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Abstract

This paper presents an exact closed-form solution for the Eshelby problem of polygonal
inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force
concept of eigenstrain, the induced elastic and piezoelectric 4elds are 4rst expressed in terms
of line integral on the boundary of the inclusion with the integrand being the Green’s function.
Using the recently derived exact closed-form line-source Green’s function, the line integral is
then carried out analytically, with the 4nal expression involving only elementary functions. The
exact closed-form solution is applied to a square-shaped quantum wire within semiconductor
GaAs full- and half-planes, with results clearly showing the importance of material orientation
and piezoelectric coupling. While the elastic and piezoelectric 4elds within the square-shaped
quantum wire could serve as benchmarks to other numerical methods, the exact closed-form
solution should be useful to the analysis of nanoscale quantum-wire structures where large strain
and electric 4elds could be induced by the mis4t strain.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The Eshelby problem (Eshelby, 1957; Willis, 1981; Mura, 1987) is of great im-
portance in various engineering and physical 4elds, and is the subject of extensive
studies (Bacon et al., 1978; Mura, 1987; Ting, 1996; Buryachenko, 2001). Some of
the recent studies include the e<ective elastoplastic behavior of composites (Ju and Sun,
2001), non-uniform Gaussian and exponential eigenstrain within ellipsoids (Sharma and
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Sharma, 2003), and dynamic Eshelby tensor in ellipsoidal inclusions (Michelitsch
et al., 2003). While most Eshelby problems associated with isotropic elasticity have
been solved analytically for both two-dimensional (2D) and three-dimensional (3D) de-
formations (i.e., Kouris and Mura, 1989; Downes et al., 1995; Faux et al., 1997; Glas,
2001, 2002a,b; Rodin, 1996; Markensco<, 1993, 1998a,b; Nozaki and Taya, 2001;
Yu and Sanday, 1991; Walpole, 1991; Rahman, 2001, 2002), those corresponding to
anisotropic elasticity are usually solved numerically (see, e.g., Dong et al., 2003), with
the exception of transversely isotropic elasticity for which an analytical solution can
be derived (Rahman, 1999a,b; Withers, 1989; Yu et al., 1994).

In recent years, Eshelby problems with any shaped inclusion have been found to
be particularly useful in the study of strained semiconductor quantum devices where
the strain-induced quantum dot (QD) and quantum wire (QWR) growth is crucial
in semiconductor nanostructure design (see, e.g., Andreev et al., 1999; Davies, 1998;
Davies and Larkin, 1994; Faux and Pearson, 2000; Faux et al., 1996, 1997; Freund,
2000; Freund and Gosling, 1995; Gosling and Willis, 1995; Larkin et al., 1997; Park
and Chuang, 1998; Pearson and Faux, 2000). It is further noticed recently that piezo-
electric coupling could have an important contribution to the electronic and optical
properties of the semiconductor structure, due to the fact that most semiconductor ma-
terials are piezoelectric, in particular, some of them are strongly electromechanically
coupled (Pan, 2002a,b).

Owing to the complicated electromechanical coupling, however, only a few types of
Eshelby problems have been solved so far for fully coupled piezoelectric solids. These
include the ellipsoidal inclusion in transversely isotropic and piezoelectric 3D spaces
(Wang, 1992; Dunn and Taya, 1993; Dunn and Wienecke, 1997; Kogan
et al., 1996) and elliptical inclusion in general anisotropic piezoelectric 2D planes
(Ting, 1996; Chung and Ting, 1996; Lu and Williams, 1998; Ru, 1999, 2000; Wang and
Shen, 2003).

In spite of the importance of material anisotropy and electromechanical coupling in
nanoscale QWR semiconductor structures, analytical solutions were obtained only for
isotropic elastic full- and half-planes if the QWR has an arbitrary shape (see, e.g.,
Rodin, 1996; Downes et al., 1995; Faux et al., 1996, 1997; Nozaki and Taya, 1997;
Nozaki et al., 2001; Kawashita and Nozaki, 2001; Glas, 2001, 2002a,b, 2003). Recently,
however, Ru (1999, 2000) derived the solution due to an arbitrarily shaped inclusion
in anisotropic full- and half-planes of elasticity and piezoelectricity using the special
conformal mapping method. While the mathematical approach of Ru (1999, 2000) is
elegant, numerical implementation might not be a trivial task. It is also noticed that
truncation could be required if the conformal mapping function involves in4nite terms.
Therefore, it is most desirable if an exact closed-form solution can be derived for this
complicated Eshelby problem.

