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Abstract

The fracture toughness of brittle thermoset resins could be improved significantly by perfectly bonded tough, short

fibers through both crack trapping and bridging effects. In this paper, the crack trapping effect was studied through the

analysis of the change of strain energy associated with the crack propagation across a regular array of fibers, and the

bridging effect was discussed based on the Andersson–Bergkvist model. The fracture resistance increases with the fiber

volume fraction, and is independent of the elastic properties of the matrix, the crack length, and the cross-sectional

diameter of the fibers.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Crack trapping effect; Short-fiber reinforced composites; Brittle matrix; Fracture toughness; Cleavage cracking
1. Introduction

Many tough materials such as polycarbonate (PC) and polyester can be perfectly bonded with brittle

thermoset resins that are of high adhesion. This technique has been widely applied to fabricate short-fiber

reinforced composites (SFRC) with high fracture toughness. The toughening effect of the short fibers

consists of the bridging effect and the crack trapping effect [1–5]. The bridging effect is considered extrinsic

in the sense that it is related to the pullout process of the field of short fibers exposed in the fracture surface

behind the crack front. The crack trapping effect, sometimes considered intrinsic since it occurs along the
crack front, is related to the nonuniform nature of the crack front propagation.

Fig. 1 shows the cleavage front breaking through a regular array of perfectly bonded PC rods in an

epoxy matrix [3]. With the increasing of the applied stress intensity, the crack front gradually penetrated

between the PC rods and eventually bypassed them when the two parts of the crack front at both sides of a

PC rod merged, somewhat similar with a dislocation line bypassing a precipitate particle. During the

penetration process, at the crest of the sigmoidal cleavage front the local stress intensity was smaller than

that at the concave part. Since at the verge of propagating the local stress intensity was equal to the
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Nomenclature

Da crack growth length
d critical crack opening displacement

l shear modulus of the matrix

v Poisson’s ratio of the matrix

n
*

coordinate system (n1, n2) in the crack plane

a0 initial crack length

a1 the crack length after crack growth

b sample thickness

c fiber volume fraction
D cross-sectional diameter of the fibers

l center-to-center distance of the short fibers

E Young’s modulus of the matrix

Gb effective fracture work associated with the bridging effect

Gcompos fracture resistance of the short-fiber reinforced composite

Gf critical energy release rate to overcome the fiber array

Gmatrix critical energy release rate of the matrix

GR crack growth ‘‘driving force’’ that equals the local fracture resistance
h height of the arm of double cantilever beam specimen

K1 stress intensity factor if the short fibers did not exist

K local stress intensity along the arrested crack front

KICf critical stress intensity factor to overcome the fiber array

R cross-sectional radius of the fibers

P crack opening load

x
*

coordinate system (x1, x2) in the crack plane
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toughness of the matrix, KICm, the average stress intensity at the crack tip should be higher. According to
the experimental data, the PC rods could give a 2–4 fold rise of the fracture toughness over the neat epoxy

resin.

This process was similar to the regular penetration problem discussed by Gao and Rice [6], which were

further studied through the simulation of crack front profile by Bower and Ortiz [7,8]. When the crack tip

stress intensity, j, is relatively small, the experimental observation and the numerical results fit with each

other quite well; but when j is close to the critical value, the penetration depth predicted by the numerical

simulation is somewhat larger (see Fig. 1). It was reported that if the size/spacing ratio of the short fibers is

higher than 0.35, the Bower–Ortiz model is no longer valid [5], primarily due to the nonlinear effect of the
interaction between the obstacles and the advancing crack front.

After the short fibers are bypassed, they are left behind the crack tip bridging the crack flanks together,

resulting in the well-known R-curve. Eventually the short fibers will be pulled out and the crack propa-

gation will reach a steady state. A number of models have been developed to relate the microstructure to the

fracture toughness, among which the Andersson–Bergkvist model [9] is one of the simplest methods and

can capture the bridging effect in brittle materials quite successfully.

