
AIAA JOURNAL

Vol. 42, No. 7, July 2004

Static Fields in Magnetoelectroelastic Laminates
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The through-thickness elastic, electric, and magnetic fields of laminates composed of elastic, piezoelectric, and
magnetostrictive layers are considered under static conditions to determine their fundamental behavior and to
investigate the limits of simplified plate theories in which the fields are assumed to possess a specific type of
behavior. The weak form of the equations of motion/equilibrium, Gauss’s law and Gauss’s law for magnetism, are
formulated for a rectangular laminate with arbitrary edge boundary conditions under the application of applied
surface displacement/traction, electric potential/electric flux, or magnetic potential/magnetic flux. The layers within
the laminate are allowed to possess any linear constitutive law consistent with a magnetoelectroelastic solid, and
the number of layers is arbitrary. The Ritz method is used in combination with a discrete-layer theory, and
approximate solutions for the displacements, electric potential, and magnetic potential are sought to the weak
form of the governing equations. The use of linear combinations of through-thickness approximations, along with
separate approximations for the in-plane behavior, allows an accurate representation of the break in variable slope
across an interface with dissimilar material properties. The model is applied to problems with either known exact
solutions or a finite element approximation to the governing equations. Excellent agreement is obtained for all
cases.

Nomenclature
ai j , bik , ci j , fi j , gi j = layer constants for primary unknowns
Bi = components of magnetic flux vector
Ci j = components of material elastic

stiffness tensor
Di = components of electric

displacement vector
di j = magnetoelectric coupling coefficients
Ei = components of electric field vector
ei j = piezoelectric coupling coefficients
fi = components of body force vector
Hi = components of magnetic field vector
h = total thickness of laminate
Ki j = coefficients of final discrete-layer

coefficient matrix
Lx , L y = edge lengths of laminate in x

and y directions
N = number of total layers in the laminate
ni = components of unit normal vector

on surface
qi j = piezomagnetic coupling coefficients
S = bounding surface of laminate
u, v, w = displacement components of laminate

in x , y, and z directions
ui = components of displacement vector
V = total volume of laminate
x , y, z = rectangular Cartesian coordinates

of laminate
�i (x, y) = in-plane approximation functions
�i (z) = thickness approximation functions
γi = strain tensor components in contracted

notation
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γi j = elements of infinitesimal strain tensor
δ = variational operator
εi j = material dielectric tensor
µi j = material magnetic permeability tensor
σi j = components of Cauchy stress tensor
φ = electric potential
ψ = magnetic potential

Introduction

T HERE have been numerous studies related to adaptive or smart
laminates in the past decade, many of which have dealt with

either sensing or actuating structural components by the application
of electric and/or magnetic fields to solids with coupled field consti-
tutive behavior. The review paper of Saravanos and Heyliger1 and
the monograph of Tzou2 give a number of examples of this type
of approach when applied to laminated media. Another class of
adaptive materials and structures that has seen less development are
solids with a combined magnetoelectric effect, in which significant
interactions are present between the elastic, electric, and magnetic
fields. Several studies have been completed related to these materi-
als, including those of Harshe et al.,3 Nan,4 and Benveniste.5 More
recently, several exact solutions for magnetoelectroelastic laminates
have been found for the static and free vibration behavior by Pan6

and Pan and Heyliger.7 These solutions are highly valuable for the
investigation of the basic nature of the field variables, but have thus
far been restricted to the case of simple support along the edges of
the laminate. A more general method that could be applied to vary-
ing edge conditions would be extremely useful in the evaluation of
the range of acceptable behavior of simplified plate theories.

In this study, approximate solutions to the weak form of the gov-
erning equations of equilibrium/motion, charge, and magnetic flux
are obtained for laminates containing layers of potentially magneto-
electroelastic material, in which there can exist elastic displacement
fields, the electric potential (or voltage), and the magnetic potential.
As the laminate undergoes deformation, there is coupling among
these fields and the conversion of energy from one form to another
that is captured by consideration of the independent approximations
to the three displacement components ui , the electric potential φ,
and the magnetic potential ψ . These five variables are treated as lay-
erwise unknowns in an approximate discrete-layer model, in which
the through-thickness behavior of the five primary unknown fields
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is not assumed a priori but is instead found as a result of the solution
process.

The solution approach presented here is not dependent on specific
surface or edge boundary conditions, but a primary aim of this study
is to determine the relative accuracy of the present approximate
model compared to the exact solution. For this reason, emphasis is
given to the case of simple support, for which exact solutions are
known. This allows a direct study of convergence properties with
eventual application to other support conditions.

