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Abstract
A theoretical model for the energy levels in polarization superlattices is
presented. The model includes the effect of strain on the local
polarization-induced electric fields and the subsequent effect on the energy
levels. Two continuum strain models are contrasted. One is the standard
strain model derived from Hooke’s law that is typically used to calculate
energy levels in polarization superlattices and quantum wells. The other is a
fully coupled strain model derived from the thermodynamic equation of
state for piezoelectric materials. The latter is more complete and applicable
to strongly piezoelectric materials where corrections to the standard model
are significant. The underlying theory has been applied to AlGaN/GaN
superlattices and quantum wells. It is found that the fully coupled strain
model yields very different electric fields from the standard model. The
calculated intersubband transition energies are shifted by approximately
5–19 meV, depending on the structure. Thus from a device standpoint, the
effect of applying the fully coupled model produces a very measurable shift
in the peak wavelength. This result has implications for the design of
AlGaN/GaN optical switches.

1. Introduction

Intersubband optical transitions (ISBT) in AlGaN/GaN
superlattices (SLs) and multiple quantum wells (MQWs) are
being exploited for use in near- and mid-infrared lasers and
ultra-fast all-optical switches in the 1.5–3 µm wavelength
range [1–7]. A key design issue related to ISBT-based device
concepts is the calculation of the electron energy levels of
these structures so that the peak wavelengths can be estimated
before growth and fabrication. In earlier work [8], this was
done within the framework of the standard strain model for
polarization SLs. In other work [9], the dynamic response
of SLs in an optical amplifier context has been worked out.
In the present work, we investigate the role of strain and
polarization on the subband structure of SLs in the wurtzite
crystal structure. Through a theoretical examination of fully
coupled and semi-coupled electromechanical treatments, we
show the importance of using a fully coupled model for

predicting the energy levels of SLs in strongly piezoelectric
material systems. The model is then used to predict the
energy levels of ten actual structures in order to compare our
calculated ISBTs to previously measured spectra.

Unlike zincblende semiconductor SLs, a number of issues
arise in wurtzite SLs that complicate the task of calculating
the energy levels. AlGaN in the wurtzite phase has a
large spontaneous polarization moment along the [0001̄] axis.
In addition, SLs grown on a SiC or sapphire substrate
are pseudomorphic and the large in-plane biaxial strains
induce a piezoelectric polarization moment oriented along the
c-axis with the direction depending on whether the strain is
tensile (SiC) or compressive (Al203). The discontinuity of
the polarization moments effectively represents fixed sheet
charges at the interfaces of the SL. In general, each AlGaN
on GaN interface in the direction [0001̄] will have a positive
space charge and each GaN on AlGaN interface a negative
space charge. Thus unlike zincblende SLs which are flat band
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unless doped, a calculation of the electronic eigenvalues using
the Schrödinger equation must be preceded by a calculation of
the electrostatic potential, representing the Hartree term in the
Schrödinger equation, using the Poisson equation.

There is a further complication that has been previously
ignored in calculations of the energies in AlGaN/GaN SLs.
This involves the incorporation of strain into the electric field
and eigenvalue calculations. To date, the strain model for
AlGaN/GaN SLs has been borrowed from the zincblende
realm [10] without additional consideration given to its validity
for strongly piezoelectric materials. Although piezoelectric,
zincblende materials have comparatively small piezoelectric
tensor elements so that the thermodynamic equation of state
is reduced to the standard Hooke’s law with little or no error.
From this relation, the strain tensor for zincblende SLs can
be readily worked out with good accuracy. On the other
hand, wurtzite materials have large piezoelectric coefficients
indicating strong coupling between the strain and electric
fields. In the present case of group III-nitride materials, we
will show that treating the mechanical strain as separate from
the electronic properties is no longer a sound methodology.
The result is that a linear stress–strain model (Hooke’s law) is
no longer valid, and the fully coupled thermodynamic equation
of state must be invoked to obtain the strain and electric fields
simultaneously.

