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Abstract   It is of great importance to understand the factors 
that contribute to the strain and electrical distributions, which 
are induced by the misfit strain between a buried quantum 
wire (QWR) and its surrounding matrix. One of the important 
factors is the shape or geometry of cross section of the QWR. 
Utilizing a recent exact closed-form solution [Pan (2004)], 
we study the model system of QWRs with different shapes 
and calculate both the surface and internal elastic and 
piezoelectric fields induced by QWRs embedded in 
semiconductor GaAs substrates by properly setting the size 
and location of the QWRs. The effects of the QWR shape as 
well as the material orientation and free surface of the 
substrate on the elastic and piezoelectric fields are clearly 
demonstrated. Key conclusions are also drawn. 

keyword:  misfit strain, QWR, shape effect, exact closed-
form solution, elastic and piezoelectric fields. 

1 Introduction 

Much research effort has been made during recent years on 
quantum heterostructures where quantum mechanics effects 
appear, thus providing rich opportunities for the design of 
novel devices. For example, semiconductor lasers could be 
improved by using two dissimilar materials as active and 
cladding layers [Lin (2001)] for promising applications as 
semiconductor light-emitting and laser diodes. Using 
quantum nanostructure, namely quantum well (QW), 
quantum wire (QWR), and quantum dot (QD), as active 
layers leads to even better laser performance [Lin (2001); 
Grundmann, Stier, and Bimberg (1994); Fu, Zhao, Ferdos, 
Sadeghi, Wang, and Larsson (2001); Shim, Choi, Jeong, 
Vinh, Hong, Suh, Lee, Kim, and Hwang (2002); Martinet, 
Dupertuis, Reinhardt, Biasiol, Kapon, Stier, Grundmann, and 
Bimberg (2000)]. Recently, the strained nanostructures have 
drawn considerable attention since the misfit strain can lead 
to the change in the conduction/valance bands which, in turn, 
together with the dimension confinement, alters the 

