =

{
ui, I = 1, 2, 3,

φ, I = 4,
(2.1)

γIj =

{
γij = 0.5(uj,i + ui,j), I = 1, 2, 3,

−Ej = φ,j , I = 4,
(2.2)

σiJ =

{
σij , J = 1, 2, 3,

Di, J = 4,
(2.3)

CiJKl =




Cijkl, J, K = 1, 2, 3,

elij , J = 1, 2, 3, K = 4,

eikl, J = 4, K = 1, 2, 3,

−εil, J = K = 4.

(2.4)

In equations (2.1)–(2.4), ui and φ are the elastic displacement and electrical poten-
tial, respectively; γij is the elastic strain and Ei the electrical field; Cijlm, eijk and
εij are the elastic moduli, the piezoelectric coefficients and the dielectric constants,
respectively. We remark that the decoupled state (purely elastic and purely electrical
deformations) can be obtained simply by setting eijk = 0. Therefore, the solution
presented in this paper contains the solution corresponding to the anisotropic purely
elastic bimaterials as a special case.

In the following sections, we will also use the extended displacement for the elastic
displacement and electrical potential as defined by (2.1), the extended stress for
the stress and electrical displacement as defined by (2.3), and the extended stiffness
matrix for all the material constants as defined by (2.4). Furthermore, we define the
extended traction vector as

t = (t1, t2, t3, t4)T ≡ (σ31, σ32, σ33, D3)T. (2.5)

To find the induced fields, a suitable interface condition is also needed. In this
paper, we solve the Eshelby problem for six different interface conditions. For the
perfect-bond interface condition, we require that the extended displacement and
traction vectors be continuous across the interface, i.e.

u
(1)
J |z=0+ = u

(2)
J |z=0− , t

(1)
J |z=0+ = t

(2)
J |z=0− , J = 1, 2, 3, 4. (2.6)

The other five imperfect interface conditions are discussed in Appendixes A and B.

3. Equivalent body-force and integral expressions

For an extended general eigenstrain γ∗
Ij within the domain V bounded by the surface

∂V in material α (α = 1, 2) (figure 1), we define the total extended strain as a sum
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Figure 1. A general inclusion problem in an anisotropic piezoelectric bimaterial full plane:
an extended eigenstrain γ∗

Ij(γ
∗
ij , −E∗

j ) within an arbitrarily shaped polygon in material 2.

of
γIj = γe

Ij + γ∗
Ij , (3.1)

where γe
Ij is the extended strain that appears in the constitutive relation, i.e.

σiJ = CiJKlγ
e
Kl, (3.2)

or

σiJ = CiJKl(γKl − χγ∗
Kl), (3.3)

with χ = 1 if the field point is within the eigenstrain domain V and χ = 0 otherwise.
Using the equilibrium equation in materials 1 and 2 for the stresses and the balance

equation for the electric displacements, i.e.

σiJ,i = 0, (3.4)

we found that, for an inclusion in material α (α = 1, 2),

C
(α)
iJKluK,li = C

(α)
iJKlγ

∗
Kl,i. (3.5)

The right-hand side of (3.5) therefore resembles the extended body force, i.e.

fJ = −C
(α)
iJKlγ

∗
Kl,i, (3.6)

which is the equivalent body force of eigenstrain. This equivalent body force will
be employed to find the induced total extended displacement uI and total extended
strain γIj . We further mention that the inclusion can be in material 1 (α = 1) or in
material 2 (α = 2).

Therefore, for the eigenstrain γ∗
Ij at x = (x, z) within the domain V in material α,

the induced extended displacement at X = (X, Z) can be found by the superposition
method. That is, the response is the integral, over V , of the equivalent body force
defined by (3.6) multiplied by the line-source Green functions, as

uK(X) = −
∫

V

uK
J (x; X)[C(α)

iJLmγ∗
Lm(x)],i dV (x), (3.7)
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where uK
J (x; X) is the Green Jth elastic displacement/electric potential at x due to

a point-force/point-charge in the Kth direction applied at X. Depending upon the
locations of x and X, this Green function has four different sets of expressions and
is derived in Appendix B.

Integrating by parts and noticing that the eigenstrain is non-zero only in V , equa-
tion (3.7) can be expressed alternatively as

uK(X) =
∫

V

uK
J,xi

(x; X)C(α)
iJLmγ∗

Lm(x) dV (x). (3.8)

If we further assume that the eigenstrain is uniform within the domain V , then the
domain integral can be further transformed to the surface of V . That is

uK(X) = C
(α)
iJLmγ∗

Lm

∫
∂V

uK
J (x; X)ni(x) dS(x), (3.9)

where ni(x) is the outward normal on the surface of V . Again, we mention that the
inclusion can be in material 1 (α = 1) or material 2 (α = 2).

To find the elastic strain and electric fields, we take the derivatives of equation (3.9)
with respect to the field point X (i.e. the source point of the line-force/line-charge
Green function), which yields (for inclusion in material α),

γkp(X) = 1
2γ∗

LmC
(α)
iJLm

∫
∂V

[uk
J,Xp

(x; X) + up
J,Xk

(x; X)]ni(x) dS(x),

k, p = 1, 2, 3, (3.10 a)

Ep(X) = −γ∗
LmC

(α)
iJLm

∫
∂V

u4
J,Xp

(x; X)ni(x) dS(x), p = 1, 2, 3. (3.10 b)

The stresses and electric displacements are obtained from (3.3) using material prop-
erties in the corresponding domain.