Problem Statement
The fundamental problem under consideration is a layered rectan-

gular paralellepiped (or plate) with N layers through the vertical or
thickness dimension z. Conventional rectangular Cartesian coordi-
nates are used to describe the geometry, with x and y coincident with
the planar dimensions of the laminate with corresponding lengths of
Lx and L y . The letter h denotes the total thickness of the laminate.
The origin of the coordinate system is located at one of the lower
corners of the laminate so that all of the material within the laminate
is in positive (x, y, z) territory.

The edge boundary conditions are arbitrary. In most of the exam-
ples considered in this study, these are selected to be consistent with
those of geometric simple support, that is, the transverse displace-
ment w and tangential displacement along the edge length are both
specified to be zero, with zero normal traction also specified along
the edge length. In terms of the electric and magnetic field variables,
the edges are fixed at zero for both φ and ψ , but nonzero fields can
be specified along the top and bottom surfaces of the laminate. The
general boundary conditions along these two surfaces depend on the
problem being studied, and are discussed in the sequel.

Theory
Governing Equations

Within the laminate, there are body forces but no electric charge
or current densities. Under these conditions, the equations of equi-
librium are given by

σi j, j + fi = 0 (1)

Here σi j are the components of stress and fi are the components
of the body force vector. Gauss’s law in the absence of charge den-
sity can be expressed in terms of the electric displacement vector
components Di as

Di,i = 0 (2)

Gauss’s law for magnetism enforces the lack of existence of mag-
netic monopoles and can be written as

Bi,i = 0 (3)

where Bi are the components of the magnetic flux vector.
The coupled constitutive laws for a linear anisotropic magneto-

electroelastic material can be written as

σi = Cikγk − eki Ek − qki Hk, Di = eikγk + εik Ek + dik Hk

Bi = qikγk + dik Ek + µik Hk (4)

Here, Ci j , εi j , and µi j are components of the elastic stiffness tensor,
the dielectric permeability, and the magnetic permeability, respec-
tively; ei j , qi j , and di j are the elements of the piezoelectric, piezo-
magnetic, and magnetoelectric coefficients, respectively; and γi , Ei ,
and Hi are the components of the linear strain tensor and the electric
and magnetic field vectors, respectively. The latter three measures
are defined by the gradient relations

γi j = 1
2 (ui, j + u j,i ), Ei = −φ,i , Hi = −ψ,i (5)

where ui , φ, and ϕ are the displacement vector components, electric,
and magnetic potentials, respectively. Here the standard contracted
notation has been used to reduce the number of subscripts for each
of the tensor representations, for example, γ1 = γ11 and γ4 = γ23.

The nonzero terms for the orthotropic material property tensors
can be expressed in matrix form as follows:

[C] =




C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66




[q] =


 0 0 0 0 q15 0

0 0 0 q24 0 0

q31 q32 q33 0 0 0




[e] =


 0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0




[ε] =


ε11 0 0

0 ε22 0

0 0 ε33


 , [µ] =


µ11 0 0

0 µ22 0

0 0 µ33




[d] =


d11 0 0

0 d22 0

0 0 d33


 (6)

Materials with different symmetries can be considered with this rep-
resentation. Although other types of material tensor properties could
be considered, only materials that possess transverse isotropy are
considered in this study. The numerical values for each of the ma-
terial parameters are given for the specific examples in the sections
that follow.

Variational Formulation
Exact solutions to the foregoing equations are rare and can typi-

cally only be obtained for very specific boundary conditions. In this
study, a more general solution approach is developed for a variety
of boundary conditions. This approach is based on a solution of
the weak form of the equations just given. This is accomplished by
multiplication of each of the three governing differential equations
by a sufficiently differentiable weight function that has the physical
meaning of a virtual displacement, electric potential, and magnetic
potential, respectively. The result is then set equal to zero.8 These
are expressed as

0 =
∫

V

δui (σi j, j + fi ) dV, 0 =
∫

V

δφ(Di,i ) dV

0 =
∫

V

δψ(Bi,i ) dV (7)

Next, each of these three equations is integrated by parts to transfer
the spatial differential operator off of the flux variable and on to
the weight function. Completion of this operation and the use of
the divergence theorem yields the final weak form of the governing
equations as

0 =
∫

V

(σi jδγi j + δui fi ) dV −
∮

S

σi j n jδui ds

0 =
∫

V

(D jδφ, j ) dV −
∮

S

D j n jδφ ds

0 =
∫

V

(Bjδψ, j ) dV −
∮

S

B j n jδψ ds (8)
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We then substitute in the constitutive and field-potential relations to
give the final weak form in terms of the three displacement compo-
nents and the two potentials.

