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Abstract. This paper presents Green’s functions for transversely isotropic piezoelectric and layered half-spaces.
The surface of the half-space can be under general boundary conditions and a point source (point-force/point-
charge) can be applied to the layered structure at any location. The Green’s functions are obtained in terms of
two systems of vector functions, combined with the propagator-matrix method. The most noticeable feature is that
the homogeneous solution and propagator matrix are independent of the choice of the system of vector functions,
and can therefore be treated in a unified manner. Since the physical-domain Green’s functions involve improper
integrals of Bessel functions, an adaptive Gauss-quadrature approach is applied to accelerate the convergence of
the numerical integral. Typical numerical examples are presented for four different half-space models, and for
both the spring-like and general traction-free boundary conditions. While the four half-space models are used to
illustrate the effect of material stacking sequence and anisotropy, the spring-like boundary condition is chosen to
show the effect of the spring constant on the Green’s function solutions. In particular, it is observed that, when the
spring constant is relatively large, the response curve can be completely different to that when it is small or when
it is equal to zero, with the latter corresponding to the traction-free boundary condition.

Key words: multilayered structure, piezoelectric Green’s function, propagator-matrix method, spring-like bound-
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1. Introduction

It is well known that Green’s function (i.e., the fundamental solutions due to a concentrated
source) is of great importance in the areas of theoretical and applied mathematics and mech-
anics [1, Chapters 3 and 5; 2, Chapter 6]. While most two-dimensional (2D) elastic Green’s
functions can be found in the book by Ting [3, Chapter 8], a brief review on the three-
dimensional (3D) Green’s functions in anisotropic half-spaces can be found in a recent paper
by Pan [4] where the author also derived the Green’s functions in the anisotropic half-space
under general surface boundary conditions.

Although the static Green’s function for purely elastic and layered solids has been ex-
tensively studied [5–10], relatively little can be found in the literature for the corresponding
piezoelectric solids. The available piezoelectric Green’s functions include those for a half-
space and bimaterials of transversely isotropic piezoelectric material [11–13] and those for
general anisotropic piezoelectric infinite spaces [14], anisotropic piezoelectric half-spaces
under general boundary conditions [15], and the corresponding bimaterials [16, 17]. A brief
review on the 3D piezoelectric Green’s functions can also be found in Pan [18].

In the study of multilayered systems, it is found that the two systems of vector functions
introduced previously by Pan [19, 20] in combination with the propagator-matrix method
[5, 21] are very convenient. The systems of vector functions possess certain advantages as
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Figure 1. Geometry of a three-layered piezoelectric half-space.

compared to the Fourier or Hankel transform. For example, the vector-function systems can
express any integrable vector-function, while the Fourier and Hankel transforms can do so for
scalar functions only. Another advantage is that, for elastic problems with relatively higher
material symmetry, the propagator matrices in these two vector systems are exactly the same
and the problems of axially symmetric and 2D deformations can all be included as special
cases of the general solutions [19, 20]. This approach has been extended and applied by Ding
and Shen [22] and Huang [23] to some geophysical problems, and recently by Pan [24] and
Pan and Heyliger [25] to the static and vibration problems of multilayered magneto-electro-
elastic rectangular plates with simply supported edges.

In this paper, we further apply the system of vector functions and the propagator-matrix
method to derive the Green’s functions in multilayered and transversely isotropic piezoelectric
half-spaces. The boundary condition on the surface of the layered half-space can be the general
spring-like ones, which include the previously studied surface conditions as special cases. In
the transformed domain, we proposed a solution method in which the propagator matrices
can be multiplied directly without any overflow; thus, the matrix propagation can be per-
formed very efficiently. The physical-domain Green’s functions are then obtained employing
an adaptive Gauss quadrature [26, 27]. Numerical examples are presented for four layered
half-space models made of the poled lead-zirconate-titanate (PZT-4) ceramic and BaTiO3,
which illustrate clearly the effect of material stacking sequence and anisotropy. Also investig-
ated in this paper is the influence of the spring constant on the induced fields. It is shown that,
when the spring constant is relatively large, the response curve can be completely different to
that when it is small. While the numerical results may have potential applications in different
areas where layered structures are involved, the methodology could be extended to problems
involving other concentrated sources, such as eigenstrain and dislocation.