In this paper, we thus present the exact closed-form solution for an arbitrarily shaped
polygonal inclusion in anisotropic piezoelectric full- and half-planes, with the half-plane
being under general surface conditions. We 4rst express the induced elastic and piezo-
electric 4elds in terms of a line integral on the boundary of the inclusion based on the
equivalent body-force concept of eigenstrain, with the integrand being the line-source
Green’s function. We then carry out the line integral analytically assuming that the
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inclusion is a polygon. The most remarkable feature is that the 4nal exact closed-form
solution involves only elementary functions, similar to the corresponding isotropic elas-
tic solution (Faux et al., 1996, 1997; Nozaki and Taya, 1997; Glas, 2002a). Using the
present simple solution, the elastic and piezoelectric 4elds due to multiple inclusions
or an array of QWRs can be easily obtained by adding all the QWRs’ contributions
together. Furthermore, the solution to an elliptical inclusion can also be obtained by
approximating the curved boundary of the inclusion with piecewise straight-line seg-
ments. As a numerical example, our solution is applied to a square-shaped quantum
wire within GaAs full- and half-planes. The numerical results clearly show the impor-
tance of material orientation and piezoelectric coupling. It is further observed that the
boundary condition on the surface of the half-plane can also have a great e<ect on
the induced 4elds. Therefore, these results can serve as benchmarks and should be of
interest to the analysis of nanoscale quantum-wire structures.

This paper is organized as follows: In Section 2, the equivalent body force of the
eigenstrain is de4ned along with the governing equations. In Section 3, the boundary
integral expression is obtained in terms of the line-source or point-source Green’s
function. It is remarked that results in Sections 2 and 3 are applicable to both 2D and
3D deformations. While in Section 4 the exact closed-form Green’s functions in both
full- and half-planes are brieJy reviewed for the sake of easy reference, which include
various surface boundary conditions, the exact closed-form expression for the induced
elastic and electric 4elds due to an inclusion of arbitrary polygon is derived in Section
5. Numerical examples are presented in Section 6, and certain conclusions are drawn
in Section 7.

2. Equivalent body force of eigenstrain

Let us assume that there is an extended general eigenstrain �∗Ij(�
∗
ij & − E∗

j ) within
the domain V bounded by the surface @V (See Fig. 1 for 2D illustration). Our task is
to 4nd the equivalent body force of this eigenstrain in V . To ease our discussion, we
4rst de4ne the extended strain

�Ij =

{
�ij; I = i = 1; 2; 3;

−Ej; I = 4;
(1)

where �ij is the total elastic strain and Ej is the total electric 4eld, which are related
to the total elastic displacement ui and the total electric potential 
 as

�ij = 0:5(ui; j + uj; i);

Ej = −
;j: (2)

It is further noted that the total extended strain can be written as

�Ij = �e
Ij + �∗Ij ; (3)

where �∗Ij is the extended eigenstrain in the inclusion (Fig. 1), and �e
Ij is the extended

strain that appears in the constitutive relation (Barnett and Lothe, 1975;
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Fig. 1. A general inclusion problem in an anisotropic piezoelectric (x; z)-half-plane (z ¡ 0): An extended
eigenstrain �∗Ij(�

∗
ij & − E∗

j ) within an arbitrarily shaped polygon.

Dunn and Taya, 1993; Pan, 1999) as

�iJ = CiJKl�e
Kl (4a)

or

�iJ = CiJKl(�Kl − ��∗Kl): (4b)

In Eq. (4), � is equal to 1 if the 4eld point is within the eigenstrain domain V and to
0 otherwise. The extended stress in Eq. (4) is de4ned by

�iJ =

{
�ij; J = j = 1; 2; 3;

Di; J = 4;
(5)

where �ij and Di are the stress and electric displacement, respectively, and

CiJKl =




Cijkl; J; K = j; k = 1; 2; 3;

elij ; J = j = 1; 2; 3; K = 4;

eikl; J = 4; K = k = 1; 2; 3;

−�il; J = K = 4

(6)

with Cijkl, elij and �il being the elastic moduli, piezoelectric coeMcients, and dielectric
constants, respectively (Tiersten, 1969; Suo et al., 1992). When elij = 0, the solution
derived in this paper is then reduced to the one corresponding to the Eshelby problem
in anisotropic elastic full- and half-planes.

In this paper, we further de4ne the extended displacement

uI =

{
ui; I = i = 1; 2; 3;


; I = 4:
(7)
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For the eigenstrain problem, the equilibrium equation for the stresses and the balance
for the electric displacements are (Tiersten, 1969; Pan, 1999)

�iJ; i = 0 (8)

Now, for the extended eigenstrain �∗Ij in the inclusion V , substitution of Eq. (4b) into
Eq. (8) gives

CiJKluK;li = CiJKl�∗Kl; i: (9)

It is clear that the right-hand side of Eq. (9) resembles the extended body force as
would appear on the left-hand side of Eq. (8), i.e.,

fJ = −CiJKl�∗Kl; i (10)

which is the equivalent body force of the eigenstrain. This concept is an extension of
the purely elastic counterpart (Mura, 1987) to the piezoelectric solid. The equivalent
body force will be employed in the next section to 4nd the induced total extended
displacement uI and total extended strain �Ij.