Discrete-Layer Approximations
Approximations to the three displacement components, the elec-

tric potential, and the magnetic potential are sought by separation of
the nature of the field behavior into through-thickness and in-plane
behaviors. We use approximations that split the through-thickness
behavior and the planar behavior of the laminate into separate func-
tions, allowing for significant freedom in the behavior of the fields
within the laminate. Such an approach was first applied to piezo-
electric laminates by Pauley and Dong9 and has been generalized
for elastic laminates by Reddy.10 The approximations can be written
as

u(x, y, z) = ai j

∑
i

�u
i (z)

∑
j

�u
j (x, y)

v(x, y, z) = bi j

∑
i

�v
i (z)

∑
j

�v
j (x, y)

w(x, y, z) = ci j

∑
i

�w
i (z)

∑
j

�w
j (x, y)

φ(x, y, z) = fi j

∑
i

�
φ

i (z)
∑

j

�
φ

j (x, y)

ϕ(x, y, z) = gi j

∑
i

�
ψ

i (z)
∑

j

�
ψ

j (x, y) (9)

Here, the elements ai j , bi j , ci j , fi j , and gi j are constants associated
with the i th layer of the approximation in the laminate along with the
j th in-plane approximation to that specific variable. The functions
�(z) represent the one-dimensional through-thickness approxima-
tion functions, whereas �(x, y) represent the in-plane approxima-
tions in x and y. There is an individual constant that multiples the
contribution of each of the terms used to approximate each of the
five field variables within the laminate at each layer interface. Note
that a numerical/approximation layer needs not be exactly the same
as a physical layer.

Substitution in the form of approximation for the remaining field
variables allows the expression of the weak form of the governing
equations in matrix form as given by the following linear system of
equations:




[K11] [K12] [K13] [K14] [K15]

[K21] [K22] [K23] [K24] [K25]

[K31] [K32] [K33] [K34] [K35]

[K41] [K42] [K43] [K44] [K45]

[K51] [K52] [K53] [K54] [K55]







{a}
{b}
{c}
{ f }
{g}




=




{ f1}
{ f2}
{ f3}
{ f4}
{ f5}




(10)

The elements of these equations are given in the Appendix. These
are solved for the coefficients of the approximation functions, al-
lowing one to compute both the primary (displacements and the
two potentials) and secondary (stresses, electric displacements, and
magnetic fluxes) unknowns at any location within the laminate.

Numerical Examples and Discussion
The primary focus of this study is to introduce the enclosed ap-

proximate model as an alternative to the far more cumbersome and
restrictive exact solution approach. This latter task, although ex-
tremely valuable, is limited to very specific sets of plate boundary
conditions. As an initial focus, examples are considered for prob-
lems that have been studied by the use of an exact approach by Pan6

and Pan and Heyliger7 for the case of static and free vibration of
simply supported plates.

To validate the present model initially, results have been compared
with exact solutions for the static loading results of elastic plates and

Table 1 Material properties and units for the
two materials used in numerical examples

Parameter CoFe2O4 BaTiO3

C11 = C22, GPa 286.0 166.0
C33 269.5 162.0
C13 = C23 170.5 78.0
C12 173.0 77.0
C44 = C55 45.3 43.0
C66 56.5 44.5
e31 = e32, C/m2 0.0 −4.4
e33 0.0 18.6
e24 = e15 0.0 11.6
q31 = q32, N/Am 580.3 0.0
q33 699.7 0.0
q24 = q15 550.0 0.0
ε11 = ε22, 10−9 C2/(Nm2) 0.080 11.2
ε33 0.093 12.6
d11 = d22 0.0 0.0
d33 0.0 0.0
µ11 = µ22, 10−6 Ns2/C2 −590.0 5.0
µ33 157.0 10.0

for the exact static and free vibration exact solutions for piezoelectric
laminates found by Heyliger.11 Heyliger et al.,12 and Heyliger.13 All
results are in excellent agreement with the results presented in these
studies.

Two different materials are studied in the examples that follow.
The first is the much-studied piezoelectric solid BaTiO3, and the
second is the purely magnetostrictive material CoFe2O4. The ma-
terial properties for both of these solids are given in Table 1 along
with the appropriate units for each.14

Simply Supported Plate
The first problem considered is a square plate under simple sup-

port with dimensions of Lx = L y = 1 and h = 0.3 (all dimensions
in meters) to compare with the exact solution of Pan.6 The loading
is a positive normal traction in the positive z direction on the upper
face of the laminate that has the form

tz = t0 sin(πx/Lx ) sin(πy/L y) (11)

where t0 = 1 N/m2 for this example. All other tractions on the top
and bottom surfaces of the laminate are zero, and the electric dis-
placement and magnetic fluxes are also both specified to be zero at
the top and bottom surfaces of the laminate. The conditions along
the laminate edges are specified as discussed earlier.