In view of the above considerations and the fact that there is still no satisfactory model can be utilized

to calculate the toughening effect of the short fibers in SFRC with high fiber volume fraction, in Sec-
tion 2 below, we will develop a model for the cleavage front penetrating across a regular array of tough



Fig. 1. Superposition of crack front profile predicted by the Bower–Ortiz model with digitized images of trapping in epoxy matrix by

perfectly bonded polycarbonate obstacles [3], where j is the applied stress intensity factor normalized by the critical stress intensity

factor of the epoxy matrix.
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fibers through an energy analysis. Then, in Section 3, the overall fracture toughness of SFRC will be

discussed.
2. The resistance to cleavage cracking of a regular array of tough fibers

Consider the cleavage crack overcoming a regular array of perfectly bonded impenetrable fibers in the

brittle thermoset matrix depicted in Fig. 2. The penetration depth of the front across the fiber array in-

creases with the effective stress intensity at the crack tip. When the critical stress intensity KICf , or,

equivalently, the critical energy release rate, Gf , for the front to surround the fibers is reached, the crack

front bypasses the fibers and continues to advance, leaving the bridging fibers behind. To calculate the
change of the strain energy associated with this break-through process, we assume that the crack is in a

double cantilever beam (DCB) specimen with the initial crack tip at point ‘‘A0’’, as depicted in Fig. 3a. It

will be shown shortly that the geometry of the specimen has no influence on KICf and Gf .

The DCB specimen is homogeneous except for point ‘‘A’’ where the matrix is reinforced by a regular

fiber array. As shown in Fig. 4, with increasing crack opening displacement d, the crack opening load, P ,
first rises linearly from point ‘‘0’’ to point ‘‘1’’. When the critical stress intensity of the matrix, KICm, is

reached, in ideal case where the crack growth is stable, P decreases smoothly along curve ‘‘1–2’’, until the

crack tip is trapped by the fiber array at point ‘‘A’’. For the reason that will become clear, the critical stress
intensity to break through the fiber array is higher than KICm and therefore P will increase linearly again to



Fig. 2. Schematic diagrams of the cleavage crack front bypassing a regular array of perfectly bonded impenetrable short fibers in brittle

matrix: (a) three-dimensional view; (b) top view.
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point ‘‘3’’ where the cleavage front bypasses the fibers. Then, the crack propagates by a distance Da to point

‘‘B’’ (see Fig. 3a–c), where the stress intensity at the crack tip decreases to KICa, the critical value to arrest

the cleavage crack in the matrix, associated with the load drop from point ‘‘3’’ to point ‘‘4’’. During the

crack growth, the variation of the crack opening displacement is negligible.
The change of the strain energy in the DCB specimen is due to the work of separation of the fracture

surface and the dynamic energy dissipation. If Da is much larger than the fiber radius R, the influence of

short fibers on the profile of the arrested crack front is at negligible level, i.e. the crack front at point ‘‘B’’

can be assumed straight. Hence,
U0 � U1 ¼ Gmatrix � Da � bþ bU ð1Þ
where U0 and U1 are the strain energies with the crack tip at ‘‘A’’ and ‘‘B’’, respectively; b is the specimen

thickness; Gmatrix is the critical energy release rate of the matrix; and bU is the dissipated kinetic energy

associated with the dynamic effect [10]. The dynamic term, bU , can be neglected if the crack growth is quasi-

static, which can be achieved only when the local fracture resistance of the material equals the crack growth

‘‘driving force’’, GR, along the crack path. Note that GR is determined by the crack opening displacement

and the bridging effect of the fibers, and therefore decreases as the crack front advances. Consequently,

the local fracture resistance required to keep the crack growth quasi-static is position dependent. Under
this condition,
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Fig. 4. Schematic diagram of the relationship between the crack opening load and the crack opening displacement in the fracture test of

the double-cantilever beam specimen.
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Fig. 3. Schematic diagram of the fracture process in a double cantilever beam sample of a thermoset reinforced by a fiber array: (a)

before the crack overcomes the trapping effect of the fiber array; (b) the crack front bypasses the fiber array and advances in the matrix;

(c) the front stops when the crack growth ‘‘driving force’’ decreases to Gmatrix, leaving the bridging short fibers behind; and

(d) eventually, with the increasing of the crack opening displacement, the short fibers are pulled out.
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U0 � U1 ¼ b
Z Da

0

GRðxÞdx ð2Þ
Note that there is no such a fracture resistance gradient from point ‘‘A’’ to point ‘‘B’’ in actual composites.