electronic and optical properties of the semiconductor 
structures [Notomi, Hammersberg, Weman, Nojima, Sugiura, 
Okamoto, Tamamura, and Potemski (1995); Lelarge, 
Constantin, Leifer, Condo, Lakovlev, Martinet, Rudra, and 
Kapon (1999); Medeiros-Ribeiro (2002); Martinet, 
Dupertuis, Reinhardt, Biasiol, Kapon, Stier, Grundmann, and 
Bimberg (2000); Constantin, Martinet, Leifer, Rudra, 
Lelarge, Kapon, Gayral, and Gerard (2000)]. For instance, 
the strained QWR can acquire a wavelength range not 
accessible with lattice-matched materials [Grundmann, Stier, 
and Bimberg (1994)].  
For QWR structures, much work has been done to explore 
the effect of QWR shapes on various properties. Vargiamidis 
and Valassiades (2002) investigated the dependence of the 
quantized conductance of electron transport on the shape of 
QWR cross section with the existence of defects or 
impurities. Their work is stimulated by a previous research of 
Bogachek, Scherbakov, and Landman (1997), who took both 
the area and shape of the QWR cross-section (or nanowire) 
into consideration. While Anthony and Kelly (1994) studied 
analytically the effect of the cross-section geometry of the 
QWR on confinement energies, Thilagam (1997) performed 
analysis of the QWR cross-section on the exciton binding 
energy. Tsetseri and Triberis (2002) analyzed the effect of 
QWR shape on the ground state in QWR structures using 
finite difference method, whilst Ogawa, Itoh, and Miyoshi 
(1996) used finite element method to study the effect of 
geometric shape on the valence band of QWR. 
Shape effect has been intensively studied not only 
numerically but also experimentally. By measuring the 
photoluminescence (PL) of four different geometries, i.e., 
rectangular, triangular, trapezoidal, and polygonal ones, 
Shim, Choi, Jeong, Vinh, Hong, Suh, Lee, Kim, and Hwang 
(2002) found that the highest light emission efficiency and 
best reproducibility in intensity and wavelength were 
associated with trapezoidal QWs. Likewise, Cheong, Choi, 
Suh, and Lee (2003) proved that trapezoidal QWs excel 
rectangle QWs as active materials to improve performance in 
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optoelectronic devices. Chen, Reed, Schaff, and Eastman 
(1995) observed that the strain distribution within 
InGaAs/GaAs QWR of rectangular shape is not uniform, 
which would contribute to the design of the strained QWR 
structures. Displacement and strain distribution within QWR 
were also analyzed by Ulyanenkov, Inaba, Mikulik, 
Darowski, Omote, Pietsch, Grenzer, and Forchel (2001) 
using X-ray diffraction. V-shaped [Dupertuis, Oberli, and 
Kapon (2002)], T-shaped [Grundmann, Stier, and Bimberg 
(1998)], trapezoidal [Ulyanenkov, Inaba, Mikulik, Darowski, 
Omote, Pietsch, Grenzer, and Forchel (2001)] and triangular 
[Gosling and Freund (1996)] QWRs were also studied. So 
far, however, a rigorous and comprehensive analysis on the 
induced strain and electric fields is still unavailable. 
Under the assumption of isotropic elasticity, Faux, Downes, 
and O’Reilly (1997) obtained the strain field for both 
rectangular and crescent QWRs embedded in the full plane. 
Very recently, Glas (2003) presented results on the strain 
distribution inside and outside the QWR with the shape of 
circle, truncated cylinder, and crescent in isotropic 
semiconductors. Using the conformal mapping method, Ru 
(2000) derived an analytical solution for QWRs of arbitrary 
shape within anisotropic piezoelectric media. More recently, 
Pan (2004) derived an exact closed-form solution for the 
QWR induced elastic and piezoelectric fields employing the 
Green’s function and equivalent body-force methods. The 
QWR can be of arbitrary shape and is embedded within the 
semiconductor half plane with general anisotropic elastic and 
piezoelectric properties. In a very recent work, Pan and Jiang 
(2004) showed that material orientation could have a 
significant influence on the strain and electric distribution 
inside the trapezoidal QWR.  
In this paper, we concentrate on the effect of the QWR shape 
on the induced elastic and electric fields using the exact 
closed-form solution derived recently [Pan (2004)]. In what 
follows, we will give a brief review on this exact solution, 
and then apply it to the problem involving QWRs with 
different shapes in the GaAs half-plane structure. Convincing 
examples are presented to further prove the accuracy and 
efficiency of the exact solution. Effects of the QWR shapes 
are revealed and conclusions are drawn which could be 
important to semiconductor device design. 

2 Analytical solution 

Let us suppose that there is a general misfit strain  inside 
the QWR domain V, which is embedded in the z<0 half-plane 
substrate (Fig. 1). Assuming also that the misfit strain within 
the QWR is uniform, then the induced field can be found 
analytically using the Green’s function method and the 
equivalent body-force concept, as has been done recently by 
Pan (2004). While the detailed derivation can be found in Pan 
(2004), for the sake of easy reference, we briefly present the 
main results with definitions for the involved physical 
quantities. It was shown that the misfit strain-induced elastic 

displacement and piezoelectric potential can be expressed as 
an integral on the boundary of the QWR with the Green’s 
function being the integrand [Pan (2004)]:  
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where Cijkl, elij and εil are the elastic tensor, piezoelectric 
coefficients, and dielectric tensor, respectively. 
For the boundary part made of straight-line segments, the 
boundary integral can be carried out analytically [Pan 
(2004)].  Thus, for a QWR with an arbitrary polygonal shape, 
we sum up the contribution from all the line segments of the 
QWR boundary. Furthermore, the circular shape can be 
approximated with piecewise straight-line segments.  
Therefore, the final expression of the induced extended 
displacement due to an arbitrarily polygonal inclusion with 
N-sides is [Pan (2004)]: 
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where ni
(s) is the i-th outward normal component on the s-th 

line segment. l(s) is the length of the s-th line segment and can 
be expressed as 2
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doing so, the outward normal components ni

(s) are constants, 
given by: 
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Also in Eq. (3), A is the eigenmatrix corresponding to the 
Stroh eigenvalues pJ given in Ting (1996) and Pan (2004). 
Matrix Q is defined as: 
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where matrix B is the second eigenmatrix related to the Stroh 
eigenvalues pJ, with the superscript “-1” denoting inverse 
matrix, and an overbar the conjugate matrix. 