We remark that the results presented are for the 2D-inclusion problem. Similar
expressions can be derived for the corresponding 3D problem. We also note that the
induced elastic and piezoelectric fields within the anisotropic piezoelectric bimateri-
als can be obtained simply by performing an integral over the surface of the inclusion,
provided that the corresponding bimaterial Green functions are available. Further-
more, we will show next that, for a uniform piezoelectric eigenstrain field within an
arbitrary polygon in a bimaterial full plane, the induced elastic and piezoelectric
fields can be derived in the exact closed form. Such an exact closed-form solution is
unavailable to the best of the author’s knowledge, except for the work by Faux et
al . (1997), where they derived the eigenstrain-induced elastic field in a purely elastic
isotropic full plane analytically using a similar approach to that presented in this
paper. With the bimaterial Green functions being derived in Appendix B for various
interface conditions, we derive, in § 4, the exact closed-form solution for the induced
field.

4. Analytical integral of an arbitrary line segment

First, we note that, in order to find the induced field due to a polygonal inclusion, one
needs only to find the contribution from each straight-line segment of the bound-
ary of the inclusion. The total induced field can be obtained by summing up the
contributions from all the sides of the polygon.
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Now, to carry out the line integral in equation (3.9), we first write the extended
Green displacement given by equations (B 1), (B 2), (B 16) and (B 17) in Appendix B
in the matrix form in the same way as we did for that in equation (3.9).

Therefore, when the source point is in material 1 (Z > 0), we have

uK
J (x, X) =

1
π

Im{A
(1)
JR ln(z(1)

R − s
(1)
R )A(1)

KR} +
1
π

Im
4∑

v=1

{A
(1)
JR ln(z(1)

R − s̄(1)
v )Q11,v

RK }

(4.1 a)

for the field point in material 1 (z > 0), and

uK
J (x, X) =

1
π

Im
4∑

v=1

{A
(2)
JR ln(z(2)

R − s(1)
v )Q12,v

RK } (4.1 b)

for the field point in material 2 (z < 0). In equations (4.1 a) and (4.2 b), an overbar
denotes the complex conjugate, and superscripts (1) and (2) denote quantities in
the material half-planes 1 and 2, respectively. Definitions for z

(α)
R and s

(α)
v , and the

expressions for Q11,v
RN and Q12,v

RN , are given in Appendix B.
Similarly, when the source point is in material 2 (Z < 0), we have

uK
J (x, X) =

1
π

Im
4∑

v=1

{A
(1)
JR ln(z(1)

R − s(2)
v )Q21,v

RK } (4.2 a)

for field point in material 1 (z > 0), and

uK
J (x, X) =

1
π

Im{A
(2)
JR ln(z(2)

R − s
(2)
R )A(2)

KR} +
1
π

Im
4∑

v=1

{A
(2)
JR ln(z(2)

R − s̄(2)
v )Q22,v

RK }

(4.2 b)

for field point in material 2 (z < 0). Again, Q21,v
RN and Q22,v

RN are given in Appendix B.
Let us define a line segment in the (x, z)-plane starting from point 1 (x1, z1) and

ending at point 2 (x2, z2), in terms of the parameter t (0 � t � 1), as

x = x1 + (x2 − x1)t,

z = z1 + (z2 − z1)t.

}
(4.3)

Therefore, the outward normal components ni(x) are constants, given by

n1 =
(z2 − z1)

l
, n2 = −(x2 − x1)

l
, (4.4)

where l =
√

(x2 − x1)2 + (z2 − z1)2 is the length of the line segment. It is obvious
that the elemental length is dS = l dt.

Note from Appendix B that, when the source and field points are in the same
half-plane, the bimaterial Green functions consist of two parts: the full-plane Green
function and a complementary part. However, when they are in different half-planes,
the bimaterial Green functions consist only a complementary part. Consequently, the
corresponding integrals can also be separated into two parts involving two types of
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functions. For the integral in the full plane, i.e. the first terms in (4.1 a) and (4.2 b),
we define the result, being a function of the source point X ≡ (X, Z), as

h
(α)
R (X, Z) ≡

∫ 1

0
ln(z(α)

R − s
(α)
R ) dt. (4.5)

Similarly, we define the integral corresponding to the complementary part as

gαβ
Rv(X, Z) ≡

∫ 1

0
ln(z(α)

R − s(β)
v ) dt, (4.6 a)

w
(α)
Rv (X, Z) ≡

∫ 1

0
ln(z(α)

R − s̄(α)
v ) dt. (4.6 b)

While (4.6 a) corresponds to the line integration of (4.1 b) and (4.2 a), expres-
sion (4.6 b) corresponds to the line integration of the second term in (4.1 a) and
(4.2 b). The exact closed-form expressions for these integrals in (4.5) and (4.6) are
given in Appendix C. Therefore, the induced elastic displacement and piezoelec-
tric potential, due to the contribution of a straight line along the boundary, can be
expressed in an exact closed form. These are given below in detail.