However, since the ligament ‘‘A–B’’ is exposed to the fracture surface after the cleavage front has overcome

the trapping effect of the fibers, and the properties of the material in front of the fiber array does not have

influence on the front transmission, the value of Gf calculated in this ‘‘imaginary’’ case should be the same

as the result of Eq. (1).

In the following discussion, U0 and U1 will be studied in context of basic beam theory. Because the

influences of the shear stresses and free edges are only secondary, the improvement by using modified beam
theories or finite element method is negligible. According to the basic beam theory,
U0 ¼ Ebh3d2=16a30 ð3Þ

where E is the Young’s modulus of the matrix, and h is the height of the DCB arm. The critical energy

release rate of the fiber array is
Gf ¼ � 1

b
oU
oa

¼ 3

16

Eh3d2

a40
ð4Þ
with U being the strain energy and a being the crack length. Through Eq. (4), Eq. (3) can be rewritten as
U0 ¼
a0b
3

Gf ð5Þ
If there were no short fibers at point ‘‘A’’, the energy release rate at the arrested crack tip would be
G� ¼ � 1

b
oU
oa

¼ 3

16

Eh3d2

a41
ð6Þ
with a1 ¼ a0 þ Da. Combination of Eqs. (4) and (6) gives
Gf ¼
a1
a0

� �4

G� ¼ a1
a0

� �4
1� v2

E
K2

1 ð7Þ
where K1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG�=ð1� v2Þ

p
.

Without the short fibers, the opening displacement at x
* ¼ ðx1; x2Þ is K eU ðx*Þ [11,12] (see Fig. 2b), where
eU ðx*Þ ¼ 2K1 �
ffiffiffiffiffiffiffiffi
�x1
2p

r
ð8Þ
and K ¼ 1�m
l , with m being the Poisson’s ratio and l being the shear modulus of the matrix. The displacement

at x* caused by a pair of unit bridging force at n
*

¼ ðn1; n2Þ is K bU ðx*; n
*

Þ [7,12], where
bU ðx*; n
*

Þ ¼ 1

qp2
� arc tan 2

ffiffiffiffiffiffiffiffiffi
x1n1

q2

s( )
ð9Þ
with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � n1Þ2 þ ðx2 � n2Þ2

q
.

The crack opening displacement at the short fibers should be zero, i.e.
0 ¼ K eU ðx0*Þ þ K
Z

C

bU ðx0*; n
*

ÞeP ðn*ÞdC ð10Þ
where C is the matrix–fiber interface; x0
* ¼ ðx01; x02Þ denotes any point in C; and eP is the bridging stress

distributed in C.
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If the center-to-center distance of short fibers is comparable with the fiber diameter D, the bridging force

at the matrix–fiber interface cannot be simplified as a concentrated force. Assume that the distribution

of the bridging stress is the same in all the short fibers and the number of the short fibers is large,

through tan h ¼ n2�ni
2c

n1�ni
1c

, with ðni
1c; n

i
2cÞ being the center of the ith fiber, Eq. (10) becomes
Z 2p

0

P ðhÞgðx0
*Þdh ¼ c ð11Þ
where P ðhÞ is the bridging force at angle h along the boundary of a short fiber; c ¼ K1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p3Da

p
;

gðx0
*Þ ¼

Pþ1
i¼�1

1
qi
arc tan

2

ffiffiffiffiffiffiffiffi
x0
1
nðiÞ
1

p
qi

� �
; n
*ðiÞ

is a point in the boundary of the ith short fiber; and qi is the distance

from n
*ðiÞ

to x0
*
. Note that in the above discussion, again, we assumed that Da is much larger than D.