3. Boundary integral expression in terms of Green’s function

For the extended general eigenstrain �∗Ij at x = (x; y; z) within the domain V , the
induced extended displacement at X = (X; Y; Z) can be found using the superposition
method. In other words, the response is an integral, over V , of the equivalent body
force de4ned by Eq. (10), multiplied by the point-source (line-source for 2D) Green’s
function, i.e.,

uK (X) = −
∫
V
uK
J (x;X)[CiJLm�∗Lm(x)]; i dV (x); (11)

where uK
J (x;X) is the J th Green’s elastic displacement/electric potential at x due to

a point-force/point-charge in the K th direction applied at X . This again extends the
purely elastic expression (Mura, 1987; Faux et al., 1997; Nozaki and Taya, 1997;
Glas, 2003) to the piezoelectric one.

Integrating by parts and noticing that the eigenstrain is nonzero only in V , Eq. (11)
can be written alternatively as

uK (X) =
∫
V
uK
J;xi(x;X)CiJLm�∗Lm(x) dV (x): (12)

If we further assume that the eigenstrain is uniform within the domain V , then the
domain-integral in Eq. (12) can be transformed into the boundary of V . That is

uK (X) = CiJLm�∗Lm

∫
@V

uK
J (x;X)ni(x) dS(x); (13)

where ni(x) is the outward normal on the boundary @V .
To 4nd the elastic strain and electric 4elds, we take the derivatives of Eq. (13)

with respect to the 4eld point X (i.e., the source point of the point-force/point-charge
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Green’s function), which yields

�kp(X) =
1
2
�∗LmCiJLm

∫
@V

[uk
J;Xp

(x;X) + up
J;Xk

(x;X)]ni(x) dS(x);

k; p = 1; 2; 3; (14a)

Ep(X) = −�∗LmCiJLm

∫
@V

u4
J;Xp

(x;X)ni(x) dS(x); p = 1; 2; 3: (14b)

The stresses and electric displacements are obtained from Eq. (4b).
We remark that the results presented in this and previous sections can be applied to

both 2D and 3D inclusion problems. In particular, Eqs. (13) and (14) are very useful,
since for a uniform eigenstrain within a homogeneous piezoelectric solid, the elastic
and piezoelectric 4elds can be obtained by performing an integral over the boundary of
the inclusion, using the available piezoelectric Green’s function (see, e.g., Pan, 2002c)
as the integrand. However, instead of numerically carrying out the boundary integrals
in Eqs. (13) and (14), we will show in Section 5 that for an arbitrary polygonal inclu-
sion within a piezoelectric half-plane (with the full-plane being the special case), the
induced elastic and piezoelectric 4elds can be derived in an exact closed form. Such
an exact closed-form solution is unavailable to the best of the author’s knowledge, ex-
cept for the corresponding isotropic elastic full- (Rodin, 1996; Faux et al., 1996, 1997;
Nozaki and Taya, 1997) and half-plane (Glas, 2002a,b) cases. To facilitate our discus-
sion, we 4rst brieJy review the Green’s functions in full- and half-planes based on the
extended Stroh formalism. For a detailed derivation on these Green’s functions, one is
referred to, for example, Pan (2002c) and the references therein.

4. Piezoelectric half-plane Green’s function

We consider an anisotropic piezoelectric half-plane with its surface at z = 0 and the
half-plane can occupy either the z¿ 0 or z¡ 0 domain. We assume that the deforma-
tion is independent of the y-coordinate (i.e., the generalized plane strain deformation
in the (x; z) plane). It is emphasized that we use the (x; z) plane, instead of the com-
mon (x; y) plane. The reason is that under the (x; z) plane, the Stroh formalism is
consistent with that in 3D, and that various boundary conditions on the surface of
the half-plane can be handled uniformly (Pan, 2002c). We further let an extended line
force f =(f1; f2; f3;−q) be applied at (X; Z) with Z ¿ 0 or Z ¡ 0, depending upon the
half-plane one chooses. The subscripts 1, 2, and 3 denote the x-, y-, and z-directions,
respectively.