The in-plane approximation functions for each of the five field
variables are given in the form

�u
j (x, y) = cos px sin qy, �v

j (x, y) = sin px cos qy

�w
j (x, y) = sin px sin qy, �

φ

j (x, y) = sin px sin qy

�
ψ

j (x, y) = sin px sin qy (12)

where p = nπ/Lx and q = mπ/L y . Here, the index j is a single
integer that is linked to the numbers used for p and q in each of the
terms. For the loading considered here, only a single term needs to
be used to match the exact solution, that is, the double-sine function
for the surface traction, because the fields with m = n = 1 identically
satisfy the (x , y) dependence of all five field variables. The primary
intent of these examples is to show the basic field behavior and to
determine the level of convergence in the number of discrete-layers
used to represent the laminate.

Single-Layer Magnetostrictive Plate
The first example considered is a single-ply, homogeneous plate

of the magnetostrictive CoFe2O4. The plate is divided into a sequen-
tially higher number of layers starting with 3, 6, and 12 discrete
layers. Hence, the size of the resulting matrices to be solved are 20,
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Table 2 In-plane displacement u = v (10−11 m) at (0, Ly/2)
for homogeneous magnetostrictive CoFe2O4 with simple

support under transverse load

z 0.0 0.1 0.2 0.3

N = 3 0.29136 0.10078 −0.03877 −0.24628
N = 6 0.31166 0.10582 −0.04451 −0.26803
N = 12 0.31761 0.10731 −0.04618 −0.27437
Exact 0.31968 0.10782 −0.04676 −0.27657

Table 3 Transverse displacement w (10−11 m) at (Lx/2,
Ly/2) for homogeneous magnetostrictive CoFe2O4 plate

with simple support under transverse load

z 0.0 0.1 0.2 0.3

N = 3 0.86781 0.95044 0.98053 0.95524
N = 6 0.90758 0.99128 1.0215 0.99533
N = 12 0.91927 1.0033 1.0336 1.0071
Exact 0.92335 1.0076 1.0378 1.0112

Table 4 Magnetic potential ψ (10−5 C/s) at (Lx/2, Ly/2) for
homogeneous magnetostrictive CoFe2O4 plate with simple

support under transverse load

z 0.0 0.1 0.2 0.3

N = 3 −0.50251 −0.50299 −0.29479 −0.010826
N = 6 −0.51399 −0.49369 −0.27353 0.7 × 10−4

N = 12 −0.51814 −0.49170 −0.26784 0.3 × 10−2

Exact −0.51965 −0.49108 −0.26590 0.4 × 10−2

35, and 65 for these three cases. In each case we compare our results
with those of the exact solution.

The in-plane displacements are shown in Table 2 as a function
of thickness position and number of discrete layers. Because this
material has transverse isotropy, the u and v displacement fields
are identical. The values shown are the maximum quantities for
the displacements located at the edges of the plate. Because of the
nature of the loading, both of these displacements are zero at the
plate center.

In elementary plate theory, the in-plane displacements at the top
and bottom surfaces of the plate are identical because the Kirchhoff
hypothesis requires that the displacements u and v are linear func-
tions of z. The present model is based on an elasticity approach,
however, and it is seen that there is a difference of over 10% be-
tween the values at the top and bottom surfaces of the layer. It is
also clear that even for a fairly small number of layers, that is, six,
the present results are well within 5% error of the exact solution
values. This plate is fairly thick, with an L/h ratio of 3.33, and it
is highly probable that for thinner plates an even smaller number of
layers would be required to achieve similar accuracy.

The behavior of the transverse displacement w is shown in Table 3
by the use of a similar format. Once again, the present results are
in excellent agreement with the exact solution. In elementary plate
theory, it is common to assume that the displacement field is constant
in z, that is, it does not vary through the thickness. From these results,
it is clear that, even for a thick plate, this is not an excessively
restrictive assumption, with a difference of less than 10% between
values at the top and bottom surfaces. As before, a fairly small
number of layers well represents the global plate behavior, with
the three-layer discretization yielding values within 7% of the exact
displacements.