The first term containing hR in Eq. (3) stands for the 
contribution from the full-plane Green’s function, and the 
one involving gRn for the contribution from the surface 
boundary condition of the half plane. hR and gRn can be 
expressed as functions of X(X,Z): 
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and eventually have explicit expressions as: 
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Using the basic strain-displacement and electric field-electric 
potential relations, the strain and electric fields can be 
obtained in the exact closed form [Pan (2004)]: 
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3 Numerical analysis 

Six different QWR shapes are studied, namely circle, square, 
downward and upward trapezoids, and downward and 
upward equilateral triangles (Fig. 1). All QWR shapes are 
assumed to have the same cross-section area (S= 13.1716 
nm2) and to be located at the same centroid A (0, -4nm) for 
the purpose of comparison. Furthermore, all QWRs are 
located symmetrically about the z-axis in the GaAs half plane 
(z<0) (Fig. 1) and have the same uniform misfit hydrostatic 
strain in them, i.e., . 07.0*** === zzyyxx γγγ

 

Figure 1:  Cross-section parameters of the QWR with six 
different shapes buried in GaAs substrate (z<0). A (0, -4) is 

the common geometric center. 

 
The elastic properties for GaAs are C11=118×109N/m2, 
C12=54×109N/m2, and C44=59×109 N/m2 [Pan (2002a, b)]. 
The piezoelectric and relative dielectric constants for GaAs 
are, respectively, e14=-0.16C/m2 and εr=12.5 [Pan (2002a, b)]. 
Two orientations are considered: One is GaAs (001) in which 
the global coordinates x, y, and z are coincident with the 
crystalline axes [100], [010], and [001], and the other is 
GaAs (111) where the x-axis is along [11-2], y-axis along [-
110], and z-axis along [111] directions of the crystalline [Pan 
(2002a, b)]. The boundary condition on the surface of the 
substrate is assumed to be traction-free and insulating [Pan 
(2002a, b)]. 
The QWR shape effect on the surface field of GaAs substrate 
is investigated first as shown in Fig. 2-Fig. 3. Figure 2 (a) 
shows the hydrostatic strain γxx+γzz along the free surface 
(z=0) of the substrate GaAs (001), whereas Fig. 2 (b) plots 
that of the substrate GaAs (111). What these two figures have 
in common is the sequence of the peak values of QWR for 
different shapes, i.e. upward triangle has the largest peak 
value, followed by circle and square with almost the same 
value; Downward triangle comes after, followed by upward 
and downward trapezoids (substrate GaAs (001) in (a) and 
substrate GaAs (111) in (b)). Another interesting point is that 
along the free surface the hydrostatic strains of circle and 
square are almost the same, and it is also the case for both 
upward and downward trapezoid QWRs, where only slight 
difference can be seen in the middle. This implies that in 
terms of the induced elastic fields along the surface square is 
almost identical to circle, and so is the downward trapezoid 
to upward trapezoid. Looking into details of Fig. 2 (a) we 
find that the maximum value for different QWRs are all 
reached in the middle, with a maximum value of 0.35 
induced by the upward triangle, which is ½ of the misfit 
strain. Notice also that in Fig. 2(a) all the curves are 
symmetric about the middle point x=0, as expected in
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Figure 4:  Contours of hydrostatic strain γxx+γzz within GaAs (001) for different QWRs. Circle in (a); square in 
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Figure 5:  Induced hydrostatic strain
 within substrate GaAs (001). (a). within the