When the inclusion is in material 1, the induced extended displacement is

uK(X) = niC
(1)
iJLmγ∗

Lm

l

π
Im

{
A

(1)
JRh

(1)
R (X, Z)A(1)

KR +
4∑

v=1

A
(1)
JRw

(1)
Rv(X, Z)Q11,v

RK

}
(4.7 a)

for the response in material 1 (Z > 0), and

uK(X) = niC
(1)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(1)
JRg12

Rv(X, Z)Q21,v
RK

}
(4.7 b)

for the response in material 2 (Z < 0).
Similarly, when the inclusion is in material 2, the induced extended displacement is

uK(X) = niC
(2)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(2)
JRg21

Rv(X, Z)Q12,v
RK

}
(4.7 c)

for the response in material 1 (Z > 0) and

uK(X) = niC
(2)
iJLmγ∗

Lm

l

π
Im

{
A

(2)
JRh

(2)
R (X, Z)A(2)

KR +
4∑

v=1

A
(2)
JRw

(2)
Rv(X, Z)Q22,v

RK

}
(4.7 d)

for the response in material 2 (Z < 0).
Note that the first term is the solution corresponding to the full plane, and the

second term is the contribution from the complementary part, which is used to
satisfy the interface conditions of the bimaterials. Therefore, equations (4.7) give the
contribution of a straight-line segment of the inclusion in the bimaterials with the
inclusion being in either of the half-planes. By adding contributions from all the line
segments of the boundary of the inclusion, the extended displacement solution for
an inclusion with a general polygonal shape in either half-plane is then obtained in
an exact closed form!
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The exact closed-form strain and electric field can be obtained by simply taking
the derivatives of (4.7 a)–(4.7 d) with respect to the coordinate X = (X, Z). In doing
so, we obtain the elastic strain and electric field, due to a straight-line segment of
the boundary of the inclusion, by the following equations (for α, β = 1, 3).

When the inclusion is in material 1, we have

γβα(X)

= 0.5niC
(1)
iJLmγ∗

Lm

l

π
Im

{
A

(1)
JRh

(1)
R,α(X, Z)A(1)

βR +
4∑

v=1

A
(1)
JRw

(1)
Rv,α(X, Z)Q11,v

Rβ

}

+ 0.5niC
(1)
iJLmγ∗

Lm

l

π
Im

{
A

(1)
JRh

(1)
R,β(X, Z)A(1)

αR +
4∑

v=1

A
(1)
JRw

(1)
Rv,β(X, Z)Q11,v

Rα

}
,

γ2α(X)

= 0.5niC
(1)
iJLmγ∗

Lm

l

π
Im

{
A

(1)
JRh

(1)
R,α(X, Z)A(1)

2R +
4∑

v=1

A
(1)
JRw

(1)
Rv,α(X, Z)Q11,v

R2

}
,

Eα(X)

= −niC
(1)
iJLmγ∗

Lm

l

π
Im

{
A

(1)
JRh

(1)
R,α(X, Z)A(1)

4R +
4∑

v=1

A
(1)
JRw

(1)
Rv,α(X, Z)Q11,v

R4

}




(4.8)
for the response in material 1 (Z > 0), and

γβα(X)

= 0.5niC
(1)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(1)
JRg12

Rv,α(X, Z)Q21,v
Rβ +

4∑
v=1

A
(1)
JRg12

Rv,β(X, Z)Q21,v
Rα

}
,

(4.9)

γ2α(X) = 0.5niC
(1)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(1)
JRg12

Rv,α(X, Z)Q21,v
R2

}
, (4.10)

Eα(X) = −niC
(1)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(1)
JRg12

Rv,α(X, Z)Q21,v
R4

}
, (4.11)

for the response in material 2 (Z < 0).
Similarly, when the inclusion is in material 2, we obtain

γβα(X)

= 0.5niC
(2)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(2)
JRg21

Rv,α(X, Z)Q12,v
Rβ +

4∑
v=1

A
(2)
JRg21

Rv,β(X, Z)Q12,v
Rα

}
,

(4.12)

γ2α(X) = 0.5niC
(2)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(2)
JRg21

Rv,α(X, Z)Q12,v
R2

}
, (4.13)

Eα(X) = −niC
(2)
iJLmγ∗

Lm

l

π
Im

{ 4∑
v=1

A
(2)
JRg21

Rv,α(X, Z)Q12,v
R4

}
, (4.14)
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for the response in material 1 (Z > 0), and

γβα(X)

= 0.5niC
(2)
iJLmγ∗

Lm

l

π
Im

{
A

(2)
JRh

(2)
R,α(X, Z)A(2)

βR +
4∑

v=1

A
(2)
JRw

(2)
Rv,α(X, Z)Q22,v

Rβ

}

+ 0.5niC
(2)
iJLmγ∗

Lm

l

π
Im

{
A

(2)
JRh

(2)
R,β(X, Z)A(2)

αR +
4∑

v=1

A
(2)
JRw

(2)
Rv,β(X, Z)Q22,v

Rα

}
,

γ2α(X)

= 0.5niC
(2)
iJLmγ∗

Lm

l

π
Im

{
A

(2)
JRh

(2)
R,α(X, Z)A(2)

2R +
4∑

v=1

A
(2)
JRw

(2)
Rv,α(X, Z)Q22,v

R2

}
,

Eα(X)

= −niC
(2)
iJLmγ∗

Lm

l

π
Im

{
A

(2)
JRh

(2)
R,α(X, Z)A(2)

4R +
4∑

v=1

A
(2)
JRw

(2)
Rv,α(X, Z)Q22,v

R4

}




(4.15)
for the response in material 2 (Z < 0). In equations (4.8)–(4.15), the involved func-
tions of (X, Z) are given in Appendix C.

As a generalization, equations (4.8)–(4.15) can be written as

γIj = SIjLmγ∗
Lm, (4.16)

where SIjLm is the total Eshelby tensor in the bimaterial full plane. On observation
of the induced strain/electric fields (equations (4.8)–(4.15)), the total Eshelby tensor
can be expressed as

SIjLm = S∞
IjLm + Sc

IjLm, (4.17)

where the first term is the Eshelby tensor in an anisotropic piezoelectric homogeneous
full plane, and the second term is the one corresponding to the complementary
contribution due to the material mismatch of the bimaterials.