It can be shown that (Ting, 1996; Pan, 2002c) the half-plane Green’s functions (i.e.,
the extended displacement vector u and stress function vector ) can be expressed as

u =
1
%

Im{A〈ln(z∗ − s∗)〉q∞} +
1
%

Im
4∑

J=1

{A〈ln(z∗ − QsJ )〉qJ}; (15a)

=
1
%

Im{B〈ln(z∗ − s∗)〉q∞} +
1
%

Im
4∑

J=1

{B〈ln(z∗ − QsJ )〉qJ}; (15b)
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where the extended stress function vector (a four-dimensional vector) is related to
the elastic stresses and electrical displacements through

�1J = − J;3; �3J =  J;1: (16)

Also in Eq. (15), an over bar stands for the complex conjugate, Im for the imaginary
part of a complex variable, and pJ , A, and B denote the Stroh eigenvalues and the
corresponding eigenmatrices with their expressions given in Appendix A. Finally in
Eq. (15),

〈ln(z∗ − s∗)〉 = diag[ln(z1 − s1); ln(z2 − s2); ln(z3 − s3); ln(z4 − s4)];

〈ln(z∗ − QsJ )〉 = diag[ln(z1 − QsJ ); ln(z2 − QsJ ); ln(z3 − QsJ ); ln(z4 − QsJ )]; (17)

where the complex variables zJ and sJ are de4ned, respectively, by

zJ = x + pJ z; (18a)

sJ = X + pJZ: (18b)

It is further noticed that the 4rst term in Eq. (15) corresponds to the full-plane
Green’s function with

q∞ = ATf ; (19)

where the superscript T denotes the matrix transpose.
The second term in Eq. (15) is the complementary part of the solution with the

complex constant vectors qJ (J = 1; 2; 3; 4) to be determined. For the 16 sets of the
surface boundary conditions discussed in Pan (2002c), we de4ne a 4 × 4 complex
matrix K as

K = IuA + ItB; (20)

where Iu and It are 4 × 4 diagonal matrices whose four diagonal elements are either
one or zero, and satisfy conditions

Iu + It = I; IuIt = 0: (21)

with I being the identity matrix. With this newly de4ned complex matrix K , the
involved complex constants in Eq. (15) can be found, in a remarkably simple and
uni4ed form, as

qJ = K−1 QKIJ Qq∞; (22)

where the diagonal matrices IJ have the following diagonal elements

I1 = diag[1; 0; 0; 0]; I2 = diag[0; 1; 0; 0]

I3 = diag[0; 0; 1; 0]; I4 = diag[0; 0; 0; 1] (23)

Thus, the extended displacement and stress function vectors due to an extended line
force f = (f1; f2; f3;−q) in a generally anisotropic and piezoelectric half-plane with
the 16 di<erent sets of surface boundary conditions are all derived in a very concise
form.
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With the extended displacement and stress function vectors given by Eq. (15),
their derivatives with respect to the 4eld and source points can be analytically car-
ried out and the resulting Green’s functions can then be applied to various prob-
lems associated with a half-plane under general boundary conditions. In the following
section, however, we derive the exact boundary integral for these Green’s functions
by assuming that the boundary of the inclusion is made of piecewise straight-line
segments.

5. Analytical integral of a straight-line segment

To carry out the line integral in Eqs. (13) and (14), we 4rst write the Green’s
displacement in Eq. (15) in a matrix form the same way as in Eq. (13). That is,

uK
J (x;X) =

1
%

Im{AJR ln(zR − sR)AKR} +
1
%

Im
4∑

v=1

{AJRln(zR − Qsv)Qv
RK}; (24)

where the index K again is for the four line-source directions (K = k = 1; 2; 3 for the
line force, and K = 4 for the negative line charge). Also in Eq. (24),

Qv
RN = K−1

RS
QKSP(Iv)P QANP: (25)

De4ne a line segment in the (x; z)-plane starting from point 1 (x1; z1) and ending at
point 2 (x2; z2), in terms of the parameter t (06 t6 1), as

x = x1 + (x2 − x1)t;

z = z1 + (z2 − z1)t: (26)

Then, the outward normal component ni(x) along the line segment is constant,
given by

n1 = (z2 − z1)=l; n2 = −(x2 − x1)=l; (27)

where l=
√

(x2 − x1)2 + (z2 − z1)2 is the length of the line segment. It is obvious that
the elemental length is dS = l dt.

It is noted that the half-plane Green’s functions consist of two parts: the full-plane
Green’s function and a complementary part. Therefore, the corresponding integrals also
consist of two parts involving two types of functions. For the 4rst integral, we de4ne

hR(X; Z) ≡
∫ 1

0
ln(zR − sR) dt (28)

or

hR(X; Z) =
∫ 1

0
ln{[(x2 − x1) + pR(z2 − z1)]t + [(x1 + pRz1) − sR]} dt: (29)

Integration of this expression gives

hR(X; Z) =
(x1 + pRz1) − sR

(x2 − x1) + pR(z2 − z1)
ln
[
x2 + pRz2 − sR
x1 + pRz1 − sR

]

