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SUMMARY

In this article, we present the solutions for the stresses induced by four different loads associated with an axially
loaded pile in a continuously inhomogeneous cross-anisotropic half-space. The planes of cross-anisotropy are
parallel to the horizontal surface of the half-space, and the Young’s and shear moduli are assumed to vary
exponentially with depth. The four loading types are: an embedded point load for an end-bearing pile, uniform
skin friction, linear variation of skin friction, and non-linear parabolic variation of skin friction for a friction
pile. The solutions for the stresses due to the pile load are expressed in terms of the Hankel integral and are
obtained from the point load solutions of the same inhomogeneous cross-anisotropic half-space which were
derived recently by the authors (Int. J. Rock Mech. Min. Sci. 2003; 40(5):667–685). A numerical procedure is
proposed to carry out the integral. For the special case of homogeneous isotropic and cross-anisotropic half-
space, the stresses predicted by the numerical procedure agree well with the solutions of Geddes and Wang
(Geotechnique 1966; 16(3):231–255; Soils Found. 2003; 43(5):41–52). An illustrative example is also given to
investigate the effect of soil inhomogeneity, the type and degree of soil anisotropy, and the four different
loading types on the vertical normal stress. The presented solutions are more realistic in simulating the actual
stratum of loading problem in many areas of engineering practice. Copyright# 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

In most previous theoretical analysis of soil behaviour, the properties of soil were assumed to be
homogeneous and isotropic. However, many natural soils, such as flocculated clays, varved
silts or sands, often deposited through a geologic process of sedimentation over a period of time.
The effects of deposition, overburden, desiccation, etc., can lead geological media, which usually
exhibit the anisotropic and inhomogeneous deformability. The mechanical response of aniso-
tropic materials with spatial gradients in composition is of considerable interest in soil/rock
mechanics [1]. In this work, an elastic loading problem for a continuously inhomogeneous cross-
anisotropic half-space with Young’s and shear moduli varying exponentially with depth is relevant.
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It is known that piles transmit axial loads to the ground by the mechanism of end-bearing or
skin friction [2]. For an isotropic soil mass, the displacements and stresses can be obtained by
using the Mindlin’s solution [3] where a vertical point load is applied in the interior of the half-
space. Grillo [4] presented the influence charts (Poisson’s ratio ¼ 0:5) for the vertical normal
stress due to a pile point load, and uniform skin friction along the pile, respectively. However,
his solutions contained a number of inconsistencies and errors that were later on pointed out by
Geddes [5]. Geddes [5] obtained the analytical solution based on the Mindlin’s solution [3] for
the stresses at any point, over the length of the pile in a cylindrical co-ordinate system due to a
point load, uniform skin friction, and linear variation of skin friction. He also prepared the most
commonly used tables of stress coefficients for Poisson’s ratio equal to 0.1, 0.3, and 0.5,
respectively [5, 6]. However, these solutions are all restricted to the homogeneous and isotropic
half-spaces. As for the homogeneous and cross-anisotropic half-space, Wang [7] recently derived
the analytical solutions for the displacements and stresses due to various loading types of an
axially loaded pile. Besides the three loading types studied by Geddes [5, 6], Wang [7] also gave
the displacement and stress solutions due to the non-linear parabolic variation of skin friction
for a friction pile. Yet, consideration of inhomogeneity of soils may be more realistic in many
cases and may more accurately reflect the transfer of load from the pile to the soil [8]. So far, to
the best of the authors’ knowledge, however, no such solutions exist for the stresses due to the
above-mentioned loading types in an inhomogeneous cross-anisotropic half-space say, with
Young’s and shear moduli varying exponentially with depth ðEe�kz;E0e�kz;G0e�kzÞ: The lack of
such solutions is mainly due to the fact that the general method for solving the problem
involving inhomogeneity and anisotropy is more complicated.

It is well recognized that the point load solution forms the basis of solutions to complex
loading problems. Utilizing the approach for solving a point load problem by Liao and Wang
[9], Wang et al. [10, as seen in Figure 1] derived the point load solution of stresses in the Hankel-
transformed domain for a continuously inhomogeneous cross-anisotropic full and half-spaces
subjected to a vertical point load. Numerical inversion of the Hankel transforms is needed to
find the physical domain stresses since the resulting integrals in the point load solution involve
products of Bessel functions of the first kind, an exponential function, and a polynomial, which
cannot be given in the exact closed-form.