There is no coupling between the magnetoelastic fields and the
electric fields for this problem, and the electric potential is iden-
tically equal to zero over the entire plate. However, the coupling
between the elastic and magnetic field results in a nonzero mag-
netic potential (and, hence, magnetic field) through the laminate
thickness. This distribution is shown in Table 4 as a function of
laminate thickness and number of layers in the approximation. The
agreement is excellent with the exact solution, although the errors

are much higher at the top surface for a small number of layers,
and a relatively large number of layers is required to achieve ac-
curacy of a similar level to those of the displacement components.
For this example, the present model yields excellent results for the
displacement components using a fairly small number of layers.
Because of the somewhat large number of layers required for an
accurate representation of the magnetic potential, assumptions re-
lated to simplified behavior of the variable for thick plates requires
careful consideration.

Three-Layer Composite Laminate
The second geometry considered is a three-layer composite lami-

nate formed of the two materials discussed earlier: the piezoelectric
BaTiO3 (denoted by the letter B in the sequel) and the magnetostric-
tive CoFe2O4 (denoted by the letter F). The laminate geometry is
identical to that considered earlier, except that three dissimilar layers
are used through the thickness, with equal layer thicknesses used for
each lamina. The loading and general form of the boundary condi-
tions and approximation functions are the same as those considered
in the preceding example.

In Tables 5–8, the in-plane displacement, transverse displace-
ment, electric potential, and magnetic potential are shown at the top
and bottom surfaces of the laminate and at the interface locations
between dissimilar layers as a function of number of total layers for
an F/B/F laminate. The value of N = 3 is the minimum number
that could be rationally used for this type of structure because each
geometric layer requires at least one discrete layer to represent the
material behavior. The convergence is rapid, and even the magnetic
potential behavior is well-represented by a relatively small num-
ber of layers. Although not shown in Tables 5–8, the discrete-layer
model has a significant advantage over other types of plate theories

Table 5 In-plane displacement u = v (10−11 m) at (0, Ly/2) for
three-layer laminate F/B/F with simple support under transverse load

z 0.0 0.1 0.2 0.3

N = 3 0.28912 0.10877 −0.05121 −0.24664
N = 6 0.30727 0.11262 −0.05594 −0.26627
N = 12 0.31256 0.11374 −0.05730 −0.27194
Exact 0.31440 0.11414 −0.05777 −0.27392

Table 6 Transverse displacement w (10−11 m) at
(Lx/2, Ly/2) for three-layer laminate F/B/F with

simple support under transverse load

z 0.0 0.1 0.2 0.3

N = 3 0.83204 0.91605 0.94883 0.92107
N = 6 0.86773 0.95121 0.98508 0.95721
N = 12 0.87814 0.96269 0.99571 0.96774
Exact 0.88176 0.96638 0.99940 0.97140

Table 7 Electric potential φ (10−2 V) at (Lx/2,
Ly/2) for three-layer laminate F/B/F with simple

support under transverse load

z 0.0 0.1 0.2 0.3

N = 3 0.37262 0.40518 0.45955 0.42262
N = 6 0.37886 0.41160 0.46593 0.42887
N = 12 0.38077 0.41360 0.46792 0.43079
Exact 0.38146 0.41431 0.46863 0.43147

Table 8 Magnetic potential ψ (10−5 C/s) at (Lx/2, Ly/2) for
three-layer laminate F/B/F with simple support under transverse load

z 0.0 0.1 0.2 0.3

N = 3 −0.22713 −0.31813 −0.41738 −0.18629
N = 6 −0.21916 −0.29835 −0.39320 −0.17621
N = 12 −0.21730 −0.29314 −0.38689 −0.17381
Exact −0.21670 −0.29138 −0.38477 −0.17302
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in that the requirement of, say, traction continuity (which implies
discontinuity of shear strain and, therefore, through-thickness dis-
placement gradient) is modeled as a matter of course. Allowance of
the through-thickness approximations to be discontinuous in slope
across an interface captures the exact behavior of these fields, fre-
quently leading to more accurate results. Also of interest is the
behavior of the stresses, electric displacement, and magnetic flux
components through the laminate thickness. In the text that follows,
these quantities are shown for the B/F/B and F/B/F lamination
schemes.