The coupling described in the present work is somewhat
analogous to the electromechanical coupling in surface
acoustic wave (SAW) devices using AlN and GaN thin
films [11–15]. The strength of the interaction between
the electronic and mechanical properties in SAW devices
is determined by the electromechanical coupling coefficient
[16], a quantity that measures the interaction between the
acoustic and electromagnetic waves in piezoelectric materials
[17]. In contrast, the electromechanical coupling described
herein deals with the interaction between the static electric
and strain fields. Although the mathematical treatments of the
two cases are very different, both types of couplings originate
from the same thermodynamic equation of state. In other
work, the fully coupled theory has predicted deviations in the
static strain fields present in AlGaN/GaN heterostructure field-
effect transistors (HFETs) [18] and the idealized case of free-
standing (as opposed to substrate-conforming) superlattices
[19]. These earlier works dealt exclusively with the effect of
the full coupling on the electrical properties of nitride devices,
particularly HFETs. But the coupling also has an impact on
the optical properties of nitride structures, particularly SLs
and MWQs. This issue was neither addressed in our previous
works [18, 19] nor in any other work to date. The present
paper aims to address the issue of full coupling on the optical
properties of SLs and MQWs.

In previous modelling of piezoelectric SLs, the
mechanical and electronic properties are treated separately and
sequentially: (i) first the in-plane strain is calculated from the
pseudomorphic boundary condition, (ii) Hooke’s law is then
invoked to obtain the longitudinal strain and (iii) the calculated
strain tensor is subsequently used as an input to the Poisson
and Schrödinger equations. The strain is never recalculated to
reflect the presence of static electric fields in the constituent
layers of the SL. In this paper, we compare the standard
approach with a more rigorous continuum elastic theory

applicable to piezoelectric materials. Using the proposed
formalism, we apply the fully coupled equation of state for
piezoelectric materials to obtain simultaneously the strain and
electronic properties of AlGaN/GaN SLs.

First we treat the case of undoped SLs and show that
closed-form analytical expressions can be obtained for both
the strain and electric fields, following which the eigenstates
can be calculated using the Schrödinger equation. It will be
shown, using specific examples, that the calculated strain and
electric fields differ substantially from those obtained using
the standard (uncoupled) strain model. Depending on the Al
fraction and the geometry of the SL, the longitudinal strain
calculated from the standard model may be in error by as
much as 40% relative to the fully coupled model. Further, it
will be shown that the calculated ISBT energy may differ from
that of the standard model by as much as 16 meV, depending
on the SL geometry.

Second, we treat the more useful case from a device
standpoint of SLs Si-doped in the well. (The doping can
be tailored to populate the lowest conduction subband to
facilitate optical transitions.) In this case, it is not possible
to obtain closed-form analytical expressions for the strain and
electric fields. Instead, we use a Schrödinger–Poisson solver
in conjunction with the fully coupled equation of state. The
peak wavelength is calculated for a number of structures, and
the results are compared with the published experimental data.
Once again it will be shown that the standard and fully coupled
models yield significant differences in the ISBT energy.

This paper is organized as follows: in section 2 the
continuum strain model is described. In section 2.1, the
general equations for the fully coupled strain model are
obtained. In section 2.2, the strain tensor and electric field
for a polarization SL are worked out. In section 2.3, the
calculation of the electron eigenstates is described. A fully
coupled numerical model is outlined in section 2.4. Calculated
results are presented in section 3. In section 3.1, calculated
results for the standard and fully coupled cases are contrasted
for a model undoped SL. In section 3.1, both models are
tested against published experimental data for a series of doped
SLs. The results are summarized in section 4.

2. Model description

Ordinarily, calculating the strain or stress tensor for a
generalized strain problem becomes a complicated numerical
exercise involving minimizing the Helmholtz free energy
within the problem domain [20]. This approach suffices for
most materials, but specifically not for strongly piezoelectric
materials. The reason can be illustrated as follows: if we
take a piezoelectric plate and apply an external stress to it,
the plate will be geometrically deformed and, because of the
piezoelectric effect, a polarization moment will be induced,
accompanied by an internal electric field. But in addition to
the piezoelectric effect, there is also a converse piezoelectric
effect. In our plate example, the induced electric field resulting
from the external stress will exert a counter force to resist
deformation of the plate. In a self-consistent way, the crystal
will reach its equilibrium state consonant with minimum stored
energy. This effect is present in all non-centrosymmetric
crystals, but is especially strong in certain hexagonal crystals.
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Consequently, the uncoupled strain model for zincblende SLs
results in errors when applied to wurtzite SLs if the converse
piezoelectric effect is substantial, as in our case.