+ ln[x2 + pRz2 − sR] − 1: (30)
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Similarly, we de4ne the second integral as

gv
R(X; Z) ≡

∫ 1

0
ln(zR − Qsv) dt (31)

and the integration of the right-hand side gives

gv
R(X; Z) =

(x1 + pRz1) − Qsv
(x2 − x1) + pR(z2 − z1)

ln
[
x2 + pRz2 − Qsv
x1 + pRz1 − Qsv

]

+ ln[x2 + pRz2 − Qsv] − 1: (32)

Therefore, the induced elastic displacements and piezoelectric potential, due to the
contribution of a straight-line segment along the boundary of the inclusion, can be
obtained in the following exact closed form:

uK (X) = niCiJLm�∗Lm
l
%

Im

{
AJRhR(X; Z)AKR +

4∑
v=1

AJRgv
R(X; Z)Qv

RK

}
: (33)

Notice that the 4rst term involving hR is the contribution from the full-plane Green’s
function, and the second term involving gv

R comes from the complementary part, which
is used to satisfy the boundary conditions on the surface of the half-plane. Therefore,
Eq. (33) contains the solution for the inclusion problems in both full- and half-planes.
By adding contributions from all line segments of the boundary, the solution to an
inclusion with a general polygonal shape in either a full- or a half-plane is then obtained
in an exact closed form!

The exact closed-form strain and electric 4eld can be obtained either by carrying out
the integral as we have just done for the elastic displacement and electric potential, or
by simply taking the derivative of Eq. (33) with respect to the coordinate X = (X; Z).
By following the second approach, we obtain the elastic strain and electric 4eld, due
to a straight-line segment of the boundary of the inclusion, as (2; 3 = 1 and 3)

�32(X) = 0:5niCiJLm�∗Lm
l
%

Im

{
AJRhR;2(X; Z)A3R +

4∑
v=1

AJRgv
R;2(X; Z)Qv

R3

}

+0:5niCiJLm�∗Lm
l
%

Im

{
AJRhR;3(X; Z)A2R +

4∑
v=1

AJRgv
R;3(X; Z)Qv

R2

}
; (34)

�22(X) = 0:5niCiJLm�∗Lm
l
%

Im

{
AJRhR;2(X; Z)A2R +

4∑
v=1

AJRgv
R;2(X; Z)Qv

R2

}
; (35)

E2(X) = −niCiJLm�∗Lm
l
%

Im

{
AJRhR;2(X; Z)A4R +

4∑
v=1

AJRgv
R;2(X; Z)Qv

R4

}
; (36)
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where

hR;1(X; Z) =
−1

(x2 − x1) + pR(z2 − z1)
ln
[
x2 + pRz2 − sR
x1 + pRz1 − sR

]
; (37)

hR;3(X; Z) =
−pR

(x2 − x1) + pR(z2 − z1)
ln
[
x2 + pRz2 − sR
x1 + pRz1 − sR

]
; (38)

gv
R;1(X; Z) =

−1
(x2 − x1) + pR(z2 − z1)

ln
[
x2 + pRz2 − Qsv
x1 + pRz1 − Qsv

]
; (39)

gv
R;3(X; Z) =

− Qpv

(x2 − x1) + pR(z2 − z1)
ln
[
x2 + pRz2 − Qsv
x1 + pRz1 − Qsv

]
: (40)

With these strain and electric 4elds, the stresses and electric displacements are then
found from Eq. (4b).

It is observed from Eqs. (30)–(33) that the elastic displacement and electric poten-
tial are continuous everywhere including all the corners of the polygon or the ver-
texes. From Eqs. (34)–(40), however, we notice that at the vertices, some of the
strain and electric 4eld components may exhibit a logarithmic singularity for the terms
corresponding to the full-plane solution (i.e., in Eqs. (37) and (38) when sR = x1 +
pRz1 or sR = x2 + pRz2). For a polygonal inclusion in an isotropic elastic full-plane,
Rodin (1996) discussed the vertex singularity of the Eshelby tensor in general, whilst
Downes et al. (1995) and Nozaki et al. (2001) showed that this singularity was only as-
sociated with the shear stress/strain component in their examples. For the square QWR
cases studied in this paper, we found that if the full- or half-plane is GaAs (001)
(de4ned below), then only the shear strain component �xz (and its corresponding shear
stress component) is logarithmically singular at the four corners. However, if the full-
or half-plane is GaAs (111) (again, de4ned below), then all the strain and electric 4eld
components are logarithmically singular at the four corners. Therefore, in the numerical
calculation presented below, the corners are avoided by slightly perturbing their exact
coordinates (e.g., replacing (x; z) = (10 nm; 10 nm) with (x; z) = (9:99 nm; 9:99 nm)),
just like Downes et al. (1995) and Rodin (1996) did in their strain analysis in polygons
within the isotropic elastic full-plane.