Eq. (11) is a Fredholm integral equation of the first kind, with the solution of
P ðhÞ ¼
X
n

knfnyn ð12Þ
where kn and yn are the nth eigenvalue and eigenvector of gðx0* Þ, respectively, and
P

n fnyn ¼ c.
With the bridging force P , the stress intensity along the arrested crack front is [7]
Kðx2Þ ¼ K1 þ
Z

C
Hðs; n

*

ÞPðhÞdC ð13Þ
where Hðs; n
*

Þ ¼
ffiffiffiffi
2
p3

q ffiffiffiffiffiffi
�n1

p
s2þn21

is the stress intensity at s due to a pair of unit bridging forces at n
*

, with s being

jx2 � n2j. The average stress intensity factor and the average energy release rate of the arrested crack front

can then be obtained as
K ¼ 1

l

Z l

0

Kðx2Þdx2 ð14Þ
G ¼ ð1� m2ÞK2
=E ð15Þ
with l being the center–center distance of the short fibers. In the quasi-static case, KICa ¼ KICm, and thus

when the crack tip is arrested at point ‘‘B’’
Gmatrix ¼ G ¼ ð1� m2ÞK2
=E ð16Þ
Substitution of Eq. (14) into (16) gives
Gmatrix ¼
1� m2

El2
K1l

�
þ

Z
C
P ðhÞ bH ðn

*

ÞdC

�2
ð17Þ
where bH ðn
*

Þ ¼
R l
0
Hðs; n

*

Þdx2.
The quasi-static crack growth ‘‘driving force’’, GRðxÞ, can be obtained through the similar procedure

with the calculation of G. In the context of basic beam theory, if the bridging fibers did not exist, the stress

intensity at the propagating crack tip at x is
Kx1 ¼ K1

a1
a0 þ x

� �2

ð18Þ
Similar with the discussion of Eq. (11), the distributed bridging force, PxðhÞ, required to close the fracture

surface locally along the fiber–matrix interface is determined by
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Z 2p

0

PxðhÞ � gðx0* Þdh ¼ Kx1

ffiffiffiffiffiffiffiffiffi
2p3x

p
ð19Þ
and the stress intensity along the crack front can then be stated as
Kx ¼ Kx1 þ
Z

C
Hðs; n

*

Þ � PxðhÞdC ð20Þ
Thus, the average energy release rate at the crack tip is
GRðxÞ ¼ ð1� m2ÞKx=E ð21Þ
where Kx ¼ 1
l

R l
0
Kxðx2Þdx2.

When the crack tip is arrested at point ‘‘B’’, the additional strain energy associated with the bridging

effect can be obtained as:
Ubridging ¼
b
l

1

2

Z
C
P ðhÞ K eU ðx*Þ

h i
dC

� �
¼ bK1

l
1� m

l

Z
C
P ðhÞ

ffiffiffiffiffiffiffiffi
�x1
2p

r
dC
Note that the strain energy subsequent to the crack growth is
U1 ¼ U �
1 þ Ubridging ð22Þ
with U �
1 ¼ a1bG�=3 being the strain energy if the fiber array did not exist. Combination of Eqs. (2), (12),

(17) and (22) gives Gf=Gmatrix and Da=D as functions of D=l.
Because it is impossible to obtain the analytical solution of yn in Eq. (12), iteration method was applied

to calculate Gf numerically through the Ritz method by assuming that P ðhÞ is of the form
P ðhÞ ¼ P0 þ P1 � h þ P2 � h2; 06 h6 p;
P0 � P1 � h þ P2 � h2; �p6 h6 0;

�
�16 i6 þ1 ð23Þ
where P0, P1 and P2 are unknown variables. The singularity integration involved in Eq. (12) was solved

through the coordinate transformation method discussed by Pan and Amadei [13]. In the calculation of

Eq. (19), PxðhÞ was assumed uniform to simplify the numerical procedure.
Fig. 5. Fracture resistance as function of size/spacing ratio.
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Fig. 5 shows the results of Gf as function of D=l, which fit with the experimental data [3] quite well. Rose