The relevant energy functional for piezoelectric materials
is the electric enthalpy H given by [21]

H = U − E · D, (1)

where E and D are the electric field and electric displacement,
respectively, and U is the total internal energy (strain +
electrostatic) given by

U = 1
2Cijklγij γkl + 1

2εijEiEj , (2)

in which Cijkl is the fourth-ranked elastic stiffness tensor,
εij is the tensor form of the electric permittivity, γij is the
strain tensor and the indices i, j, k and l run over the Cartesian
coordinates x, y and z. Summation over repeated indices is
implied throughout. Accompanying the energy functional is
the constitutive relationship for the electric displacement. For
piezoelectric materials, this is given, with the spontaneous
polarization included, by the expression

Di = eijkγjk + εijEj + P s
i , (3)

in which eijk is the piezoelectric coefficient tensor and P s
i is

the spontaneous polarization [22]. For wurtzite materials, only
the z component of P s exists because of the sixfold rotational
symmetry of the [0001] axis. The first term in equation (3)
is the piezoelectric polarization. After substitution into
equation (1), the final form of the electric enthalpy becomes

H = 1
2Cijklγij γkl − eijkEiγjk − 1

2εijEiEj − EiP
s
i . (4)

2.1. Fully coupled strain tensor for planar strain

In principle, minimizing H within the problem domain gives
the strain and electric fields for a generalized problem. In
practice, this often means having to set up complicated finite
element calculations. Problems involving two- and three-
dimensional geometric variations will be subjects of future
numerical work and we instead focus here on the SL case
where the issues of grid and minimization technique will
not obscure the physics. The SL problem is a planar one-
dimensional (1D) strain problem with, at least nominally, no
shear strains. Accordingly, we can begin from the linear
piezoelectric equation of state

σij = Cijklγkl − ekijEk, (5)

obtained by differentiating equation (4) with respect to the
strain tensor, where σij is the stress tensor. Expanding
equation (5) and using the Voigt notation [20] for the third- and
fourth-ranked tensors, the following stress–stain relationships
are obtained, assuming the z axis to be the sixfold axis of
rotation:

σxx = γxxC11 + γyyC12 + γzzC13 − e31Ez, (6a)

σyy = γxxC12 + γyyC11 + γzzC13 − e31Ez, (6b)

σzz = (γxx + γyy)C13 + γzzC33 − e33Ez, (6c)

σxy = γxy(C11 − C12), (6d)

σxz = 2γxzC44 − e15Ex, (6e)

and

σyz = 2γyzC44 − e15Ey. (6f )

In the absence of the electric field, these equations are
recognized as the familiar tensor form of Hooke’s law for
hexagonal crystals.

In conjunction with equation (6), we use the constitutive
relations obtained by expanding equation (3):

Dx = Px + εEx, (7a)

Dy = Py + εEy, (7b)

Dz = Pz + εEz + P s, (7c)

where the electric permittivity is taken to be isotropic, a
reasonable approximation for AlGaN/GaN SLs, and the
piezoelectric moments are given by

Px = 2e15γxz, (8a)

Py = 2e15γyz, (8b)

and

Pz = e31(γxx + γyy) + e33γzz. (8c)

For simplicity, it is assumed that there are no shear strains,
manifested by warping, within the structure. The boundary
condition for a free surface, σiz = 0, can then be applied
throughout the layers, instead of just at the surface. From
equation (6c), this gives

γzz = −2C13

C33
γxx +

e33

C33
Ez, (9)

where γyy = γxx in the 1D planar case and γxx is assumed
to be known from the pseudomorphic condition across the
interfaces. There still remains the problem of finding the
electric field which is the topic of the next section.

2.2. Poisson equation

For an isolated piezoelectric plate under planar stress, the
constitutive equations and the equations of state should be
sufficient for obtaining the strain and electric fields. For the
SL, however, the continuity of the electric displacement must
be satisfied at the interface, and periodic boundary conditions
must be imposed on the electrostatic potential φ, as well as the
continuity of φ across the interface. Additional complications
will arise from doping, as this will give rise to space charges
and free electrons. These requirements are all met by solving
the Poisson equation. From Gauss’s law and equations (7c),
(8c) and (9), we obtain the 1D Poisson equation

∂

∂z

(
κ

∂φ

∂z

)
= −e

(
N+

d − n
)

+
∂P s

∂z

+ 2
∂

∂z

[(
e31 − e33

C13

C33

)
γxx

]
, (10)

where N+
d is the ionized donor concentration, n is the free

electron concentration calculated from the Fermi energy and
the wavefunctions, e is the electronic charge and

κ = ε +
e2

33

C33
. (11)
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Figure 1. Conduction and valence band edges of one period of a
superlattice or MQW. Assuming that the substrate is to the right, the
schematic depicts a cation-faced structure. wa and wb are the
thickness of the AlGaN and GaN layers, respectively. The directions
of the spontaneous and piezoelectric moments in the two layers are
indicated, assuming the buffer is GaN. The dashed lines indicate the
first three minibands and the dot–dashed line the Fermi energy.