With these strain and electric field solutions, the stresses and electric displacements
are then found from equation (3.3), using the material properties corresponding to
the suitable half-plane. In summary, therefore, we have derived the exact closed-
form solutions for the elastic and piezoelectric fields induced by an inclusion within
an arbitrary polygon in a bimaterial full plane. Since our solutions are in the exact
closed form, multiple-inclusion problems can be solved simply by superposing the
contributions from all the inclusions. Furthermore, a solution to the inclusion with
a curved boundary can also be obtained by approximating the curvilinear element
with a straight-line element.

5. Numerical examples

First, the formulation has been checked for a couple of examples. For instance, when
materials 1 and 2 are identical, the inclusion solution will then reduce to the full-plane
solution (Pan 2004); when one of the two material half-planes has material properties
10 orders smaller than the other, our bimaterial-inclusion solution reduces to the
half-plane solution (Pan 2004). We further mention that various inclusion solutions
in isotropic elasticity have been also checked carefully, including a polygonal inclusion
in full- and half-planes (Rodin 1996; Faux et al . 1997; Glas 2002).
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Having checked our bimaterial inclusion solutions, we now apply our solution to
an inclusion in a real bimaterial full plane. The bimaterials are made of two typical
piezoelectric materials (Pan 2002c): one is a left-hand quartz in a rotated coordinate
system (Tiersten 1969) with elastic constants, piezoelectric coefficients and dielectric
constants being, respectively,

[
C

]
=




0.8674 −0.0825 0.2715 −0.0366 0 0
−0.0825 1.2977 −0.0742 0.057 0 0
0.2715 −0.0742 1.0283 0.0992 0 0

−0.0366 0.057 0.0992 0.3861 0 0
0 0 0 0 0.6881 0.0253
0 0 0 0 0.0253 0.2901




(1011 N m−2),

(5.1 a)

[
e
]

=


0.171 −0.152 −0.0187 0.067 0 0

0 0 0 0 0.108 −0.095
0 0 0 0 −0.0761 0.067


 (C m−2), (5.1 b)

[
ε
]

=


0.3921 0 0

0 0.3982 0.0086
0 0.0086 0.4042


 (10−10 C V−1 m−1). (5.1 c)

The other one is the poled lead-zirconate-titanate (PZT-4) ceramic (Dunn & Taya
1993) with elastic constants, piezoelectric coefficients and dielectric constants being,
respectively,

[
C

]
=




1.39 0.778 0.743 0 0 0
0.778 1.39 0.743 0 0 0
0.743 0.743 1.15 0 0 0

0 0 0 0.256 0 0
0 0 0 0 0.256 0
0 0 0 0 0 0.306




(1011 N m−2), (5.2 a)

[
e
]

=


 0 0 0 0 12.7 0

0 0 0 12.7 0 0
−5.2 −5.2 15.1 0 0 0


 (C m−2), (5.2 b)

[
ε
]

=


0.646 05 0 0

0 0.646 05 0
0 0 0.561 975


 (10−8 C V m). (5.2 c)

We remark that, while the quartz is a weakly coupled piezoelectric material, the
ceramic is a strongly coupled one, with the degree of the electromechanical coupling,
defined as

g =
emax√

(εmaxCmax)
,

being equal to 0.07 and 0.5 in quartz and ceramic, respectively.
Two bimaterial cases are considered. For case 1, named quartz/ceramic, material 1

(i.e. the upper half-plane with z > 0) is quartz and material 2 (i.e. the lower half-
plane with z < 0) is ceramic. For case 2, named ceramic/quartz, material 1 is ceramic
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and material 2 is quartz. For both cases, there is a 20 nm × 20 nm square QWR
in material 2, and it is symmetrically located with respect to the z-axis, with its
upper side 5 nm from the interface. The eigenstrain in the inclusion is assumed to be
hydrostatic with γ∗

xx = γ∗
zz = 0.07, a typical magnitude in the InAs/GaAs quantum

structure (Bimberg et al . 1999).
Figure 2a shows the contours of strain component γxx within the square QWR in

material 2 of the quartz/ceramic, while figure 2b shows the same strain component
for the ceramic/quartz. Note that, while the contours show certain similarities, their
magnitudes are different. In particular, the magnitude of this strain component is
slightly larger than the given eigenstrain (0.072 versus 0.07) when the bimaterial full
plane is quartz/ceramic (figure 2a), and smaller than the given eigenstrain (0.054
versus 0.07) when it is ceramic/quartz (figure 2b).

Similarly, figure 3a, b shows the contours of hydrostatic strain γxx +γzz within the
square QWR in material 2 of quartz/ceramic and of ceramic/quartz, respectively. It
is interesting that, for both bimaterial cases, the induced hydrostatic strain within
the square QWR is roughly constant, with a value of 0.1 for the quartz/ceramic
(figure 3a) and 0.085 for the ceramic/quartz (figure 3b). We remark that the same
near-constant feature for the hydrostatic strain was also observed for a rectangular
inclusion in an isotropic full plane (Downes et al . 1995).