In Figs. 1 and 2, the in-plane normal stress σxx and the transverse
shear stress σxz are shown as a function of laminate thickness for 3, 6,
12, and 24 layers and are compared with the exact solution of Pan.6

The normal stress component is discontinuous at the dissimilar layer
interface, and, hence, there is a slight break in magnitude caused by
the difference material properties and displacement gradient across
the interface. For the B/F/B laminate, there is an increase in stress

a)

b)

Fig. 1 In-plane normal stress σxx (in pascal) at (Lx/2, Ly/2) for the
three-layer laminates: a) B/F/B and b) F/B/F.

a)

b)

Fig. 2 Transverse shear stress σxz (in pascal) at (0, Ly/2) for the three-
layer laminates: a) B/F/B and b) F/B/F.

consistent with the increase in relative stiffness in going from the
BaTiO3 to the CoFe2O4, whereas for the F/B/F laminate, there is a
decrease across this interface for the same reason. In each of Figs. 1
and 2, the solid line represents both the exact solution and the present
model that uses 24 or more layers, whereas the open circles, squares,
and triangles represent the discrete-layer model with 3, 6, and 12
layers, respectively. In Fig. 2, the transverse shear stress component
is continuous, but the dissimilar shear modulus across the interface
results in a break in the shear strain and hence the z gradient of the
transverse displacement. This kink in slope is slight but clear for
both the B/F/B and F/B/F lamination schemes, with the slope
either increasing or decreasing with shear modulus. Our results for
the stress fields are consistent with those found by Reddy,15 who
has developed several discrete-layer models for elastic laminates.
It is clear from Figs. 3 and 4 that, in terms of stress computation,
a small number of layers could be used to represent the behavior
of these field components through the thickness accurately, because
the results for 3, 6, or 12 discrete layers are in excellent agreement
with the exact solution.
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a)

b)

Fig. 3 Normal electric displacement Dz (in coulombs per square me-
ter) at (Lx/2, Ly/2) for the three-layer laminates: a) B/F/B and b) F/B/F.

In Figs. 3 and 4, the transverse components of the electric dis-
placement and the magnetic flux are shown as a function of laminate
thickness. Here the mismatch in properties is even more significant
because crossing the interface results in going from a piezoelec-
tric medium to a magnetostrictive medium (and vice versa), with
the magnetostrictive and piezoelectric coefficients going from zero
to nonzero (and vice versa). However, the field behavior in these
two types of layers is very similar because of the nature of the cou-
pling with the electric and magnetic field, and the resulting through-
thickness fields reflect this similarity.

The normal component of the electric displacement is shown in
Fig. 3 for the B/F/B and F/B/F lamination schemes, and the nor-
mal component of magnetic flux is shown in Fig. 4. Two features of
these curves are especially apparent. First, the electric displacement
in the magnetostrictive layer and the magnetic flux in the piezoelec-
tric layer are effectively linear, with these patterns reversed for the
magnetic flux in the piezoelectric layer and the electric displacement
in the magnetostrictive layer, as shown in Figs. 3 and 4. Second, the
magnetic flux in the magnetostrictive layer and the electric displace-

a)

b)

Fig. 4 Normal magnetic flux component Bz (in newtons per ampere
meter) at (Lx/2, Ly/2) for the three-layer laminates: a) B/F/B and
b) F/B/F.

ment in the piezoelectric layer are highly nonlinear (with a similar
reversal of pattern in the B/F/B and F/B/F laminates), with this
behavior varying so dramatically that the field quantities given by
three and six discrete layers are poor approximations of the true
field behavior. Only for the case of 12 layers are these quantities
well-represented and even close to the exact solution. This behavior
is in direct contrast to the elastic stress fields, for which even three
layers gives excellent results. Hence for a laminate with the aspect
ratio considered here (L/h = 3.33), a minimal number of layers,
that is, one, may be adequate to represent the three displacement
components and the respective in-plane stress fields for each layer
of the laminate, but at least four layers or a third-order sublayer
polynomial may be required to adequately represent the electric
and magnetic potentials.

Influence of Aspect Ratio
In nearly all plate theories, the behavior of the field variables

changes dramatically as the plate aspect ratio increases. For elastic
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laminates, the displacement components tend to approach the kine-
matic behavior of Kirchhoff plate theory and the stress fields tend
to become smooth through the laminate thickness. We investigate
this dependence for the three-layer magnetoelelectroelastic laminate
considered in the preceding section for the same static loading as in
the preceding section. The laminate thickness is fixed as before, but
the side lengths of the plate are changed to vary the L/h ratio. Of
interest here is the nature of the electric and magnetic potentials as
the laminate becomes thin. The field behavior is plotted by normal-
izing against the maximum value of the electric potential φ or the
magnetic potential ψ through the laminate thickness for five aspect
ratios: 2, 4, 6, 10, and 50. A total of 60 layers (20 per physical layer)
are used to compute the fields through the thickness.