It is evident from equation (10) that κ serves as an effective
electric permittivity in the fully coupled case. Also,
because e2

33

/
C33 > 0, the electromechanical coupling results

effectively in additional dielectric screening.
Figure 1 shows the band edges for a period of the SL

under consideration. In the following derivation, ‘a’ refers
to the AlGaN layer and ‘b’ the GaN layer. Equation (10) is
solved to obtain φ subject to the continuity of φ and the electric
displacement Dz at z = wa . The latter is expressed by

κ
∂φ

∂z

∣∣∣∣
w+

a

w−
a

= P s
∣∣w+

a

w−
a

+ 2

(
e31 − e33

C13

C33

)
γxx

∣∣∣∣
w+

a

w−
a

. (12)

It is assumed that there is no applied bias. Periodic boundary
conditions then apply. This is accomplished by setting φ = 0
at z = 0 and z = (wa + wb). Unless the free electron
distribution can be realistically approximated by a δ function,
equation (10) has to be solved numerically in the most general
case. To illustrate the concept of electromechanical coupling,
we assume for the moment that the SL is nominally undoped
and with no free electrons from traps or surface states. Later,
we will present results for doped SLs using our fully coupled
numerical model. For a depleted SL, the general solution of
equation (10) is given by

φ = P s

κ
z +

2(e31C33 − e33C13)γxx

κC33
z +

A

κ
z + B, (13)

where A and B are unknown constants. Thus there are four
unknowns, two in each layer. All four constants are accounted
for by the four boundary conditions discussed above.

After obtaining the unknowns, the electric fields in the
two layers are given by

Ea
z = wb(P

s(b) − P s(a))

waκb + wbκa

+
2wb

(
ea

33C
a
13 − ea

31C
a
33

)
γ a

xx

Ca
33(waκb + wbκa)

− 2wb

(
eb

33C
b
13 − eb

31C
b
33

)
γ b

xx

Cb
33(waκb + wbκa)

= −wb

wa

Eb
z . (14)

In the standard model, Ea
z and Eb

z are obtained by replacing
κ by ε in equation (14), using the appropriate subscripts for
the two layers. It is seen, therefore, that the fully coupled

electric field is smaller than its standard counterpart. From
equation (9), the longitudinal strain in the ‘a’ layer is given by

γ a
zz = −2Ca

13

Ca
33

γ a
xx +

2wbe
a
33

(
ea

33C
a
13 − ea

31C
a
33

)
γ a

xx

Ca
33

2(waκb + wbκa)

− 2wbe
a
33

(
eb

33C
b
13 − eb

31C
b
33

)
γ b

xx

Ca
33C

b
33(waκb + wbκa)

+
wbe

a
33(P

s(b) − P s(a))

Ca
33(waκb + wbκa)

, (15)

and in the ‘b’ layer by

γ b
zz = −2Cb

13

Cb
33

γ b
xx +

2wae
b
33

(
eb

33C
b
13 − eb

31C
b
33

)
γ b

xx

Cb
33

2
(waκb + wbκa)

− 2wae
b
33

(
ea

33C
a
13 − ea

31C
a
33

)
γ a

xx

Ca
33C

b
33(waκb + wbκa)

− wae
b
33(P

s(b) − P s(a))

Cb
33(waκb + wbκa)

. (16)

We can compare these expressions for strain in the
wurtzite system directly with the zincblende case where the
spontaneous polarization terms vanish and the compliance
tensor has fewer unique elements. There, a similar
(but somewhat less complicated) expression to those in
equations (15) and (16) is obtained for the longitudinal strain in
a [111]-oriented pseudomorphic layer. The zincblende [111]
case was derived separately by Bahder [23] using the method
of Lagrange multipliers to minimize the free energy density,
an alternative approach. In other work on lattice dynamics
in undoped GaN/AlN SLs [24], comparable electric field
corrections to the strain along the growth direction are obtained
with the main difference being the use of the high-frequency
dielectric permittivity ε(∞) as opposed to the present case of
static screening, as in equation (11).