[14] has derived the exact solution of the toughening effect, Gtrap, of a regular array of penetrable obstacles
Gtrap

Gmatrix

¼ 1

�
� D

l

�
þ Gobs

Gmatrix

� �
D
l

ð24Þ
where Gobs is the critical energy release rate of the reinforcing fibers. In this framework, the numerical

results of Eqs. (2), (12), (17) and (22) can be regressed as
Gf

Gmatrix

¼ 1

�
� 2R

l

�
þ 1:0

�
þ 9:6

R
l
þ 1:8

R2

l2

�2

� 2R
l

ð25Þ
The term ð1:0þ 9:6 R
l þ 1:8 R2

l2 Þ
2
reflects

GðcrÞ
fiber

Gmatrix
, with GðcrÞ

fiber being the critical toughness for the fiber to become
impenetrable.
3. The fracture toughness of short-fiber reinforced composites

After the crack bypasses the fiber array, the perfectly bonded short fibers are left behind the crack front,

bridging the fracture flanks together. With the increasing of the applied stress intensity they will eventually

be pulled out (see Fig. 3d). At the steady state, the additional fracture work associated with this bridging

effect can be estimated through the Andersson–Bergkvist model [9]
Gb ¼
r0d0

2
� pD

2=4

l2
¼ p

8

D2

l2
ðr0d0Þ ð26Þ
where r0 is the maximum bridging stress, and d0 is the maximum bridging distance. Note that Eq. (26) gives

only the first-order estimation of Gb. More accurate result can be obtained through the advanced process-
zone models e.g. [15,16].

The overall fracture toughness of SFRC can be stated as
Gcompos ¼ Gf þ Gb ð27Þ
Substitution of Eqs. (25) and (26) into (27) gives
Gcompos

Gmatrix

¼ 1

�
� 2R

l

�
þ 1:0

�
þ 9:6

R
l
þ 1:8

R2

l2

�2

� 2R
l
þ v0

R2

l2
ð28Þ
where v0 ¼ 4pr0d0=8Gmatrix. If the value of r0d0 is estimated based on GðcrÞ
fiber [13],
v0 ¼
p
8

Pave
Gmatrix

� �
¼ p

8
1:0

�
þ 9:6

R
l
þ 1:8

R2

l2

�2

ð29Þ
Thus, Eq. (28) becomes
Gcompos

Gmatrix

� �
L

¼ 1

�
� D

l

�
þ 1:0

�
þ 4:8

D
l
þ 0:5

D2

l2

�2

� D
l

�
þ p
32

D2

l2

�
ð30Þ
Eq. (30) gives the lower limit of the critical energy release rate of thermoset composites reinforced by
perfectly bonded impenetrable short fibers, which is shown in Fig. 5. It can be seen that when D=l is above
0.3, the bridging effect is much less pronounced compared with the crack trapping effect.



Fig. 6. Fracture resistance as function of fiber volume fraction.
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The volume fraction of circular short fibers is c ¼ pD2

4l2 . Hence, Eqs. (25) and (26) can be rewritten as
Table

The nu

a0=R

10

100

1000
Gf

Gmatrix

¼ ð1� 1:1
ffiffiffi
c

p
Þ þ 1:0

�
þ 5:4

ffiffiffi
c

p
þ 0:6c

�2 � ð1:1 ffiffiffi
c

p
Þ ð31Þ

Gcompos

Gmatrix

¼ ð1� 1:1
ffiffiffi
c

p
Þ þ 1:0

�
þ 5:4

ffiffiffi
c

p
þ 0:6c

�2 � ffiffiffi
c

p
þ v1c ð32Þ
where v1 ¼ 1:3v0. Through the analysis similar to the discussion of Eq. (30), the lower limit of the overall

fracture toughness can be estimated as
Gcompos

Gmatrix

� �
L

¼ 1
�

� 1:1
ffiffiffi
c

p �
þ 1:0
�

þ 5:4
ffiffiffi
c

p
þ 0:6c

�2 � ð1:1 ffiffiffi
c

p
þ 0:1cÞ ð33Þ
Fig. 6 shows Gf=Gmatrix and (Gcompos=GmatrixÞL as functions of c. It can be seen that in the range of c from 0.45

to 0.65 dðGf=GmatrixÞ=dc is nearly constant 55.6, and dðGcompos=GmatrixÞL=dc is nearly constant 58.1. With the

constant fiber volume fraction, changing fiber diameter has little influence on the overall fracture toughness.
4. Discussion