 
(1) There appears a concentration inside square QWR, 

which is totally different from the other QWR shapes.  
(2) Compared with the data ranges inside QWR of other 

shapes, more uniform strain distribution inside circle is 
observed, which might be attribute to the symmetrical 
nature of the circle shape. The induced strain field within 
the circle embedded in a full plane is uniform as is well 
known. 
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Figure 6:  Contours of strain component γxx of circular QWR 
within the substrate. (a) and (b) correspond to QWR in GaAs 

(001) and GaAs (111), respectively. 
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Figure 7:  Contours of strain component γzz of circu
within the substrate. (a) and (b) correspond to QWR

(001) and GaAs (111), respectively. 
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Figure 8:  Contours of hydrostatic strain γxx+γzz for the triangular QWR within  
substrate GaAs (111): downward equilateral triangle in (a) and upward equilateral triangle in (b). 
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Figure 9:  Contours of total electric field E= 22

zx EE +  (×107V/m) within substrate  
GaAs(111), induced by QWR of different shapes: circle in (a); square in (b); downward trapezoid i

upward trapezoid in (d); downward equilateral triangle in (e); and upward equilateral triangle in 
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to outside (Fig. 9(e), 9(f)). However on the other two sides 
marked with letter B, they are completely discontinuous! 
This feature seems to be associated with the substrate 

orientation change, and therefore further d
importance of the material orientation. We al
Fig. 9(e) and (f) the induced electric field i
symmetric with respect to a line about 140±
(f)
(e)
6

0

2

4

6

8

10

12

14

16

18

 

n (c);  
(f). 

emonstrates the 
so notice that in 
s approximately 
 to x-axis, (the 



 9

dashline in Fig. 9 (e) and (f)), and that for the circular case 
there are two peak values on each side of this line along the 
outside boundary of the QWR (Fig. 9(a), Fig. 10).  

 
Figure 10: Total electric field E = 22

zx EE +  (×107V/m) 
outside circular QWR within substrate GaAs (111). 

4 Concluding Remarks 

The exact closed-form solution derived recently by Pan 
(2004) is utilized to solve the QWR induced elastic and 
electric fields in substrates GaAs (001) and GaAs (111). The 
induced fields due to six different QWRs, i.e., circle, square, 
downward and upward trapezoids, and downward and 
upward equilateral triangles, are examined in certain details. 
These include the responses along the surface of the 
substrate, inside the QWR, as well as outside the QWR. From 
our studies, the following important features are observed: 
(1) The elastic and electric fields on the free surface of the 
half plane are very close to each other for the square and 
circular QWRs.  
(2) The elastic and electric fields within the circular QWR 
are more uniform than those within QWRs of other shapes.  
(3) Concentration near the vertex points of the other-than-
circle shapes is clearly observed and therefore sharp corners 
should be avoided during fabrication.  
(4) For the induced hydrostatic strain and total electric fields, 
a concentration inside the square QWR is observed.  
(5) Material orientation plays a very important role in the 
induced elastic and electric fields.  
We finally remark that the results presented are based on the 
inclusion assumption. That is, the material property within 
the QWR (of InAs) is the same as its substrate GaAs, 

following the arguments of Faux, Downes, and O’Reilly 
(1997). A recent study by Yang and Pan (2002) based on the 
inhomogeneity assumption (i.e., using the bulk material 
property of InAs for the QWR and QD) has shown that the 
magnitude of the induced elastic field could be different from 
that based on the inclusion assumption, although they share 
some common features. Therefore, in order to apply the exact 
closed-form solution presented in this article or the numerical 
methods developed previously to the practical design of 
QWR structure, one would need to first determine the 
material property inside the QWR, which is actually a 
function of the misfit lattice strain [Ellaway and Faux (2002); 
Chung and Namburu (2003)]. Investigation on this 
interesting extension will be reported in the near future. 
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