The in-plane strains are calculated by assuming perfect
in-plane atomic registry of the SL layers with the buffer layer.
Applying this condition, the in-plane strains are given by

γ a
xx = abfr − aa

aa

, (17)

and

γ b
xx = abfr − ab

ab

, (18)

where aa and ab are the relaxed c-plane lattice constants of the
‘a’ and ‘b’ layers, respectively, and abfr is the c-plane lattice
constant of the buffer layer. The foregoing model also works
for less than perfect registry: if the in-plane strains are known
independently, they can still be substituted into the above
equations to obtain the electric fields and longitudinal strains.
As is well known, the standard model gives the longitudinal
strains as

γ a (std)
zz = −2Ca

13

Ca
33

γ a
xx, (19)

and

γ b (std)
zz = −2Cb

13

Cb
33

γ b
xx, (20)

i.e. the first terms in equations (15) and (16), and, as a
consequence, omits a great deal of physics under certain
conditions. It will be seen shortly that the fully coupled
correction to the standard longitudinal strain is quite
significant.
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2.3. Schrödinger equation

Owing to the large band gaps of the constituents of the
AlGaN/GaN SL, the electron eigenstates states can be
described by a Hamiltonian in the �7c basis without including
any mixing from the �9v and �7v hole states, incurring little
error in the process. The resulting Hamiltonian is the one-band
Schrödinger equation

−h̄2

2

∂

∂z

(
1

m∗
∂	

∂z

)
+

h̄2
(
k2
x + k2

y

)
2m∗ 	 + (
Ec − eφ − eφxc)	

+ ac(γxx + γyy + γzz)	 = E(k)	, (21)

where kx and ky are the electron wave vectors in the
c-plane, 	 is the electron wavefunction, E(k) is the total
electron energy, φ is the electrostatic potential discussed in
section 2.3 and represents the Hartree part of the Coulomb
interaction, φxc represents the exchange-correlation part of the
Coulomb interaction, m∗ is the effective electron mass, ac is
the conduction band hydrostatic deformation potential, 
Ec

is the conduction band discontinuity before strain shown in
figure 1 and γii has been defined previously.

It should be noted that all of these quantities depend on
z. For 
Ec, we assume that 60% of the band gap difference
between the two materials appears in the conduction band,
with the caveat that the offset is not well known. One could
legitimately use the conduction band offset as an adjustable
parameter to try to fit published experimental data, but it
has been kept fixed in the calculated results presented here.
The resulting 
Ec before strain is 1.67 eV for a AlN/GaN
structure. Other values that have been used previously include
1.78 eV [25] and 2.0 eV [26]. The chosen value will have
an impact on the ISBT, especially if the second subband is
close to the top of the barrier. Correspondingly, the sensitivity
to conduction band offset will be less for the lowest two
subbands in energetically deep well structures formed with
high Al composition barriers. Regardless of the exact value
of the offset, the fully coupled strain will have an impact on
the ISBT, as will be seen shortly. There is a net hydrostatic
component of the strain obtained from the sum of the diagonal
elements of the strain tensor. This component will shift the
band edge to higher or lower energy, depending on whether
the hydrostatic component is compressive or tensile.

If the SL is undoped, the electric field is piecewise constant
so that φ = −Fz in equation (21) in the respective layers.
Analytic solutions of the wavefunction then can be obtained
using Airy functions [27]. A much more flexible approach,
however, and the one adopted in the present work, is to use a
discretized numerical technique, e.g., finite-differencing, that
can also handle the more technologically interesting case of
doped SLs. For SLs and MQWs, Bloch boundary conditions
are enforced, i.e. 	(0) = 	(wa + wb) exp[−ikz(wa + wb)],
where kz is the crystal momentum corresponding to the
periodicity of the layers along the growth axis.

2.4. Fully coupled numerical model

For doped SLs in which the electrostatic potential is very
nonlinear, the Poisson and Schrödinger equations cannot be
solved analytically in closed form. For this case, we use a
fully coupled numerical model. The central framework for
this is a Schrödinger–Poisson solver. The electron states

and the free electron distribution are calculated by solving
equation (21) on a finite-difference grid subject to the boundary
conditions discussed above. If present, hole states are
calculated using a 6 × 6 k · p Hamiltonian. For the exchange-
correlation potential, we use the parametrized expression of
Hedin and Lundqvist [28] derived from density-functional
theory within the local-density approximation. The charge-
balance equation, which determines the position of the Fermi
energy EF in relation to the SL subbands, is solved by the
Newton–Raphson method. Fermi–Dirac statistics are used for
the probability of occupancy of the electron states.