We further remark that Eqs. (34)–(36) can be expressed alternatively using the ex-
tended Eshebly tensor S (Eshelby, 1961; Mura, 1987; Dunn and Taya, 1993;
Dunn and Wienecke, 1997), as

�Ij = SIjLm�∗Lm; (41)

where the elements of the extended Eshebly tensor S are readily obtained by comparing
Eq. (41) to Eqs. (34)–(36). Furthermore, the total extended Eshelby tensor in Eq. (41)
can be expressed as a sum of two other tensors, i.e.,

SIjLm = S∞
IjLm + Sc

IjLm; (42)

where the 4rst term is the Eshelby tensor in anisotropic piezoelectric full-plane, and
the second is the complementary term introduced to satisfy the boundary condition on
the surface of the half-plane.
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Table 1
Induced dimensionless stress component Q�xx within the elliptical inclusion

X = Z (nm) N = 10 N = 25 N = 50 N = 100

0 −0.0380101 −0.0379582 −0.0379582 −0.0379582
1 −0.0380030 −0.0379580 −0.0379582 −0.0379582
2 −0.0379792 −0.0379578 −0.0379582 −0.0379582
3 −0.0379304 −0.0379587 −0.0379582 −0.0379582
4 −0.0378358 −0.0379608 −0.0379582 −0.0379582
5 −0.0376532 −0.0379581 −0.0379583 −0.0379582
6 −0.0373154 −0.0379453 −0.0379579 −0.0379582
7 −0.0367980 −0.0379681 −0.0379597 −0.0379583
8 −0.0361470 −0.0381939 −0.0379390 −0.0379594

In summary, therefore, we have derived the exact closed-form solutions for the
elastic and piezoelectric 4elds induced by an arbitrary polygonal inclusion. Since our
result is in an exact closed form, solution to multiple inclusions can be simply derived
by superposing the contributions from all inclusions. This is particularly useful in
the analysis of QWR-array induced elastic and piezoelectric 4elds (Glas, 2002a, b).
Furthermore, a solution to the inclusion with curved boundary can also be obtained by
approximating the curved boundary with piecewise straight-line segments.

6. Numerical examples

Before applying our exact closed-form solutions to a buried QWR in the piezoelectric
GaAs, we have 4rst checked these solutions with available results for a rectangular
QWR in an isotropic elastic full-plane (Downes et al., 1995) and a trapezoidal QWR
in an isotropic elastic half-plane (Glas, 2002a). We have also compared our results
for a N -sided regular polygon in an isotropic elastic full-plane for N = 3, 6, and 12
(Rodin, 1996). We found that our solutions are the same as these previously published
exact results.

Another interesting veri4cation for the present solutions is to use the well-known
fact (Eshelby, 1961; Mura, 1987; Rodin, 1996; Ru, 2000) that the stress and electric
displacement 4elds within an elliptical inclusion in a full-plane are constants. We as-
sume an elliptical inclusion with major axis along the x-direction and minor axis along
the z-direction. The semi-major and semi-minor axes are, respectively, a = 20 nm and
b = 10 nm. The eigenstrain is assumed to be hydrostatic, i.e., �∗xx = �∗zz = 0:07 and
the full-plane is GaAs (111) with its material properties being discussed below. To
use our exact closed-form solutions, we replace the curved ellipse with N piecewise
straight-line segments, i.e., replacing the ellipse with a N -sided regular polygon. For
N equals 10, 25, 50, and 100, the results for the dimensionless stress component
Q�xx(=�xx=(0:154 × 1012) and electric displacement component Qdx(=dx=0:18475209) are
given, respectively, in Tables 1 and 2 for selected internal points. It is clear from
these two tables that they are indeed constants within the elliptical inclusion when N
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Table 2
Induced dimensionless electric displacement component Qdx within the elliptical inclusion

X = Z (nm) N = 10 N = 25 N = 50 N = 100

0 −0.0205255 −0.0206011 −0.0206011 −0.0206011
1 −0.0204898 −0.0206004 −0.0206011 −0.0206011
2 −0.0203928 −0.0206031 −0.0206011 −0.0206011
3 −0.0202605 −0.0206058 −0.0206011 −0.0206011
4 −0.0201246 −0.0205942 −0.0206012 −0.0206011
5 −0.0200136 −0.0205715 −0.0206011 −0.0206011
6 −0.0199524 −0.0206142 −0.0206006 −0.0206011
7 −0.0196873 −0.0208139 −0.0206086 −0.0206010
8 −0.0172762 −0.0207988 −0.0204821 −0.0205961

is equal to or larger than 50. It is further noticed that for points near the center, the
stress and electric displacement reach the 4nal constant values even for small N (i.e.,
N = 25); However, for points close to the boundary, i.e., point X = Z = 8 nm, the
convergence is slow. We have also checked other stresses and electric displacements
due to di<erent eigenstrain components, and found that they all converge to constants
for large N (i.e., N = 100).