2. Governing equations and systems of vector functions

Let us consider a piezoelectric structure made up of p − 1 parallel, homogeneous, trans-
versely isotropic, and piezoelectric layers lying over a homogeneous, transversely isotropic,
and piezoelectric half-space. The layers are numbered serially with the layer at the top being
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layer 1 and the half-space being layer p (see Figure 1 for a four-layered system). We place the
Cartesian and/or cylindrical coordinates at the surface, and the z-axis is drawn downwards into
the layered half-space. The j-th layer is bounded by the interfaces z = zj−1, zj . It is obvious
that z0 = 0 and zp−1 = H, where H is the depth of the last interface. In the derivation given
below, we choose the Cartesian system of vector functions, the results in the corresponding
cylindrical system of vector functions for the piezoelectric case can be extended from previous
purely elastic solutions [5, 19, 20].

For a transversely isotropic and piezoelectric linear solid, we have the following governing
equations:
1). Equilibrium equations

σij,j + fi = 0, (1)

Di,i − q = 0, (2)

where σij and Di are the stress and electric displacement, respectively; f i and q are the body
force and electric-charge density, which will be replaced later by a concentrated force and
electric charge. In this paper, summation over repeated lowercase (uppercase) subscripts is
implied. A subscript comma denotes partial differentiation with respect to the coordinates
(i.e., x, y, z);
2). Constitutive relations

σxx = C11γxx + C12γyy + C13γzz − e31Ez,

σyy = C12γxx + C11γyy + C13γzz − e31Ez,

σzz = C13γxx + C13γyy + C33γzz − e33Ez,

σyz = 2C44γyz − e15Ey,

σxz = 2C44γxz − e15Ex,

σxy = 2C66γxy,

(3)

Dx = 2e15γxz + ε11Ex,

Dy = 2e15γyz + ε11Ey,

Dz = e31(γxx + γyy) + e33γzz + ε33Ez,

(4)

where γij is the elastic strain and Ei electric field; Cij, eij, and εij are the elastic moduli,
piezoelectric coefficients, and dielectric constants, respectively;
3). Elastic displacement-strain and electric potential-electric field relations

γij = 0·5(ui,j + uj,i),

Ei = −φ,i ,

where ui and φ are the elastic displacement and electric potential, respectively.
We now introduce the following Cartesian system of vector functions [19, 20]:

L(x, y;α, β) = ezS(x, y;α, β),

M(x, y;α, β) = (ex∂x + ey∂y)S(x, y;α, β),

N(x, y;α, β) = (ex∂y − ey∂x)S(x, y;α, β),

(5)

with

S(x, y;α, β) = e−i(αx+βy)/(2π), (6)
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where ex , ey , and ez are the unit vectors along the x-, y-, and z-axes, respectively; α and β are
the transformation variables to the two horizontal physical variables x and y. There are two
important features associated with this system of vector functions: (1) for plane-strain deform-
ation in the (x, z)-plane, one needs only to replace 2π by

√
2π and β by 0, respectively; (2)

while the solution in terms of the L & M vectors is contributed to the dilatational deformation,
that of the N vector to the rotational part. Corresponding to the dynamic counterparts, the L
& M part is related to the Rayleigh wave, whilst the N part to the Love wave. In this paper we
name the solution associated with the L & M vectors as LM-type solution and that associated
with the N vector as N-type solution.

3. General solution and propagator matrix

We now express the elastic displacement, electric potential, traction, electric displacements,
body force, and negative electric-charge density in terms of the Cartesian system of vector
functions (i.e., Equation (5)),

u(x, y, z) =
∫ ∫ +∞

−∞
[UL(z)L(x, y) + UM(z)M(x, y) + UN(z)N(x, y)]dαdβ, (7)

φ(x, y, z) =
∫ ∫ +∞

−∞
�(z)S(x, y)dαdβ, (8)

t(x, y, z) ≡ σxzex + σyzey + σzzez = ∫ ∫ +∞
−∞ [TL(z)L(x, y) + TM(z)M(x, y)

+TN(z)N(x, y)]dαdβ,
(9)