The model has been described in detail in [29] and the
band structure and strain parameters provided therein. Since
then, a fully coupled strain calculation has been added to the
numerical model by solving the modified Poisson equation,
i.e. using κ instead of ε as shown in equation (10), and
incorporating equation (9) into the self-consistent calculation.
This means that the strain terms in equation (21) are updated
each time it is solved. In an uncoupled calculation, the strain
terms would remain invariant throughout the self-consistent
calculation. It has been shown [30] that there is a bowing of
the spontaneous polarization as a function of x. This effect is
included in the present model.

3. Results and discussion

First we show calculated longitudinal strains and electric
fields for a model undoped SL to illustrate the differences
between the standard and fully coupled strain models. We
then show how these differences lead to differences in the
calculated eigenstates of the SL. We then present calculated
ISBT energies and peak wavelengths using both the standard
and fully coupled models for doped SLs and compare the
results with the published experimental data.

3.1. Undoped superlattices

We consider a model SL consisting of 20 Å AlxGa1−xN
barriers and 60 Å GaN wells on a GaN buffer. Assuming
the pseudomorphic condition to hold, the GaN layers will
have no in-plane strain components, while the AlGaN layers
will have in-plane strains in accordance with equation (17).
Using equations (14), (15) and (16), the strain and electric
fields are calculated for the fully coupled model and compared
with the standard results. Following established convention, a
negative sign in the present calculations indicates contraction
and a positive sign extension relative to the unstrained state.
Figures 2(a) and (b) show the longitudinal strain in the barrier
and well layers, respectively, as a function of the barrier mole
fraction for the fully coupled and standard cases. Despite
γ b

xx = 0 due to the lattice matching condition, a non-zero
γ b

zz occurs due to electromechanical coupling, as predicted
in equation (9) and again in equation (16), and shown in
figure 2(b). This strain is a near linear function of the Al
fraction and, in this example, is about −0.07% for x = 1.

The largest strains occur in the AlGaN layers due to the
lattice mismatch and it is also here that a significant deviation
between the standard and fully coupled models is seen as
shown in figures 2(a) and (b). This deviation is shown in
figures 3(a) and (b). The error of the standard model relative
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(a)

(b)

Figure 2. Calculated longitudinal strain in (a) the barrier layer and
(b) the well layer for an undoped SL consisting of 20 Å AlxGa1−xN
and 60 Å GaN on a GaN buffer as a function of x. The fully coupled
and standard results are shown.

to the fully coupled model can be in excess of 35% AlN/GaN
SLs, as seen in this example. It is even higher in structures
with higher electric fields in the barrier. This occurs when
wb � wa . For example, if we set wa = 10 Å and wb = 60 Å,
the error for x = 1 is about 45%. These deviations in the
strain are quite significant and, as will be seen shortly, have an
impact on the ISBT energies.

Figure 4 shows the calculated electric fields in the AlGaN
and GaN layers for our model SL. From equation (14), it is seen
that the larger electric field occurs in the thinner layer. The
electric field calculated from the fully coupled model is smaller
in magnitude than the standard electric field due to an effective
screening caused by the electromechanical coupling. This
screening increases at higher strains. The deviation between
the standard and fully coupled electric fields is about 7% for
x = 1.

Figure 5 shows the calculated ISBT energies between
the first two electron subbands and the corresponding peak
wavelengths for the model SL. The energies are calculated
at kz(wa + wb) = π , the location of the minimum energy
separation between the first two subbands in the Brillouin zone.
The present calculations show that there is little change in the
energies between the zone centre and zone boundary for a wide
range of SLs. A number of factors contribute to the relatively
narrow mini-bandwidth. First, the band edge discontinuity

Ec is quite large due to the large band gaps of the host
materials. Second, the effective electron mass is large, in this
case, 0.2m0 in GaN and 0.33m0 in AlN. Third, the built-in
electric field causes the electron wavefunction to be localized

(a)

(b)

Figure 3. Difference between the fully coupled and uncoupled
longitudinal strains in (a) the barrier layer and (b) the well layer for
the SL of figure 2 as a function of Al composition x in the barrier.

in the triangular notch close to the AlGaN/GaN interface (see
figure 1). All of these factors reduce the exponential tail of
the electron wavefunctions between adjacent wells, which, in
turn, would appear as a dispersion in the mini Brillouin zone.
For some SLs, however, particularly those with thin wells, the
wavefunctions will spread into the barrier layers, causing some
dispersion in the Brillouin zone.