The results of these analyses are shown in Fig. 5 for the B/F/B
laminate and Fig. 6 for the F/B/F laminate. In Figs. 5 and 6, the
short-dashed, medium-dashed, long-dashed, and dash–dot lines are

a) Electric potential for B/F/B

b) Magnetic potential for B/F/B

Fig. 5 Through-thickness dependence of a) electric potential and
b) magnetic potential at (Lx/2, Ly/2) on laminate aspect ratio for the
B/F/B lamination scheme.

a) Electric potential for F/B/F

b) Magnetic potential for F/B/F

Fig. 6 Through-thickness dependence of a) electric potential and
b) magnetic potential at (Lx/2, Ly/2) on laminate aspect ratio for the
F/B/F lamination scheme.

used to show field behavior for aspect ratios of 2, 4, 6, and 10. The
solid line represents the behavior for the very thin plate with aspect
ratio of 50.

The through-thickness characteristics depend strongly on aspect
ratio but quickly tend to a very specific behavior as the aspect ra-
tio increases. The electric potential in the B/F/B laminate and the
magnetic potential in the F/B/F laminate both go from a strongly
unsymmetric zig–zag behavior for L/h = 2 but then quickly tend
toward a symmetric shape that is only mildly nonlinear in the outer
layers and constant in the middle layer as the L/h ratio exceeds
about 10. This behavior is consistent with the nature of the dis-
placement fields for elastic laminates.

Completely Free Laminate
As a final example, a completely traction-free laminate is con-

sidered with applied surface potential. The laminate is a two-layer
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Table 9 Through-thickness values of all variables at positive corner of laminate for completely free bimaterial under
specified surface magnetic potential for discrete-layer and finite element models

z U (DL) U (FE) W (DL) W (FE) φ (DL) φ (FE) ψ (DL) ψ (FE)

−H/2 −0.367e−10 −0.361e−10 0.964e−10 0.976e−10 −0.00754 −0.00773 0.0 0.0
−H/4 −0.319e−10 −0.319e−10 0.384e−10 0.398e−10 −0.00708 −0.00743 0.0296 0.0296
0 −0.185e−10 −0.185e−10 −0.243e−10 −0.233e−10 −0.00321 −0.00364 0.0592 0.0592
H/4 −0.165e−10 −0.162e−11 −0.197e−10 −0.182e−10 0.00139 0.00129 0.5296 0.5296
H/2 0.377e−11 0.318e−11 −0.175e−10 −0.157e−10 0.0 0.0 1.00 1.0

Table 10 Field values at positive corner of bimaterial laminate with varying ratio of individual layer thicknesses

H2/H1 utop ubot wtop wbot φint φbot ψint

1 0.377e−11 −0.367e−10 −0.175e−10 0.964e−10 −0.00321 −0.00773 0.0592
3 −0.960e−12 −0.624e−10 −0.467e−10 0.285e−9 0.00845 −0.0138 0.1588
9 −0.511e−10 −0.115e−9 −0.479e−10 0.673e−9 −0.00037 −0.0225 0.3615
H = H2 −0.283e−9 −0.283e−9 −0.940e−9 0.940e−9 0.0 0.0 0.5

square plate of total thickness H , with a layer of BaTiO3 layer on
the top with thickness h1, and a layer of CoFe2O4 on the bottom
with thickness h2. Over the upper surface of the plate the magnetic
potential is fixed at one, and the bottom surface of the plate is fixed
at zero magnetic potential. All surfaces of the plate are traction free,
with the plate edges further experiencing zero normal electric dis-
placement and magnetic flux. The top of the laminate is also fixed at
zero electric potential, with zero normal electric displacement at the
bottom.

For this set of boundary conditions, the approximation functions
are different from those used in the preceding section, and this prob-
lem also differs in that there is not an exact solution with which to
compare. However, it is a useful geometry to study because it gives
an example of a smart component that can sense (or actuate) both
electric and magnetic fields. The in-plane functions for each of the
variables are selected as power series in x and y, with the general
form of these in-plane functions being given as

�nm = xm yn (13)

where, for this example, the origin for (x , y) is shifted to the plate
center for simplicity. The through-thickness approximation func-
tions remain as in the preceding case. Hence, the coefficients of the
functions corresponding to the electric potential on the top surface
of the plate are each forced to be zero (with the exception of the
single functions where m = n = 0), thereby enforcing the uniform
potential on this surface. The bulk of the boundary conditions are
of the natural type, and are, therefore, satisfied in an integral sense
over each of these surfaces. To eliminate the rigid-body modes of
the laminate, we specify u = v = w = 0 at the interface location be-
tween the two dissimilar layers at the center of the x–y plane of the
laminate and also select basis functions for the five field quantities
that have the proper symmetry for this loading condition.