Since in Eqs. (12), (17), (22) the parameters of the DCB specimen, b and h, vanish, the numerical results

are independent of the specimen geometry. Although in these equations the initial crack length comes in by

affecting both the rate of descending of the energy release rate and the ligament length Da, through Table 1
1

merical result of Gf=Gmatrix as function of the initial crack length (a0) and the fiber size/spacing ratio (R=l)

R=l ¼ 0:1 R=l ¼ 0:2 R=l ¼ 0:3

1.6 4.5 9.9

1.6 4.4 9.8

1.6 4.5 9.8



Fig. 7. The required fracture resistance gradient ahead of the fiber array to keep the crack growth quasi-static.
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it can be seen that Gf is insensitive to a0, i.e. the fracture resistance of SFRC is a material constant, as

it should. Note that if the crack length is smaller than 10D, the number of fibers encountered by the

crack front is small and thus this model is no longer valid.

Fig. 7 shows the required fracture resistance gradient ahead of the fiber array to keep the crack growth
quasi-static. In actual materials, in the ligament ‘‘A–B’’ (see Fig. 3), the fracture resistance is constant

Gmatrix. The difference between the two cases indicates the degree of importance of the dynamic effect.

Comparison of Eqs. (1) and (2) shows that
bU ¼ b
Z Da

0

ðGRðxÞ � GmatrixÞdx ð34Þ
The energy radiated from the crack tip and eventually dissipated in the background, bU , increases with the

fiber size/spacing ratio, and this dynamic effect is more pronounced immediately subsequent to the crack
front transmission across the fiber array than as the crack tip approaches point ‘‘B’’.

For isotropic materials, E=El ¼ 2ð1þ mÞ. Therefore, among the elastic parameters of the matrix

including the modulus of elasticity E, the shear modulus l, and the Poisson’s ratio m, Eqs. (12), (17) and (22)

are only related to m. Fig. 8 shows the effect of Poisson’s ratio on Gf=Gmatrix. In the range of 0.03–0.47, its

influence is at negligible level. Since the Poisson’s ratio of most of the engineering materials falls in this

range, it can be stated that Gf is independent of the elastic properties of matrix.

As discussed above, through the simulation of the crack front profile, Bower and Ortiz obtained that

[5,7,8]
Gf

Gmatrix

¼ 1

�
� D

l

�
þ 2:1

�
þ 2:4

D
l

�2

� D
l

ð35Þ
The results of Eqs. (25) and (34) are compared in Fig. 5. They are about the same when D=l is below 0.5; if

D=l is larger, the result of Eq. (25) is significantly higher, as it should. Since in Eq. (25) the complicated

simulation of the penetration process of crack front is avoided and the distributed bridging force is

calculated in detail, the result is valid when the D=l ratio is high.

Because it was assumed that debonding occurs only after the crack trapping effect is fully overcome, the

effective work of separation of the fiber–matrix interface has no influence on Gf . However, it does affect the

bridging effect Gb, which was captured by v0 in Eq. (28). The stronger the fiber–matrix interface, the larger
the Gb, so does the overall fracture resistance Gcompos. The minimum interface strength at which the



Fig. 8. The influence of Poisson’s ratio on crack trapping effect.
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interface can be considered as perfectly bonded during the penetration process is given by Eq. (30). Note

that in the above discussion the fracture toughness was calculated based on the strain energy change instead

of the stress/strain distribution at the crack tip and as a result the fracture mode mixity was ignored.
5. Conclusions