The most significant feature of figure 5 is the discrepancy
between the standard and fully coupled models. For example,
for x = 0.3, the fully coupled transition energy is lower than
the standard value by 3.7 meV. This difference increases to
19.5 meV for x = 1. The latter result is especially significant,
because high Al fractions are preferred for optical switching
technology due to the shorter peak wavelength. The difference
in energies between the two models is large enough to be
measurable by, for example, the Fourier-transform infrared
spectroscopy (FTIR). The wavelength for the standard model
is shorter by about 4% relative to the coupled model for x = 1.

It appears at first glance that the shift in the ISBT energies
between the two strain models would be buried in the full-
width at half maximum (FWHM) of the measured FTIR peaks.
The FWHM is typically about 80–100 meV [4, 25] using
the FTIR spectroscopy. Certainly, if we were attempting to
resolve two sets of intersubband transitions separated by about
20 meV, then the effect we are modelling would be small and
would be unresolvable using FTIR. But instead, we are dealing
with the bodily shift of the lineshape distribution function by
about 20 meV, a shift that is resolvable by FTIR, in spite of
the broad linewidth. In any case, an alternative technique
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(a)

(b)

Figure 4. Calculated electric field in (a) the barrier and (b) the well
layers for the SL described in figure 2 as a function of Al
composition x in the barrier. The fully coupled (solid lines) and
standard (dashed lines) results are shown.

Figure 5. Calculated ISBT energies (left y-axis) and peak
wavelengths (right y-axis) between the first and second subbands at
kz(wa + wb) = π for the SL described in figure 2 as a function of Al
mole fraction x in the barrier. The fully coupled (solid line) and
standard (dashed line) results are shown.

such as electronic Raman scattering (ERS) [26] is available
should fine resolution be a requirement and gives a FWHM of
about 20 meV.

The reason for the redshift of the fully coupled results
relative to the standard model can be understood by noting
that the introduction of electromechanical coupling reduces
the magnitude of the electric field (see figure 4). The smaller
electric field results in a conduction band profile closer to
flat-band conditions (see figure 1). In addition, a lowering of

Table 1. Comparison of published intersubband data with our
calculated results for AlxGa1−xN/GaN SLs. The calculated energies
in eV represent the separation between the first and second subbands
at kz(wa + wb) = π . The peak wavelength λ is in µm. The
experimental (exp) results are contrasted with calculated results
from the standard (std) and fully coupled (cpl) models.

wa/wb

SL (Å) x Estd
1→2 E

cpl
1→2 λexp λstd λcpl

Aa 46/13 1 0.9521 0.9472 1.33 1.30 1.31
Ba 46/18 1 0.9040 0.8930 1.48 1.37 1.39
Ca 38/20 1 0.8610 0.8467 1.6 1.44 1.47
Da 46/33 1 0.7057 0.6863 1.85 1.76 1.81
Ea 46/45 1 0.5800 0.5613 2.17 2.14 2.21
Fb 30/30 0.65 0.4981 0.4879 3 2.49 2.55
Gb 30/60 0.65 0.3740 0.3630 4 3.32 3.42
Hc 27.3/13.8 1 0.9809 0.9718 1.27 1.27 1.28
Ic 27.3/16.1 1 0.9352 0.9240 1.37 1.33 1.34
Jc 27.3/22.6 1 0.8052 0.7874 1.54 1.54 1.58

a [6], wells Si-doped 8 × 1019 cm−3.
b [3], wells Si-doped 4 × 1018 cm−3.
c [7], wells Si-doped 1019 cm−3.

the effective barrier height occurs from the reduction of γ a
zz

seen in figure 2. The more shallow triangular notch, together
with a reduced barrier height, will cause the subbands to more
closely spaced in energy. The calculated redshift of the ISBT is
distinct from the Stark shift seen in interband transitions where
the transition energy shifts to higher energy as the electric field
is reduced.

3.2. Doped superlattices

For optical switching technology, it is necessary to n-dope
the SL in order to populate the first electron subband to
facilitate ISBTs. For such structures, we use the fully
coupled numerical model described previously. The model is
tested against published optical data for various SL structures.
Table 1 shows the calculated ISBT energy between the first
two subbands for ten SL samples taken from the literature.
The standard and fully coupled results are contrasted. It is
evident that two models give differing results. Also evident is
the consistent redshift of the fully coupled results compared
to the standard results for the reasons discussed in section 3.1.
The differences depend on the layer thickness and doping of
the samples, varying from 4.9 meV for sample A to 19.4 meV
for sample D. These differences are significant enough to be
measurable by standard techniques such as FTIR.