We now apply the exact closed-form solutions, i.e., Eqs. (33)–(36), to a square
QWR in piezoelectric GaAs. The QWR has a dimension of 20 nm×20 nm, and for the
half-plane case, is located symmetrically (about the z-axis) below the surface at a depth
5 nm. The mis4t-strain is again hydrostatic, i.e., �∗xx = �∗zz = 0:07. The elastic properties
for GaAs are C11 = 118 × 109 N=m2, C12 = 54 × 109 N=m2, and C44 = 59 × 109 N=m2

(Pan, 2002b). The piezoelectric constant and relative permeability for GaAs (001) are,
respectively, e14 =−0:16 C=m2 and �r = 12:5 (Pan, 2002b). For GaAs (001), the global
coordinates x; y, and z are coincident with the crystalline axes [100], [010], and [001].
For GaAs (111), the x-axis is along [11 − 2], y-axis along [ − 110], and z-axis along
[111] directions of the crystalline (Pan, 2002b). For the half-plane problem, two cases
of boundary conditions on the surface of the half-plane are considered: Case I for the
traction-free insulating condition, and Case II for the traction-free conducting condition
(Pan, 2002c).

Shown in Figs. 2a and 2b are, respectively, the contours of the strain component �xx
and hydrostatic strain �xx + �zz in the square QWR within the GaAs (001) full-plane. It
is observed from Fig. 2a that while the two equal maximums of �xx are reached in the
middle of left and right sides of the square with a value (=0:062) slightly less than the
mis4t-strain, the two equal minimums are reached in the middle of the top and bottom
sides of the square with a value (=0:036) slightly over half of the mis4t-strain. The
hydrostatic strain (Fig. 2b), however, has a very gentle variation in the square QWR,
with the maximum di<erence less than 10%. Notice further that these normal strains
are 4nite at the four corners.

Figs. 3a and b show the corresponding contours of �xx and �xx + �zz in the square
QWR within the GaAs (111) full-plane. Comparing these two 4gures to Figs. 2a and
b, we immediately observe that both the strain values and the contour shapes are
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Fig. 2. Contours of strain component �xx (a) and hydrostatic strain �xx + �zz (b) in a square QWR of
20 nm × 20 nm within the GaAs (001) full-plane.

very di<erent for the two di<erently oriented GaAs semiconductors. In particular, since
the elastic strain 4eld in GaAs (111) is singular at the four corners (Fig. 3b for the
contour concentration), one should try to avoid sharp corners when growing QWR in
an inclined orientation such as the (111)-oriented.
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Fig. 3. Contours of strain component �xx (a) and hydrostatic strain �xx + �zz (b) in a square QWR of
20 nm × 20 nm within the GaAs (111) full-plane.

While the contours of the piezoelectric potential 
 (in V) are shown in Fig. 4,
those of the electric components Ex and Ez (in V/m) are plotted, respectively, in
Figs. 5a and b. It is noted that these contours are for the GaAs (111) full-plane.
There is no induced piezoelectric potential and electric 4elds should the crystalline axes
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Fig. 4. Contours of piezoelectric potential 
 (in V) in a square QWR of 20 nm × 20 nm within the GaAs
(111) full-plane.

of the semiconductor GaAs be along the x-, y-, and z-axes, i.e., the semiconductor
GaAs (001), no matter if it is for an inclusion in a full-plane or in a half-plane.
This result is actually consistent with the previous well-known observation for the
superlattice structures (Smith, 1986), but is di<erent from our recent observation for
the QD structures (Pan, 2002b) where large electric 4eld can also be induced by the
QD in the GaAs (001) substrate! Furthermore, similar to the elastic strain 4eld in
Figs. 3a and b, the electric 4eld singularities (Figs. 5a and b) can be clearly observed
at the four corners, and therefore these points could be critical in the QWR structure
analysis.

The results that we have presented above are for a square-shaped QWR in a full-plane.
However, a more realistic QWR structure model would be for the QWR within a
half-plane, and thus the e<ect of traction-free surface needs to be addressed. Further
consideration is also needed for the e<ect of di<erent electric surface conditions. There-
fore, in the following analysis, two di<erent electric surface conditions are studied: Case
I for the traction-free insulating surface condition, and Case II for the traction-free
conducting surface condition. Since GaAs is a weekly coupled piezoelectric material,
the induced elastic 4elds are nearly identical for both cases of the surface conditions
(Pan, 2002a, b). Thus, only those corresponding to the Case I surface condition are
presented for the elastic 4eld.