The contour of electric component Ex (V m−1) within the square QWR in mate-
rial 2 of the quartz/ceramic is plotted in figure 4a. The corresponding result is shown
in figure 4b for the ceramic/quartz case. We note that the induced Ex is completely
different for the two bimaterial systems. Their contour shapes and magnitudes are
clearly different from each other for the two bimaterial cases. In particular, the max-
imum magnitude in quartz/ceramic is roughly twice that in ceramic/quartz. Also,
we observe that the distribution of the electric component Ex for the ceramic/quartz
case (figure 4b) is asymmetric, due to the fact that the quartz has been rotated to
become a low-symmetry monoclinic material (see equations (5.1)).

Finally, figure 5a, b shows the contours of electric component Ez (V m−1) within
the square QWR in material 2 of quartz/ceramic and of ceramic/quartz, respec-
tively. Again, their magnitudes and shapes are completely different, with the max-
imum magnitude in quartz/ceramic being about five times larger than that in
ceramic/quartz.

6. Conclusions

In this paper, we have solved the Eshelby problem of an arbitrarily shaped polygonal
inclusion within an anisotropic and piezoelectric bimaterial full plane. By virtue of
the equivalent body force and the line-source bimaterial Green functions, we first
express the induced elastic and piezoelectric fields in terms of the boundary integral
on the surface of the inclusion. The boundary integral is then carried out exactly
in terms of simple and elementary functions by assuming that the boundary of the
inclusion is made of piecewise straight-line segments. Since the solution is in an
exact closed form, the induced elastic and piezoelectric fields due to multiple polyg-
onal inclusions, in particular, due to the QWR array, can be simply superposed
together. Benchmark numerical examples are also presented for the induced elastic
and piezoelectric fields within a square inclusion due to a uniform hydrostatic eigen-
strain, with the bimaterials being made of quartz and ceramic. Finally, we remark

Proc. R. Soc. Lond. A (2004)



548 E. Pan

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

0.038
0.040
0.042
0.044
0.046
0.048
0.050
0.052
0.054
0.056
0.058
0.060
0.062
0.064
0.066
0.068
0.070
0.072

−10 −8 −6 −4 −2 0 10

0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.042

0.044

0.046

0.048

0.050

0.052

0.054

z 
(n

m
)

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

z 
(n

m
)

2 4 6 8

x (nm)

(a)

(b)

Figure 2. Contours of strain component γxx within the 20 nm × 20 nm square QWR in
material 2 of (a) the quartz/ceramic bimaterials and (b) the ceramic/quartz bimaterials.
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Figure 3. Contours of hydrostatic strain γxx + γzz within the 20 nm × 20 nm square QWR in
material 2 of (a) the quartz/ceramic bimaterials and (b) the ceramic/quartz bimaterials.
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Figure 4. Contours of electric component Ex (V m−1) within the 20 nm × 20 nm square QWR
in material 2 of (a) the quartz/ceramic bimaterials and (b) the ceramic/quartz bimaterials.
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Figure 5. Contours of electric component Ez (V m−1) within the 20 nm × 20 nm square QWR
in material 2 of (a) the quartz/ceramic bimaterials and (b) the ceramic/quartz bimaterials.
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that the present exact closed-form solution includes the solution to the corresponding
anisotropic elastic bimaterials as its special case and, furthermore, contains a total
of six different interface models which may be useful in the piezoelectric bimaterial
analysis and design.

The author thanks both reviewers for their constructive comments, and the University of Akron
for partial support under Grant no. 2-07522.

Appendix A. Five imperfect interface models and
the corresponding modified matrices

Besides the perfect-bond interface model, the solution developed in the main text
also applies to the following five imperfect interface models. What one needs to do is
to replace some of the matrices with the modified ones. We now discuss these models
one by one.

(a) Model 2

The mechanical displacement and traction vectors are continuous across the inter-
face, and the electrical potential is zero along the interface, i.e.

u
(1)
j |z=0+ = u

(2)
j |z=0− , t

(1)
j |z=0+ = t

(2)
j |z=0− , j = 1, 2, 3,

u
(1)
4 |z=0+ = u

(2)
4 |z=0− = 0.

}
(A 1)

We see that this interface is electrically closed (Alshits et al . 1994) or it is an electrical
wall (see Papas 1988; Volakis et al . 1998). For this model, the modified matrices Â(α)

and B̂(α) in Appendix B are given as

Â(α) = A(α), α = 1, 2,

B̂(1) =




B
(1)
11 B

(1)
12 B

(1)
13 B

(1)
14

B
(1)
21 B

(1)
22 B

(1)
23 B

(1)
24

B
(1)
31 B

(1)
32 B

(1)
33 B

(1)
34

A
(1)
41 A

(1)
42 A

(1)
43 A

(1)
44


 ,

B̂(2) =




B
(2)
11 B

(2)
12 B

(2)
13 B

(2)
14

B
(2)
21 B

(2)
22 B

(2)
23 B

(2)
24

B
(2)
31 B

(2)
32 B

(2)
33 B

(2)
34

−A
(2)
41 −A

(2)
42 −A

(2)
43 −A

(2)
44


 .




(A 2)

(b) Model 3

The mechanical displacement and traction vectors are continuous across the inter-
face, and the normal electrical displacement is zero along the interface, i.e.

u
(1)
j |z=0+ = u

(2)
j |z=0− , t

(1)
j |z=0+ = t

(2)
j |z=0− , j = 1, 2, 3,

t
(1)
4 |z=0+ = t

(2)
4 |z=0− = 0.