We select four layers (two for each material) and a total of four
in-plane terms to analyze this laminate, yielding a resulting linear
system with 100 unknowns (five layer interface locations times four
in-plane approximations times five variables). The (x , y) functions
are power series that are the lowest order functions possible that meet
symmetry conditions. For example, the u-displacment component
is odd in x and even in y, and, hence, these functions are used: x ,
xy2, x3, and x3 y2. Similar functions are used for v with the x and
y dependence switched. For w and the two potentials, the functions
are even in both spatial variables. Hence, we use one, x2, y2, and
x2 y2.

Several layer thicknesses are considered by the use of the fixed
side lengths of 0.02 m in all three directions. First, equal thicknesses
of the two differing material layers are considered. We compare
these results with a three-dimensional finite element calculation us-
ing 16 eight-noded brick elements16 to model one quadrant of the
plate using symmetry conditions. The results of our analysis are
shown in Table 9, with good agreement found between these two

approaches. We then vary the ratio of the thickness of the two lay-
ers by making the upper layer of the piezoelectric material thinner.
Hence, the total thickness is kept fixed at h = 0.02, but we vary
the ratio of layer thicknesses, considering the values of 1, 3, and 9
for h2/h1. The results are shown in Table 10 for the extreme pos-
itive point on the laminate, that is, x = y = 0.01 m, for the u and
w displacements at the top and bottom of the laminate, the electric
potential at the dissimilar interface and the bottom of the laminate,
and the magnetic potential at the same interface. The vertical dis-
placement at the bottom of the laminate continues to increase as the
upper layer of the laminate becomes thin, and in each case the dis-
placements and the potential values result from both the individual
layers and their interactions because of the mismatch in material
properties. For comparison, we also show the field quantities when
the entire block is formed of the magnetostrictive material; clearly,
in this case, the displacements at the top and bottom of the lam-
inate reflect the material symmetry, and the magnetic potential is
perfectly linear with the three constant displacements correspond-
ing to the exact magnetostrictive behavior one would find in the
absence of stress within the block. (Showing results for a block of
pure piezoelectric material in this case would also give a perfectly
linear magnetic potential distribution, but all other field quantities
would be identically zero.) In the present case, the tendency of the
three normal strains in the lower layer is negative because the domi-
nant magnetic field component in the thickness direction is negative.
As the upper layer becomes smaller, the bending behavior induced
by the material mismatch tends more toward a pure negative normal
strain in all three directions. These combined electromagnetoelastic
composites could be formed for use in both sensing and actuating
situations where either one or both electric and magnetic fields may
be present or require detection. Our intent of this example is merely
to show an example of the relative change in field quantities, and
more specific applications and parametric studies of such devices
await future examination.

Summary
In this study, the static behavior of laminates with coupled elas-

tic, electric, and magnetic behavior are considered by the use of a
discrete-layer approximate model that explicitly accounts for dis-
continuities of slope of the displacement field, the electric field,
and the magnetic field. Homogeneous and laminated media were
considered under the conditions of simple support. These sets of
constraints are considered primarily because exact solutions exist
for these solids, and they provide a good means of comparison.

Several test geometries were considered: the simply supported
laminate, for which an exact solution exists for comparison, and the
completely free laminate. For even a fairly small number of layers
in the simply supported geometry, errors between the approximate
model and the exact solution were within several percent. For the
completely free composite, we compare our discrete-layer model
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with a three-dimensional finite element calculation with excellent
agreement and demonstrate the level of coupling in a simple bima-
terial laminate with potential sensing and actuating applications.

We also found that the behavior of the potential functions is simi-
lar to that of elastic plate field quantities, in that when the aspect ratio
exceeds approximately 10, the electric and magnetic potentials tend
nearly to constant/linear behavior in the two types of material layers.
Hence, it appears to be quite possible to develop a simplified plate
model by the use of a fairly small number of through-thickness un-
knowns that can accurately capture interlaminar stress and electric
and magnetic flux quantity behaviors.

Appendix: Element Matrices
The form of the element matrices can be expressed in compact

form, especially when the approximation functions are kept in terms
of all three spatial variables, (that is, before the actual discrete-layer
approximation splits the form of these functions into out-of-plate
(z) dependence and in-plane (x–y) dependence. In application, the z
dependence is preintegrated out of the approximation, leaving only
the x–y operators in the element matrices.

Constitutive laws more general than those considered here are
easily implemented in the model used in this study. The element
stiffness matrices follow:
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