In this paper, we derive the semi-analytical solutions for stresses in an inhomogeneous and
cross-anisotropic half-space induced by an end-bearing (a point load), and various skin frictions
(uniform, linearly varying, and non-linearly parabolic varying) of an axially loaded pile. These
solutions are obtained by integrating the point load solution derived by Wang et al. [10].
However, it should be noted that the proposed solutions are not for the pile-soil interactions.
Rather, they are semi-coupled solutions where the influences of the pile on the soil foundation
are simplified as various distributed loads. Also, the presented solutions are based on the
assumptions that the medium is a linear elastic, and the cross-anisotropic half-space has planes
of isotropy parallel to the boundary plane. Additionally, the effect of pile diameter is not
considered in this analysis. Therefore, in this work, four cases of vertical loadings given below
are considered:

Case A. A point load F (force), at depth L (Figure 2). This case is called point load.
Case B. A total load of Q (force per unit length), applied along the vertical axis z in uniform

distribution ðQðzÞ ¼ F=LÞ from the surface to depth L (Figure 3). This case is called uniform
skin friction.
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Case C. A total load of Q (force per unit length), applied along the vertical axis z in
increments varying linearly with depth ðQðzÞ ¼ ð2F=L2ÞzÞ; from zero at the surface to a
maximum at depth L (Figure 4). This case is called linear variation of skin friction.

Traction-free

   F      F

(0, 0, η)    (0, 0, η) (0, 0, η)

Z  Z Z 

 (I) (II)

Figure 1. Superposition approach to the point loading half-space problem.
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z 

Figure 2. An inhomogeneous cross-anisotropic half-space subjected to a point load.
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Figure 3. An inhomogeneous cross-anisotropic half-space subjected to a uniform skin friction.
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Case D. A total load of Q (force per unit length), applied along the vertical axis z in
increments varying non-linearly parabolic with depth ðQðzÞ ¼ ð3F=L3Þz2Þ; from zero at the
surface to a maximum at depth L (Figure 5). This case is called non-linear parabolic variation of
skin friction.

An illustrative example is given to demonstrate the influence of soil inhomogeneity, the type
and degree of soil anisotropy, and the loading types on the vertical normal stress, which could
be useful to the design of soil foundation and piles.

CASE A: STRESSES DUE TO A POINT LOAD

The approaches for solving the stresses subjected to a static point load F in a cylindrical co-
ordinate, which are expressed as the form of body forces, are shown in Figure 1 [10]. Figure 1
depicts that a half-space is composed of two full-spaces, one with a point load in its interior
and the other with opposite traction of the first full-space along z ¼ 0: The traction in the first

x

        y dη
L

2F/L

z 

Figure 4. An inhomogeneous cross-anisotropic half-space subjected to a linear variation of skin friction.
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Figure 5. An inhomogeneous cross-anisotropic half-space subjected to a non-linear
parabolic variation of skin friction.
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full-space along z ¼ 0 is due to the point load. The solutions for the half-space are thus obtained
by superposing the solutions of the two full-spaces. That is, the solutions can be derived from the
governing equations for a full-space (including the general solutions (I) and homogeneous solu-
tions (II)) by satisfying the traction-free boundary conditions on the surface of the half-space.
The Hankel transforms with respect to r are employed for solving this problem. Hence, the
solutions in the Hankel-transformed domain for the vertical normal stress ðsp

n

zz Þ and shear stress
ðtp

n

rz Þ subjected to a point load F acting at z ¼ Z (measured from the surface, as shown in Figure 1)
in the interior of an inhomogeneous cross-anisotropic half-space are expressed as follows:

sp
n
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F

4pC33C44
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In Equations (1)–(2), Cij ði; j ¼ 1–6) are the elastic stiffness coefficients of a continuously
inhomogeneous cross-anisotropic medium, which in a cylindrical co-ordinate system are given by:
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where k is referred to as the inhomogeneity parameter. Furthermore, we notice that Cij can be
expressed in terms of the five engineering elastic coefficients E;E0; n; n0 and G0 as:

C11 ¼
Eð1� ðE=E0Þu02Þ

ð1þ uÞð1� u� ð2E=E0Þu02Þ
; C13 ¼

Eu0

1� u� ð2E=E0Þu02
;

C33 ¼
E 0ð1� uÞ

1� u� ð2E=E 0Þu02
; C44 ¼ G0; C66 ¼

E

2ð1þ uÞ
ð4Þ

where

1. E and E0 are Young’s moduli in the plane of cross-anisotropy and in a direction normal to
it, respectively.

2. n and n0 are Poisson’s ratios characterizing the lateral strain response in the plane of cross-
anisotropy to a stress acting parallel and normal to it, respectively.