}
(A 3)
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This interface is electrically open (Alshits et al . 1994) or it is a magnetic wall (see
Papas 1988; Volakis et al . 1998). The modified matrices Â(α) and B̂(α) are given as

Â(1) =




A
(1)
11 A

(1)
12 A

(1)
13 A

(1)
14

A
(1)
21 A

(1)
22 A

(1)
23 A

(1)
24

A
(1)
31 A

(1)
32 A

(1)
33 A

(1)
34

B
(1)
41 B

(1)
42 B

(1)
43 B

(1)
44


 ,

Â(2) =




A
(2)
11 A

(2)
12 A

(2)
13 A

(2)
14

A
(2)
21 A

(2)
22 A

(2)
23 A

(2)
24

A
(2)
31 A

(2)
32 A

(2)
33 A

(2)
34

−B
(2)
41 −B

(2)
42 −B

(2)
43 −B

(2)
44


 ,

B̂(α) = B(α), α = 1, 2.




(A 4)

In these two models, as well as the perfect-bond interface model discussed in
the main text, the mechanical displacement and traction vectors are assumed to
be continuous across the interface, corresponding to the purely elastic bimaterials
with perfect-bond interface condition. In the following three models, the mechani-
cal perfect-bond condition is replaced by the mechanical smooth-bond or slippery
condition.

(c) Model 4

Across the interface, the mechanical displacement and traction vectors are in
smooth contact, and the electrical potential and normal electrical displacement com-
ponent are continuous:

u(1)
m |z=0+ = u(2)

m |z=0− , t(1)m |z=0+ = t(2)m |z=0− , m = 3, 4,

t(1)α |z=0+ = t(2)α |z=0− = 0, α = 1, 2.

}
(A 5)

The modified matrices Â(α) and B̂(α) are given as

Â(1) =




B
(1)
11 B

(1)
12 B

(1)
13 B

(1)
14

B
(1)
21 B

(1)
22 B

(1)
23 B

(1)
24

A
(1)
31 A

(1)
32 A

(1)
33 A

(1)
34

A
(1)
41 A

(1)
42 A

(1)
43 A

(1)
44


 ,

Â(2) =




−B
(2)
11 −B

(2)
12 −B

(2)
13 −B

(2)
14

−B
(2)
21 −B

(2)
22 −B

(2)
23 −B

(2)
24

A
(2)
31 A

(2)
32 A

(2)
33 A

(2)
34

A
(2)
41 A

(2)
42 A

(2)
43 A

(2)
44


 ,

B̂(α) = B(α), α = 1, 2.




(A 6)
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(d) Model 5

Across the interface the mechanical displacement and traction vectors are in
smooth contact, and along the interface the electrical potential is zero:

u
(1)
3 |z=0+ = u

(2)
3 |z=0− , t

(1)
3 |z=0+ = t

(2)
3 |z=0− ,

t(1)α |z=0+ = t(2)α |z=0− = 0, α = 1, 2,

u
(1)
4 |z=0+ = u

(2)
4 |z=0− = 0.


 (A 7)

The modified matrices Â(α) and B̂(α) are given as

Â(1) =




B
(1)
11 B

(1)
12 B

(1)
13 B

(1)
14

B
(1)
21 B

(1)
22 B

(1)
23 B

(1)
24

A
(1)
31 A

(1)
32 A

(1)
33 A

(1)
34

A
(1)
41 A

(1)
42 A

(1)
43 A

(1)
44




,

Â(2) =




−B
(2)
11 −B

(2)
12 −B

(2)
13 −B

(2)
14

−B
(2)
21 −B

(2)
22 −B

(2)
23 −B

(2)
24

A
(2)
31 A

(2)
32 A

(2)
33 A

(2)
34

−A
(2)
41 −A

(2)
42 −A

(2)
43 −A

(2)
44




,

B̂(1) =




B
(1)
11 B

(1)
12 B

(1)
13 B

(1)
14

B
(1)
21 B

(1)
22 B

(1)
23 B

(1)
24

B
(1)
31 B

(1)
32 B

(1)
33 B

(1)
34

A
(1)
41 A

(1)
42 A

(1)
43 A

(1)
44




,

B̂(2) =




B
(2)
11 B

(2)
12 B

(2)
13 B

(2)
14

B
(2)
21 B

(2)
22 B

(2)
23 B

(2)
24

B
(2)
31 B

(2)
32 B

(2)
33 B

(2)
34

A
(2)
41 A

(2)
42 A

(2)
43 A

(2)
44




.




(A 8)

(e) Model 6

Across the interface the mechanical displacement and traction vectors are in
smooth contact, and along the interface the normal electrical displacement com-
ponent is zero:

u
(1)
3 |z=0+ = u

(2)
3 |z=0− , t

(1)
3 |z=0+ = t

(2)
3 |z=0− ,

t(1)α |z=0+ = t(2)α |z=0− = 0, α = 1, 2,

t
(1)
4 |z=0+ = t

(2)
4 |z=0− = 0.


 (A 9)
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The modified matrices Â(α) and B̂(α) are given as

Â(1) =




B
(1)
11 B

(1)
12 B

(1)
13 B

(1)
14

B
(1)
21 B

(1)
22 B

(1)
23 B

(1)
24

A
(1)
31 A

(1)
32 A

(1)
33 A

(1)
34

B
(1)
41 B

(1)
42 B

(1)
43 B

(1)
44




,

Â(2) =




−B
(2)
11 −B

(2)
12 −B

(2)
13 −B

(2)
14

−B
(2)
21 −B

(2)
22 −B

(2)
23 −B

(2)
24

A
(2)
31 A

(2)
32 A

(2)
33 A

(2)
34

−B
(2)
41 −B

(2)
42 −B

(2)
43 −B

(2)
44




,

B̂(α) = B(α), α = 1, 2.