Also shown in table 1 are the experimentally obtained
peak wavelengths for the SLs. These are compared with the
calculated wavelengths from the standard and fully coupled
models. Except for samples F and G, it is clear that the
calculated wavelengths are in reasonably good agreement with
the published data. The causes of the discrepancies for samples
F and G are unclear at this point. It should be noted that we
have not attempted to optimize the input parameters and have
chosen instead to use a generic set of parameters [29] without
fitting. The calculated results are very sensitive to all of the
input parameters and also to the geometry and Al fraction. For
instance, if the well thickness in samples F and G is increased
by two monolayers and x reduced to 0.6, the wavelength can
be fitted to within 5% using the fully coupled model. More
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Figure 6. Calculated conduction band edge (left y-axis) and
electron distribution (right y-axis) in one SL period for sample C in
table 1 using the fully coupled numerical model. The first three
electron subbands (dashed lines), calculated at kz(wa + wb) = π and
the Fermi energy EF (dot–dashed line) are shown.

precise modelling of optical data will be the subject of future
work. For now, we simply wish to illustrate the importance
of incorporating a fully coupled strain model in the design of
optical switches.

The calculations in table 1 were done for a temperature of
300 K. At 77 K, there is a blueshift of the transition energies
due to the slight increase in 
Ec. The blueshift is largest for
SLs with the thinnest wells wherein the subbands are pushed
closer to band edge discontinuity and the smallest for SLs with
the thickest wells in which the first two subbands see less of
the band edge discontinuity. For example, the shift is about
8.5 meV for sample A and about 0.15 meV for sample E.

Figure 6 shows the calculated conduction band edge and
electron distribution for sample C in table 1 using the fully
coupled model. Also shown are the Fermi energy and the
first three electron subbands calculated at the Brillouin zone
boundary. This profile was calculated at 300 K. At 77 K,
there is no discernible change in the electron distribution
function and the slope of the conduction band edge. There
are, however, shifts in the subbands of a few meV depending
on the structure, as described earlier. As the calculation shows,
the Fermi energy appears slightly above the first subband but
well below the second subband, in spite of the high doping,
ensuring that the first subband is populated by electrons
and the second nearly empty in order to facilitate optical
absorption. This Fermi energy position is consistent with
measured SL structures with transition energies corresponding
to E1 → E2 transitions. The calculated distribution and band
edges, therefore, appear plausible.

Figure 7 shows the electric field distribution for selected
structures from table 1 using the fully coupled model. The
large electric fields in these structures are a consequence of
the large polarization discontinuity across the interface. It
is difficult to verify these fields directly. There is an indirect
evidence, however, that these fields are not unreasonable given
the close fits of the ISBT wavelengths with the experimental
data. Due to the heavy doping, analytical expressions
commonly used to estimate the electric fields would lead to
errors, especially in the wells where the field is clearly non-
linear. Even on the barrier side near the interface, there is an in

Figure 7. Calculated electric field in one SL period for samples A,
C, and E in table 1 using the fully coupled numerical model. The
sign change in the electric field marks the position of the
AlGaN/GaN interface.

increase in the magnitude of the field due to the penetration of
the wavefunctions into the barrier. For such SLs, a numerical
solution of the fully coupled Poisson equation as describe here
is essential.

4. Summary and conclusions

In summary, a fully coupled model for the strain and
the eigenstates of AlGaN/GaN polarization SLs has been
presented. This model is compared with the standard strain
model utilizing Hooke’s law. Both the spontaneous and
piezoelectric polarizations are included, together with free
electrons and ionic space charges. It is seen that the strain and
electronic properties of the material are linked through the fully
coupled thermodynamic equation of state for piezoelectric
materials. Separating the mechanical and electronic aspects of
the SL in any theoretical modelling of the properties of these
structures leads to errors in both the strain and the eigenstates of
the system. For strongly coupled cases, such as AlGaN/GaN
SLs, the corrections to the standard model can be significant.
The ISBT energies calculated from the fully coupled model
show a measurable redshift compared to the corresponding
energies calculated from the separable model. This result
has consequences for the design of optical switches utilizing
AlGaN/GaN SLs.
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