In this paper the toughening effect of perfectly bonded impenetrable short fibers in brittle thermoset

matrix is studied. The fibers are assumed straight and well aligned in regular arrays. The improvement of

the overall fracture toughness is attributed to the crack trapping effect and the bridging effect. Based on the

comparison of the strain energy prior to and subsequent to the front transmission across a regular array of

short fibers, the critical energy release rate Gf is calculated. By incorporating the effective fiber toughness

into the framework of Rose model, the numerical results are regressed as Eq. (25). The bridging effect is

studied based on the Andersson–Bergkvist theory, and the following conclusions are drawn:

(1) When the fiber volume fraction is low, the effects of crack trapping and bridging are comparable to each

other; when the center-to-center distance of short fibers is relatively small, the crack trapping effect is

much more important.

(2) When the matrix–fiber bonding is high enough such that debonding does not occur until the crack trap-

ping effect is fully overcome, the overall fracture toughness increases with the fiber volume fraction. If

the fiber volume fraction, c, is larger than 0.45, the relationship between the fracture resistance and c is
nearly linear.

(3) If the fiber volume fraction is constant, changing fiber diameter have little influence on the overall

fracture toughness.

(4) The resistance of SFRC to cleavage cracking is independent of the crack length and the elastic

properties of matrix.
Acknowledgements

Special thanks are due to the reviewers of this paper for the valuable suggestions of the validity of
assumptions.



Y. Qiao et al. / Engineering Fracture Mechanics 71 (2004) 2621–2633 2633
References

[1] Low IM, Mai YW, Bandyopadhayay S. Effects of temperature and rate on fracture toughness of short alumina fiber reinforced

epoxies. Compos Sci Tech 1992;43:3–12.

[2] Zhou LM, Kim JK, Baillte C, Mai YW. Fracture mechanics analysis of the fiber fragmentation test. J Compos Mater

1995;29:881–902.

[3] Mower TM, Argon AS. Experimental investigations of crack trapping in brittle heterogeneous solids. Mech Mater 1995;19:343–

64.

[4] Belnap JD, Shetty DK. Micromechanics of crack bridging in sapphire epoxy composites. Compos Sci Tech 1998;58:1763–73.

[5] Xu G, Bower AF, Ortiz M. The influence of crack trapping on the toughness of fiber reinforced composites. J Mech Phys Solids

1998;46:1815–33.

[6] Gao H, Rice JR. A first-order perturbation analysis of crack trapping by arrays of obstacles. J Appl Mech 1990;56:828–36.

[7] Bower AF, Ortiz M. A three dimensional analysis of crack trapping and bridging by tough particles. J Mech Phys Solids

1991;39:815–58.

[8] Bower AF, Ortiz M. The influence of grain size on the toughness of monolithic ceramics. Trans ASME 1993;115:228–36.

[9] Andersson H, Bergkvist H. Analysis of a nonlinear crack model. J Mech Phys Solids 1970;18:1–28.

[10] Freund LB. Dynamic Fracture Mechanics. Cambridge University Press; 1998.

[11] Qiao Y. Unstable crack advance across a regular array of short fibers in brittle matrix. Compos Sci Tech 2004;64:711–7.

[12] Ulfyand YS. Survey of articles on the application of integral transforms in theory of elasticity. Raleigh, NC: University of North

Carolina; 1965.

[13] Pan E, Amadei B. Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary element

method. Int J Fract 1996;77:161–74.

[14] Rose LRF. Toughening due to crack-front interaction with a second-phase dispersion. Mech Mater 1987;6:11–5.

[15] Meda G, Steif PS. A detailed analysis of cracks bridged by fibers. 1. Limiting cases of short and long cracks. J Mech Phys Solids

1994;42:1293–321.

[16] Rubinstein AA, Wang P. The fracture toughness of a particulate-reinforced brittle matrix. J Mech Phys Solids 1998;46:1139–54.


	Fracture toughness of thermoset composites reinforced by perfectly bonded impenetrable short fibers
	Introduction
	The resistance to cleavage cracking of a regular array of tough fibers
	The fracture toughness of short-fiber reinforced composites
	Discussion
	Conclusions
	Acknowledgements
	References