Figs. 6a and b show the contours of the strain component �xx and hydrostatic strain
�xx + �zz in the square QWR. As we mentioned earlier, this square QWR is within the
GaAs (001) half-plane and its topside is at a depth of 5 nm below the free surface.
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Fig. 5. Contours of electric components Ex (a) and Ez (b) (in V/m) in a square QWR of 20 nm × 20 nm
within the GaAs (111) full-plane.

Comparing these two 4gures to those in the GaAs (001) full-plane (i.e., Figs. 2a and
b), we observe that the free surface not only alters the contour shapes substantially, but
also increases the magnitude of the strain 4eld. For instance, compared to the full-plane
result, the strain component �xx and the hydrostatic strain have increased, respectively,
about 13% and 25% due to the e<ect of the free surface.
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Fig. 6. Contours of strain component �xx (a) and hydrostatic strain �xx + �zz (b) in a square QWR of
20 nm × 20 nm within the GaAs (001) half-plane.

Similarly, Figs. 7a and b plot the contours of the strain component �xx and hydro-
static strain �xx + �zz in the square QWR within the GaAs (111) half-plane. Again,
the inJuence of the free surface on the elastic strain distribution is clearly observed
when compared these two 4gures to the corresponding full-plane results (Figs. 3a
and b).
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Fig. 7. Contours of strain component �xx (a) and hydrostatic strain �xx+�zz (b) in a square QWR of
20 nm × 20 nm within the GaAs (111) half-plane.

Although di<erent electric surface conditions result in nearly identical elastic 4eld in
GaAs, they can cause totally di<erent piezoelectric 4elds. For example, Figs. 8a and b
show the contours of the piezoelectric potential 
 (in V), respectively, corresponding
to the boundary condition Cases I and II in the square QWR within the GaAs (111)
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Fig. 8. Contours of piezoelectric potential 
 (in V) for boundary condition Case I (a) and Case II (b) in a
square QWR of 20 nm × 20 nm within the GaAs (111) full-plane.

half-plane. As can be seen, the contours for both cases are completely di<erent in terms
of their shapes and magnitudes, with both of them being also distinct to that in the
full-plane (Fig. 4). In particular, it is noted that the magnitude of the potential in Case
I is roughly twice that in Case II (0.26 vs. 0.14).
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7. Conclusions

In this paper, we derived an exact closed-form solution for the Eshelby problem
of polygonal inclusions in anisotropic piezoelectric full- and half-planes, assuming a
uniform extended eigenstrain 4eld. Based on the equivalent body-force concept of
eigenstrain, we expressed the induced elastic and piezoelectric 4elds in terms of a
line integral on the boundary of the inclusion with the integrand being the line-source
Green’s function. Using the recently derived exact closed-form Green’s function, the
line integral is carried out analytically by assuming a piecewise straight-line boundary
for the inclusion, i.e., an arbitrarily shaped polygon. The most remarkable feature is
that the 4nal result involves only very simple elementary functions. The solution is then
applied to a square QWR within the GaAs full- and half-planes, with results clearly
showing the importance of material orientation and piezoelectric coupling. While the
numerical results can also serve as benchmarks and could be useful to the analysis of
nanoscale QWR structures, the corresponding multiply inclusion problem or an array
of QWRs in the piezoelectric semiconductor substrate can be performed readily using
the present exact closed-form solution.
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Appendix A. Stroh Eigenvalues pJ and Eigenmatrices A and B

The eigenvalue p and eigenvector a appearing in Eq. (15) satisfy the following
eigenrelation in the (x; z)-plane:

[Q + p(R+ RT) + p2T]a = 0; (A.1)

where the superscript T denotes matrix transpose, and

QIK = C1IK1; RIK = C1IK3; TIK = C3IK3 (A.2)

with

b= (RT + pT)a = − 1
p

(Q + pR)a: (A.3)
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Denoting by pm, am, and bm (m = 1; 2; : : : ; 8) the eigenvalues and the associated
eigenvectors of Eq. (A.1), we can order them in a way so that

Im pJ ¿ 0; pJ+4 = QpJ ; aJ+4 = QaJ ; bJ+4 = QbJ (J = 1; 2; 3; 4);

A= [a1; a2; a3; a4]; B = [b1; b2; b3; b4]; (A.4)

where Im stands for the imaginary part of a complex variable and an over-bar for the
complex conjugate. We assume that the eigenvalues pJ are distinct and the eigenvectors
aJ , and bJ satisfy the normalization relation (Barnett and Lothe, 1975; Ting, 1996)

bT
I aJ + aT

I bJ = :IJ (A.5)

with :IJ being the 4 × 4 Kronecker delta, i.e., the 4 × 4 identity matrix. We also
remark that repeated eigenvalues pJ can be avoided by using slightly perturbed material
coeMcients with negligible errors (Pan, 1997). In doing so, the simple structure of the
solution presented in the text can always be utilized.
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