(A 10)

Appendix B. 2D piezoelectric bimaterial Green functions
due to line force and dislocation

We consider an anisotropic and piezoelectric bimaterial full-space made of two half-
spaces with an interface at z = 0. Let us assume that materials 1 and 2 occupy
the upper (z > 0) and lower (z < 0) half-spaces, respectively. Here, however, it is
required that the deformation is independent of the y-coordinate (i.e. the general-
ized plane-strain deformation in the (x, z)-plane). We further let an extended line
force f = (f1, f2, f3, −q)t and an extended line dislocation (i.e. a Burgers vector)
b = (∆u1, ∆u2, ∆u3, ∆φ)t be applied at (x, z) = (X, Z) in material 1 or 2.

Similar to the purely elastic bimaterial case (Ting 1996), it can be shown that
the analytical bimaterial Green functions (i.e. the extended displacements and stress
functions) can be derived using the Stroh formalism.

For the source point in material 1 (Z > 0), we have

u(1) =
1
π

Im{A(1)〈ln(z(1)
∗ − s

(1)
∗ )〉q∞,1} +

1
π

Im
4∑

J=1

{A(1)〈ln(z(1)
∗ − s̄

(1)
J )〉q(1)

J },

ψ(1) =
1
π

Im{B(1)〈ln(z(1)
∗ − s

(1)
∗ )〉q∞,1} +

1
π

Im
4∑

J=1

{B(1)〈ln(z(1)
∗ − s̄

(1)
J )〉q(1)

J },




(B 1)
for field point in material 1 (z > 0), and

u(2) =
1
π

Im
4∑

J=1

{A(2)〈ln(z(2)
∗ − s

(1)
J )〉q(2)

J },

ψ(2) =
1
π

Im
4∑

J=1

{B(2)〈ln(z(2)
∗ − s

(1)
J )〉q(2)

J },




(B 2)

for field point in material 2 (z < 0).
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In equations (B 1) and (B 2), ψ is the extended stress function vector related to
the elastic stresses and electrical displacements by

σ1J = −ψJ,3; σ3J = ψJ,1. (B 3)

Also in equations (B 1) and (B 2), ‘Im’ stands for the imaginary part, and the super-
scripts ‘(1)’ and ‘(2)’ denote, as in the text, the quantities associated with the mate-
rial domains 1 and 2, respectively; p

(α)
J , A(α), and B(α) are the Stroh eigenvalues

and matrices. They are solutions of the eigenequation discussed in Appendix A of
Pan (2004). Finally, in equations (B 1) and (B 2),

〈ln(z(1)
∗ − s

(1)
∗ )〉

= diag[ln(z(1)
1 − s

(1)
1 ), ln(z(1)

2 − s
(1)
2 ), ln(z(1)

3 − s
(1)
3 ), ln(z(1)

4 − s
(1)
4 )],

〈ln(z(α)
∗ − s̄

(1)
J )〉

= diag[ln(z(α)
1 − s̄

(1)
J ), ln(z(α)

2 − s̄
(1)
J ), ln(z(α)

3 − s̄
(1)
J ), ln(z(α)

4 − s̄
(1)
J )]

(α = 1, 2),




(B 4)
with the complex variable z

(α)
J and s

(α)
J being defined by

z
(α)
J = x + p

(α)
J z, (B 5)

s
(α)
J = X + p

(α)
J Z. (B 6)

Note that the first term in equation (B 1) corresponds to the full-plane Green func-
tions (with material properties of material 1) with

q∞,1 = (A(1))Tf + (B(1))Tb. (B 7)

The second term in equation (B 1) and the solution in material 2 (B 2) are the
complementary parts of the solution with the complex constant vectors q

(α)
J (α = 1, 2,

J = 1, 2, 3, 4) to be determined.
For a perfect-bond interface at z = 0, it can be shown that the constant vectors

q
(α)
J satisfy the conditions (J = 1, 2, 3, 4)

A(1)q
(1)
J + Ā(2)q̄

(2)
J = Ā(1)IJ q̄∞,1,

B(1)q
(1)
J + B̄(2)q̄

(2)
J = B̄(1)IJ q̄∞,1,

}
(B 8)

with
I1 = diag[1, 0, 0, 0], I2 = diag[0, 1, 0, 0],

I3 = diag[0, 0, 1, 0], I4 = diag[0, 0, 0, 1].

}
(B 9)

The solutions of the vectors are readily found to be

q
(1)
J = (A(1))−1(M (1) + M̄ (2))−1(M̄ (2) − M̄ (1))Ā(1)IJ q̄∞,1,

q
(2)
J = (A(2))−1(M̄ (1) + M (2))−1(M (1) + M̄ (1))A(1)IJq∞,1,

}
(B 10)

where M (α) are the impedance tensors, defined as

M (α) = −iB(α)(A(α))−1, α = 1, 2. (B 11)
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The complex constants involved in the bimaterial Green solutions (B 1) and (B 2)
for the five interface models discussed in Appendix A can also be determined by
following the same procedure. As in equation (B 10), the solutions can be written as

q
(1)
J = (Â(1))−1(M̂ (1) + ¯̂

M (2))−1( ¯̂
M (2) − ¯̂

M (1) ¯̂
A(1)IJ q̄∞,1

≡ K11IJ q̄∞,1,

q
(2)
J = (Â(2))−1( ¯̂

M (1) + M̂ (2))−1(M̂ (1) + ¯̂
M (1))Â(1)IJq∞,1

≡ K12IJq∞,1,




(B 12)

where M̂ (α) (α = 1, 2) are the modified impedance tensors defined as

M̂ (α) = −iB̂(α)(Â(α))−1, α = 1, 2, (B 13)

and the modified matrices Â(α) and B̂(α) (α = 1, 2) are given in Appendix A for
the five imperfect interface models. Equation (B 12) is for the five imperfect inter-
face models as well as for the perfect-bond interface model 1. For the perfect-bond
interface case, we simply have