D(x, y, z) =
∫ ∫ +∞

−∞
[DL(z)L(x, y) + DM(z)M(x, y) + DN(z)N(x, y)]dαdβ, (10)

f (x, y, z) =
∫ ∫ +∞

−∞
[FL(z)L(x, y) + FM(z)M(x, y) + FN(z)N(x, y)]dαdβ, (11)

−q(x, y, z) =
∫ ∫ +∞

−∞
Q(z)S(x, y)dαdβ. (12)

Taking the derivatives of the elastic displacement (7) and electric potential (8), and substi-
tuting the results in the constitutive relations (3) and (4), we can also express the elastic stress
and electric displacement in terms of the Cartesian system of vector functions. Furthermore,
comparing these elastic stress and electric displacement with (9) and (10), we found

TL = −λ2C13UM + C33
dUL

dz
+ e33

d�

dz
,

TM = C44(UL + dUM

dz
) + e15�,

TN = C44
dUN

dz
,

(13a,b,c)

DL = −λ2e31UM + e33
dUL

dz
− ε33

d�

dz
. (14)
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By substituting the elastic stress and electric displacement in (1) and (2), with the body
force f and electric charge density q being replaced by (11) and (12), we obtained

dTL

dz
− λ2TM + FL = 0,

−λ2C11UM + C13
dUL

dz
+ dTM

dz
+ e31

d�

dz
+ FM = 0,

dTN

dz
− λ2C66UN + FN = 0,

(15a,b,c)

dDL

dz
− λ2e15(

dUM

dz
+ UL) + λ2ε11� + Q = 0, (16)

where

λ =
√

α2 + β2.

3.1. N-TYPE SOLUTION

It is observed from (13) to (16) that the N-type solution is independent of the rest. This is
one of the advantages of using the system of vector functions. Furthermore, the N-type is
independent of the electric quantities, i.e., it is purely elastic. Therefore, previous results for
the purely elastic case can be directly borrowed [19]. In other words, the general solution can
be expressed as [19]

[EN ] = [ZN(z)][KN ], (17)

where [KN ] is a column coefficient vector of 2×1 with its elements to be determined by the
continuity and/or boundary conditions. Also in (17),

[EN(z)] = [UN(z), TN(z)/λ]t (18)

and [ZN (z)] is the solution matrix given in [19].
The propagating relation that relates the expansion coefficients UN and TN at the upper

interface to the lower interface of layer j can be found as[
EN(zj−1)

] = [aN ] [EN(zj )
]
, (19)

where zj−1 and zj are the depths of the top and bottom interfaces of layer j, and [aN ] is the
so-called propagator matrix (or layer matrix, or transfer matrix) given in [19].

We remark that the solution and propagator matrices in the cylindrical system of vector
functions are exactly the same as that in the Cartesian system, respectively. This feature gives
certain numerical advantages when programming these equations in the two systems of vector
functions.

3.2. LM-TYPE SOLUTION

For this type of deformation, the elastic and piezoelectric fields are coupled. In order to
solve the coupled problem, we first derive, from (13) to (16), the following compact form
of equations for the LM-type:

[UL,UM, TL, TM,�,DL]t,z = [A][UL,UM, TL, TM,�,DL] + [0, 0,−FL,−FM, 0,−Q]t ,
(20)
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where the nonzero elements of the 6 × 6 matrix [A] are given in Appendix A. It is remarked
that the diagonal elements of [A] are zero, a feature that will be used soon. We now introduce
the column vector

[E] = [UL,λUM, TL/λ, TM,�,DL/λ]t ,
so that (20) becomes

[E],z = λ[W ][E] + [F ], (21)

where the force expansion column vector is

[F ] = [0, 0,−FL/λ,−FM, 0,−Q/λ]t .
The nonzero elements of the 6 × 6 matrix [W] in (21) are given in Appendix B.
To find the homogeneous solution of (21), we assume that

[E(z)] = [b]eληz. (22)

Substituting (22) in (21) and noticing that all the diagonal elements of [W] are zero, we
obtain the following 6-dimensional eigenequations for the corresponding homogeneous part
of (21)

{[W ] − η[I ]}[b] = 0, (23)

where [I] is the 6 × 6 identity matrix.
It is observed from (23) that the eigenvalues and their corresponding eigenvectors are

independent of the integral variable λ! Therefore, these eigenequations need to be solved
only once for each layer for the given material properties.

Let us, therefore, assume that the 6 eigenvalues are distinct; the general solution corres-
ponding to the homogeneous part of (21) is then obtained as

[E(z)] = [Z(z)][K], (24)

where [K] is a 6 × 1 coefficient matrix with its elements to be determined by the interface
and/or boundary conditions, and

[Z(z)] = [B]
〈
eλη∗z

〉
(25)

with 〈
eλη∗z

〉
= diag[eλη1z, eλη2z, eλη3z, e−λη1z, e−λη2z, e−λη3z]

[B] = [b1, b2, b3, b4, b5, b6].
It is noted that, while the first 3 eigenvectors correspond to the first 3 eigenvalues with

positive real parts, the last 3 eigenvectors correspond to the last 3 eigenvalues, which have
opposite signs to the first 3 eigenvalues.

From (24), we obtain the propagating relation

[E(zj−1)] = [a][E(zj )], (26)
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where,

[a] = [B]
〈
e−λη∗hj

〉
[B]−1 (27)

is the propagator matrix for the LM-type deformation.
Again, similar to the N-type solution, the solution and propagator matrices in the cyl-

indrical system of vector functions are exactly the same as (25) and (27), respectively. This
feature can be utilized in programming these equations in the two systems of vector functions.

It is also noted that in solving the eigenequation (23), we have assumed that all the eigen-
values are distinct. Should repeated eigenvalues occur, a slight perturbation on the material
properties could be used to make the eigenvalues distinct with neglected errors, so that the
solution developed in this paper is still valid.

4. General boundary condition and source function

Following Ting [3] and Pan [4, 15], we write the general boundary condition on the surface of
the multilayered half-space in the following matrix form

[ku][u] + [kt ][t] = [0], (28)

where the vector [u]={ux , uy , uz, φ}t consists of the elastic displacement and electric poten-
tial, and [t]={σxz, σyz, σzz, Dz}t consists of the traction and the normal electric displacement
component. The 4×4 matrices [ku] and [kt ] define the general spring-like relation between the
vectors [u] and [t] on the surface of the layered half-space, which includes the homogeneous
boundary condition studied in Ting [3] and Pan [4, 15] as a special case. Furthermore, the
right-hand side of (28) can be nonzero, thus containing the general surface load condition if
necessary.

For given matrices [ku] and [kt ] in (28), we can in general connect the coefficients [EN ]
in (17) and [E] in (21) to the coefficients of the boundary vectors [u] and [t]. By use of
the propagator matrix method, the given problem can then be solved for the layered system.
For the special cases discussed in Ting [3] and Pan [4, 15], the displacement and traction is
uncoupled on the surface and the resulting boundary condition for the coefficients [EN ] and
[E] is trivial, as will become clear soon. However, the present method can handle the general
boundary condition described by (28). As an example, we will study the following spring-like
case, where [kt ] is a 4 × 4 identity matrix. In other words, (28) is reduced to

[ku][u] + [t] = [0]. (29)

To solve the boundary-value problem, we also need to specify the point source to the
layered system. We assume, without loss of generality, that there is a point-force/negative
point-charge located along the z-axis at the depth z = h (see Figure 1 for example), i.e.,

fi(x, y, z) = δ(x)δ(y)δ(z − h)ni, (30)

−q(x, y, z) = δ(x)δ(y)δ(z − h). (31)

Expanding (30) and (31), and making use of (11) and (12), we found the expansion coeffi-
cients as [28].

FL = nz

2π
δ(z − h), FM = nxα + nyβ

2πλ2
δ(z − h), (32)
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FN = nxβ − nyα

2πλ2
δ(z − h),Q = −1

2π
δ(z − h). (33)

We remark again that the coefficients for the corresponding 2D (x,z)-plane strain deforma-
tion can be obtained from (32) and (33) by replacing 2π by

√
2π and β by 0.

The concentrated force and electric charge will induce discontinuities in the expansion
coefficients of the traction and normal electric displacement component. These are found to
be

�TL ≡ TL(h + 0) − TL(h − 0) = −nz

2π
,

�TM ≡ TM(h + 0) − TM(h − 0) = −nxα + nyβ

2πλ2
,

(34)

�TN ≡ TN(h + 0) − TN(h − 0) = −nxβ − nyα

2πλ2
,

�DL ≡ DL(h + 0) − DL(h − 0) = 1

2π
.