Â(α) = A(α), B̂(α) = B(α), α = 1, 2. (B 14)

Taking only the line-force contribution in (B 7) and writing the Green function solu-
tion in terms of the 4 × 4 matrix, we found

Q11,v
RN = K11

RP (Iv)P Ā
(1)
NP ,

Q12,v
RN = K12

RP (Iv)P A
(1)
NP .

}
(B 15)

Similarly, for the source point in material 2 (Z < 0), we have

u(1) =
1
π

Im
4∑

J=1

{A(1)〈ln(z(1)
∗ − s

(2)
J )〉q(1)

J },

ψ(1) =
1
π

Im
4∑

J=1

{B(1)〈ln(z(1)
∗ − s

(2)
J )〉q(1)

J },




(B 16)

for the field point in material 1 (z > 0), and

u(2) =
1
π

Im{A(2)〈ln(z(2)
∗ − s

(2)
∗ )〉q∞,2} +

1
π

Im
4∑

J=1

{A(2)〈ln(z(2)
∗ − s̄

(2)
J )〉q(2)

J },

ψ(2) =
1
π

Im{B(2)〈ln(z(2)
∗ − s

(2)
∗ )〉q∞,2} +

1
π

Im
4∑

J=1

{B(2)〈ln(z(2)
∗ − s̄

(2)
J )〉q(2)

J },




(B 17)
for field point in z < 0 (material 2).

Note again that the first term in equation (B 17) corresponds to the full-plane
Green functions (with material properties of material 2) with

q∞,2 = (A(2))Tf + (B(2))Tb. (B 18)

Proc. R. Soc. Lond. A (2004)



558 E. Pan

For the six interface models, we found that

q
(1)
J = (Â(1))−1( ¯̂

M (2) + M̂ (1))−1(M̂ (2) + ¯̂
M (2))Â(2)IJq∞,2

≡ K21IJq∞,2,

q
(2)
J = (Â(2))−1(M̂ (2) + ¯̂

M (1))−1( ¯̂
M (1) − ¯̂

M (2)) ¯̂
A(2)IJ q̄∞,2

≡ K22IJ q̄∞,2,




(B 19)

Q21,v
RN = K21

RP (Iv)P A
(2)
NP ,

Q22,v
RN = K22

RP (Iv)P Ā
(2)
NP .


 (B 20)

Appendix C. Some analytical integrals

For the h
(α)
R defined in (4.5) in the text, we write z

(α)
R in terms of the parameter t in

(4.3) and find that

h
(α)
R (X, Z) =

∫ 1

0
ln{[(x2 − x1) + p

(α)
R (z2 − z1)]t + [(x1 + p

(α)
R z1) − s

(α)
R ]} dt. (C 1)

Integration of this expression gives

h
(α)
R (X, Z) =

(x1 + p
(α)
R z1) − s

(α)
R

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s

(α)
R

x1 + p
(α)
R z1 − s

(α)
R

]

+ ln[x2 + p
(α)
R z2 − s

(α)
R ] − 1. (C 2)

Similarly, integration of gαβ
Rv and w

(α)
Rv gives

gαβ
Rv(X, Z) =

(x1 + p
(α)
R z1) − s

(β)
v

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s

(β)
v

x1 + p
(α)
R z1 − s

(β)
v

]

+ ln[x2 + p
(α)
R z2 − s(β)

v ] − 1,

w
(α)
Rv (X, Z) =

(x1 + p
(α)
R z1) − s̄

(α)
v

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s̄

(α)
v

x1 + p
(α)
R z1 − s̄

(α)
v

]

+ ln[x2 + p
(α)
R z2 − s̄(α)

v ] − 1.




(C 3)

Taking the derivative of equations (C 2) and (C 3) with respect to the source
coordinates X and Z (for subscripts ‘1’ and ‘3’, respectively), we find

h
(α)
R,1(X, Z) =

−1

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s

(α)
R

x1 + p
(α)
R z1 − s

(α)
R

]
, (C 4)

h
(α)
R,3(X, Z) =

−p
(α)
R

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s

(α)
R

x1 + p
(α)
R z1 − s

(α)
R

]
, (C 5)
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gαβ
Rv,1(X, Z) =

−1

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s

(β)
v

x1 + p
(α)
R z1 − s

(β)
v

]
, (C 6)

gαβ
Rv,3(X, Z) =

−p
(β)
v

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s

(β)
v

x1 + p
(α)
R z1 − s

(β)
v

]
, (C 7)

w
(α)
Rv,1(X, Z) =

−1

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s̄

(α)
v

x1 + p
(α)
R z1 − s̄

(α)
v

]
, (C 8)

w
(α)
Rv,3(X, Z) =

−p̄
(α)
v

(x2 − x1) + p
(α)
R (z2 − z1)

ln
[
x2 + p

(α)
R z2 − s̄

(α)
v

x1 + p
(α)
R z1 − s̄

(α)
v

]
. (C 9)
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