(35)

5. Solution for multilayers

Let a source be situated at depth z = h in layer s. We divide the source layer into two sub-
layers, s1 and s2, with identical properties. Because of the presence of the source, some
components of functions [E(z)] and [EN (z)] will be discontinuous across z = h. In general,
the discontinuities can be defined as

[�E] ≡ [Es2(h)] − [Es1(h)],
[�EN ] ≡ [EN

s2(h)] − [EN
s1(h)]

with their discontinuity components being given by (34) and (35).
Propagating the solution from the top of the source z = h − 0 to the surface z = 0, we have

[E(0)] = [a1][a2] − − − [as1][Es1(h)],
[EN(0)] = [aN

1 ][aN
2 ] − − − [aN

s1][EN
s1(h)] (36a,b)

Similarly, propagating the solutions from the half-space z = H to the bottom of the source
z = h + 0, we obtain

[Es2(h)] = [as2][as+1] − − − [ap−1][Zp(H)][Kp],
[EN

s2(h)] = [aN
s2][aN

s+1] − − − [aN
p−1][ZN

p (H)][KN
p ] (37a,b)

with the undetermined coefficients having the structure

[Kp] = [0, 0, 0, ∗, ∗, ∗]t ,
[KN

p ] = [0, ∗]t (38a,b)

to satisfy the requirement that the solution vanishes when z approaches + ∞. In (38), the
symbol ‘∗’ denotes an unknown coefficient.
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From (36) and (37), we find

[E(0)] = [G][Kp] − [R],
[EN(0)] = [GN ][KN

p ] − [RN ], (39a,b)

where

[G] = [a1][a2] − − − [ap−1][Zp(H)],
[GN ] = [aN

1 ][aN
2 ] − − − [aN

p−1][ZN
p (H)],

[R] = [a1][a2] − − − [as−1][as1][�E],
[RN ] = [aN

1 ][aN
2 ] − − − [aN

s−1][aN
s1][�EN ].

(40a,b)

Using the boundary condition at z = 0, the unknown coefficients in [Kp] and [KN
p ] can be

determined. For example, for the traction-free insulating and traction-free conducting bound-
ary conditions at the surface, we have, respectively

TL(0) = TM(0) = TN(0) = DL(0) = 0,

TL(0) = TM(0) = TN(0) = �(0) = 0.
(41a,b)

That is, we have four conditions to determine four unknowns in [Kp] and [KN
p ]. After the

unknown coefficients in [Kp] and [KN
p ] are determined, the expansion coefficients at any depth

(e.g., for z ≥ h in layer j, i.e., zj−1 ≤ z ≤ zj ) can be derived exactly as:

[E(z)] = [as2(z − zj−1)][as+1] − − − [ap−1][Zp(H)][Kp],
[EN(z)] = [aN

s2(z − zj−1)][aN
s+1] − − − [aN

p−1][ZN
p (H)][KN

p ]. (42a,b)

As discussed in Pan [5], overflow may occur from the multiplication of matrices in (40).
This can be overcome by factoring out the exponentially growing factor in the elements of
the propagator matrix. Since in the modified propagator matrices, no element is exponentially
growing, there will be no overflow problem for a multilayered half-space having any number
of layers.

6. Numerical results

The Green’s functions obtained above in the transformed domain need to be integrated numer-
ically to find the physical-domain solutions. Since we have expressed the solutions in terms of
the cylindrical system of vector functions, the individual components of the Green’s functions
will be in the cylindrical coordinates. We found that, in order to find all the elastic and electric
quantities (elastic displacements, strains, and stresses; electric potential, electric fields, and
electric displacements) due to the three point forces and negative point charge density, only
38 integrals need to be evaluated.

It is noted that the integrands in the improper integrals for the Green’s functions involve
the Bessel function that is oscillatory and goes to zero slowly when its variable approaches
infinity. Thus, the common numerical integration methods, such as the trapezoidal rule or
Simpson’s rule, are not suitable for the current integration. In this paper, an adaptive Gauss
quadrature [26, 27] for the numerical integration of Hankel transform is adopted and modified
for the evaluation of the Green’s functions in multilayered half-spaces.
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We first express the improper integral for each Green’s function as a summation of partial
integration terms:

+∞∫

0

f (λ, z)Jm(λr)dλ =
N∑

n=1

λn+1∫

λn

f (λ, z)Jm(λr)dλ. (43)

In each subinterval, a starting 3-point Gauss rule is applied to approximate the integral. A
combined relative-absolute error criterion is used to check the results. If the error criterion is
not satisfied, new Gauss points are added optimally so that only the new integrand values need
to be calculated. This procedure continues until the selected error criterion is satisfied. In the
numerical analysis presented below, we have set the relative and absolute errors, respectively,
at 10−3 and 10−4.

The original FORTRAN program was written for one Hankel transform. In our case, eval-
uation of 38 integrals is required in order to obtain all the elastic and electric components.
Thus, direct application of the original adaptive Gauss quadrature would result in intens-
ive computational time because of the multiplication of the propagator matrices involved.
However, we noticed that the integrand f (λ,z) in (43), which represents one of the expansion
coefficients in (42), is actually the result of the multiplication of the propagator matrices.
Since for a given layered half-space, the propagator matrix depends only upon the integral
variable λ, the original program can therefore be modified in such a way that for all the elastic
and electric components, the multiplication of the propagator matrices needs to be evaluated
only once for a given Gauss quadrature point λ. It is apparent that such a modification to the
original adaptive Gauss quadrature saves substantial computational time when calculating all
the Green’s components.

We first applied our multilayered Green’s function solutions to the pure elastic layered
system (with zero piezoelectric coefficients) and homogeneous piezoelectric half-space case
(with the same material properties in all the layers). We found that the results from the present
multilayered Green’s function program are exactly the same as the existing solutions [5, 15].

In our numerical studies, the layered half-space is made of two typical transversely iso-
tropic piezoelectric materials: One is the poled lead-zirconate-titanate (PZT-4) ceramic, the
other is BaTiO3 [24], with their properties being given in Appendix C.

In order to study the influence of material stacking sequence as well as layering on the
response of the layered half space to the point-force and point-charge, four different layered
models are studied (Table 1). It is noted that each layer has the same thickness of 0·1 m while
the fourth layer is half-space. It is also obvious that Models I and II are for homogeneous
half-spaces.

For all the numerical examples studied in this paper, the source point is located on the
z-axis in the middle of the second layer with coordinate (0·0, 0·0, 0·15 m) (Figure 1). The
point force has a magnitude of 1N and a negative point charge of magnitude 1C. Also in the
paper, all numerical results are presented in dimensionless terms. Thus, the coordinate can be
transformed into a dimensional one by simply multiplying L (= 1 m). In order to obtain the
dimensional elastic displacement, electric potential, stress, and electric displacement (i.e. for
stress in N/m2 and electric displacement in C/m2), one needs to carry out the following simple
multiplication or division (with Cmax = 1·66 × 1011 N/m2 and emax = 18·6 C/m2):
(i) for the elastic displacement due to a point force, divide the result by Cmax L;
(ii) for the elastic displacement due to a point charge or the electric potential due to a point

force, divide the result by emax L;
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Table 1. Layer number, thickness, and material for the four models.

Material model

Layer Thickness Model I Model II Model III Model IV

1 0·1 m PZT-4 BaTiO3 PZT-4 BaTiO3

2 0·1 m PZT-4 BaTiO3 BaTiO3 PZT-4

3 0·1 m PZT-4 BaTiO3 PZT-4 BaTiO3

4 Half space PZT-4 BaTiO3 PZT-4 BaTiO3

(iii) for the electric potential due to a point charge, multiply the result by Cmax/ (e2
max L);

(iv) for the stress due to a point force or the electric displacement due to a point charge, divide
the result by L2;

(v) for the stress due to a point charge, multiply the result by Cmax/ (emax L2);
(vi) for the electric displacement due to a point force, multiply the result by emax/ (Cmax L2);

Two surface boundary conditions are studied: one is the homogeneous traction-free and
insulating boundary condition, and the other is the spring-like boundary condition. For the
spring-like condition, we choose the coefficient matrix [ku] in (29) as

[ku] = diag(0, 0, ku
33, 0),

which gives the boundary condition at z = 0 as

σxz = σyz = Dz = 0, ku
33uz + σzz = 0.

It is apparent that ku
33 ≡ k is in the unit of N/m3 [29]. It is further noticed that this spring

constant k is normalized by L /Cmax in the numerical calculation.

6.1. TRACTION-FREE AND INSULATING SURFACE BOUNDARY CONDITION

6.1.1. Surface response
Figures 2a to 2c show the surface variation of ux , φ, and Dx when a negative point charge is
applied. While the electric potential follows the same order in magnitudes for the four different
models, i.e., I>III>IV>II, the response is also clearly separated into two groups: One group
consists of Model I (i.e., homogeneous PZT-4) and Model III (i.e., the layered P/B/P) and
the other consists of Model II (i.e., homogeneous BaTiO3) and Model IV (i.e., the layered
B/P/B). As for ux and Dx , one can clearly observe that when x is small (i.e., the near-field),
the responses of ux for Models II and III, and Models I and IV, are, respectively, close to each
other (Figure 2a); On the other hand, the responses of Dx for Models I and III, and Models II
and IV, are also, respectively, close to each other (Figure 2c).

6.1.2. Interior response
For the interior responses studied in this paper, the field points are located on a vertical line
varying from (0·1 m, 0·0, 0·0) to (0·1 m, 0·0, 0·3 m). The elastic displacement uz, stress
σxx, electric potential φ, and electric displacement Dx are plotted in Figures 3 and 4 for two
different point sources, namely a point force in the x-direction and a point force in the z-
direction.
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Figure 2. (a)–(c). Variations of field quantities along the surface line (from (0,0,0) to (0·3m,0,0)) of the four
half-space models, due to a negative point charge at (0, 0, 0·15m). Displacement component ux in (a), electric
potential φ in (b), and electric displacement Dx in (c).

First of all, we observe that, due to material-property discontinuity, stress σxx and electric
displacement Dx show clear discontinuity across the two interfaces at z = 0·1 m and 0·2 m in
Model III (P/B/P) and IV (B/P/B) (Figures 3b, 3d, 4b, 4d).

It is also interesting that under the point force in x-direction, the slopes of uz and Dx are
discontinuous across the source point for Models II and III (i.e., when the source is in the
BaTiO3 material, Figures 3a and 3d), whilst the same feature is observed for the slope of
φ for Models I and IV (i.e., when the source is in the PZT-4 material, Figure 3c). Under the
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Figure 3. (a)–(d). Variations of field quantities along a vertical line (from (0·1m,0,0) to (0·1m,0,0·3m)) for the
four half-space models, due to a point force at (0, 0, 0·15m) in x-direction. Displacement component uz in (a),
stress component σxx in (b), electric potential φ in (c), and electric displacement Dx in (d).

point force in the z-direction, we also observe that the slope of σxx is discontinuous across the
source point for Models II and III (i.e., when the source is in the BaTiO3 material; Figure 4b).

6.2. SPRING-LIKE SURFACE BOUNDARY CONDITION

Shown in Figures 5a to 5d are the responses of the elastic displacement uz, stress σxx, electric
potential φ, and electric displacement Dx on the surface of Model III half-space (i.e., the P/B/P
half space) for different spring constant k. The point force is located at (0·0, 0·0, 0·15 m) in the
z-direction. We first remark that, when k is zero, the surface responses are exactly the same
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Figure 4. (a)–(d). Variations of field quantities along a vertical line (from (0·1m,0,0) to (0·1m,0,0·3m) ) for the
four half-space models, due to a point force at (0, 0, 0·15m) in z-direction. Displacement component uz in (a),
stress component σxx in (b), electric potential φ in (c), and electric displacement Dx in (d).

as those based directly on the traction-free and insulating-boundary-condition formulation.
When k increases, the effect of the spring-like boundary condition on the field quantities can
be clearly observed. This is particularly true when k ≥ 5 × 1011N/m3, where the curve shapes
of the response are completely different to those when k is relatively small.
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Figure 5. (a)–(d). Variation of field quantities along the surface line (from (0,0,0) to (0·3m,0,0)) of layered P/B/P
half space (Model III), due to a point force at (0, 0, 0·15m) in z-direction and under general boundary condition
with different spring constant k (in N/m3). Displacement component uz in (a), stress component σxx in (b), electric
potential φ in (c), and electric displacement Dx in (d).

7. Conclusions

In this paper, the 3D Green’s functions for transversely isotropic piezoelectric and multilayered
half-spaces have been derived. Two systems of vector functions and the propagator matrix
method are employed to obtain the Green’s function solutions in a concise and unified form.
Since the physical-domain Green’s functions involve improper integrals of Bessel functions,
the adaptive Gauss quadrature approach is applied to accelerate the convergence of the nu-
merical integral. The solutions are for the general boundary condition along the surface of
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the layered half-space, and thus include the spring-like case as well as the homogeneous
case where the extended displacements and tractions are separated in the boundary-condition
equations. Numerical examples are presented for four different half-space models and the
effect of material stacking sequence and anisotropy are clearly illustrated. The effect of the
spring constant in the spring-like boundary conditions has also been studied. This shows that,
when the spring constant is relatively large, the response curve can be completely different
to that when it is small or when it is equal to zero, with the latter being the traction-free
insulating homogeneous boundary condition case. While the numerical results may have ap-
plications in different areas where layered structures are involved, the methodology may also
be extended to 2D and 3D problems involving other concentrated sources, such as eigenstrain
and dislocation.

Appendix A. Nonzero elements of coefficient matrix [A] in Equation (20)

A12 = λ2(ε33C13 + e33e31)/� ;A13 = ε33/� ; A16 = e33/�,

A21 = −1 ; A24 = 1/C44 ; A25 = −e15/C44 ; A34 = λ2,

A42 = λ2{C11 − [C13(ε33C13 + e33e31) + e31(e33C13 − C33e31)]/� },
A43 = −(ε33C13 + e33e31)/� ; A46 = (e31C33 − e33C13)/�,

A52 = λ2(e33C13 − C33e31)/�; A53 = e33/� ; A56 = −C33/�,

A64 = λ2e15/C44; A65 = −λ2(ε11 + e2
15/C44),

where � = e2
33 + C33ε33

Appendix B. Nonzero elements of coefficients matrix [W] in Equation (21)

W12 = (ε33C13 + e33e31)/� ; W13 = ε33/� ; W16 = e33/�,

W21 = −1 ; W24 = 1/C44; W25 = −e15/C44 ; W34 = 1,

W42 = C11 − [C13(ε33C13 + e33e31) + e31(e33C13 − C33e31)]/�,

W43 = −(ε33C13 + e33e31)/� ;W46 = (e31C33 − e33C13)/�,

W52 = (e33C13 − C33e31)/� ;W53 = e33/�; W56 = −C33/�,

W64 = e15/C44 ; W65 = −(ε11 + e2
15/C44),

where � = e2
33 + C33ε33

Appendix C. Material properties of PZT-4 and BaTiO3

For the PZT-4, the elastic, piezoelectric, and dielectric coefficient matrices are respectively

[C] =




1·39 0·778 0·743 0 0 0
0·778 1·39 0·743 0 0 0
0·743 0·743 1·15 0 0 0
0 0 0 0·256 0 0
0 0 0 0 0·256 0
0 0 0 0 0 0·306




(1011N/m2)

[e] =

 0 0 0 0 12·7 0

0 0 0 12·7 0 0
−5·2 −5·2 15·1 0 0 0


 (C/m2)
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[ε] =

 0·64605 0 0

0 0·64605 0
0 0 0·561975


 (10−8CV−1m−1)

and for BaTiO3 they are

[C] =




1·66 0·77 0·78 0 0 0
0·77 1·66 0·78 0 0 0
0·78 0·78 1·62 0 0 0
0 0 0 0·43 0 0
0 0 0 0 0·43 0
0 0 0 0 0 0·445




(1011N/m2)

[e] =

 0 0 0 0 11·6 0

0 0 0 11·6 0 0
−4·4 −4·4 18·6 0 0 0


 (C/m2)

[ε] =

 1·12 0 0

0 1·12 0
0 0 1·26


 (10−8CV−1m−1)
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