3. G0 is the shear modulus in planes normal to the plane of cross-anisotropy.
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However, u1 and u2 are two characteristic roots obtained based on the assumption on the
elastic coefficients [10], and can be defined as:

u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4Q

p
2

s
; u2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S �
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S2 � 4Q

p
2

s

where

S ¼
C11C33 � C13ðC13 þ 2C44Þ

C33C44
; Q ¼

C11

C33

The differences between the homogeneous cross-anisotropic elastic coefficients [9] and the
inhomogeneous ones [10] adopted in this paper are expressed in Table I. It is clear that, for
an inhomogeneous cross-anisotropic half-space described by Equation (3), only three (E;E 0;
and G0) of the five engineering elastic coefficients depend exponentially on the inhomogeneity
parameter k; the two Poisson’s ratios are still constants. Besides, depending on the parameter k;
we have the following three different situations:

(1) k > 0; denotes a hardened surface, whereas E;E0; and G0 decrease with the increase of depth.
(2) k ¼ 0; is referred to as the conventional homogeneous case [9].
(3) k50; denotes a soft surface, whereas E;E0; and G0 increase with the increase of depth.

The stresses spzz; t
p
rz in the physical domain for the inhomogeneous and cross-anisotropic half-

space can be obtained by taking the inverse Hankel transform for sp
n

zz (Equation (1)), tp
n

rz

(Equation (2)) with respect to x of order 0, and 1, respectively, in the following:

spzz

tprz

( )
¼

Z 1

0

x
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n

zz J0ðxrÞ

tp
n

rz J1ðxrÞ

( )
dx ð5Þ

From Equations (1)–(2), we found that the integrands under the infinite integrals in
Equation (5) involve products of Bessel function of the first kind of order n (n ¼ 0; 1), an
exponential function, and a polynomial, which cannot be given in closed-form so that numerical
integrations are required. The numerical methods employed are to perform the integration over
each of the first 20 half-cycles of Bessel functions. Additionally, Euler’s transformation was
applied to this series to speed up the convergence [11]. The first twenty terms of zeros of Bessel
function of the first kind of order n ðn ¼ 0; 1Þ are quoted from Watson [12]. Also, the Gauss
quadrature formula was utilized for 68 points of subdivision of each interval in order to obtain high
accuracy of numerical values. The method proposed by Longman [11] can be expressed as follows:Z 1

0

J0ðxÞ dx ffi
X20
n¼0

Z xnþ1

xn

J0ðxÞ dx ð6Þ

Table I. Homogeneous and inhomogeneous cross-ani-
sotropic elastic coefficients.

Homogeneous [9] Inhomogeneous [10]

E Ee�kz

E0 E0e�kz

n n
n0 n0

G0 G0e�kz
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In each division, the 16 points of Gaussian quadrature are adopted, and x can be transferred by:

x ¼
ðxnþ1 � xnÞtþ xnþ1 þ xn

2
ð7Þ

with t being the Gauss point.
Then, revising Equation (6) with Equation (7) yields the following expression:

X20
n¼0

Z xnþ1

xn

J0ðxÞ dx ffi
X20
n¼0

ðxnþ1 � xnÞ
2

X16
i¼1

wiJ0
ðxnþ1 � xnÞti þ xnþ1 þ xn

2

� �" #
ð8Þ

In order to accelerate the convergence, we sum up the values of the first 10 terms, and
introduce the Euler’s transformation to the other tens as:Z 1

0

J0ðxÞ dx ffi
X10
n¼0

Z xnþ1

xn

J0ðxÞ dxþ
X20
n¼11

Ln�10

2n�10
¼ 0:999999992 ð9Þ

where L is the first advancing row of the differences [11], and n is a constant ranging from
0 to 20. Thus, the approximate value (0.999999992) calculated by Equation (9) is very close to
the exact result (which is equal to 1.0).

The singularities encountered can be solved by means of the Taylor’s expansion theorem
as [13]:

f ðxÞ ¼
Z b

a

f ðtÞ
t� x

dt ¼
Z b

a

f ðtÞ � f ðxÞ
t� x

dtþ
Z b

a

f ðxÞ
t� x

dt ¼
Z b

a

f ðtÞ � f ðxÞ
t� x

dtþ f ðxÞlog
b� x

x� a

¼
Z x�e

a

f ðtÞ � f ðxÞ
t� x

dtþ
Z b

x�e

f ðtÞ � f ðxÞ
t� x

dtþ f ðxÞlog
b� x

x� a
þ 2ef 0ðxÞ þ

e3

9
f 000ðxÞ þ � � � ð10Þ

where x is a singular point; a; b are the lower, upper limit, respectively; e is a tiny parameter with
respect to the integral interval b� a:

Thus, the stresses for an end-bearing pile in the inhomogeneous and cross-anisotropic half-
space, as seen in Figure 2, can be obtained by substituting Z by L in Equation (5). The numerical
results are in good agreement with the Mindlin’s [3] and Geddes’s solutions [5] when the medium
is homogeneous and isotropic (as seen in Figure 6 in the illustrative examples section), and
with Wang’s solutions [7] when the medium is homogeneous but cross-anisotropic (as seen in
Figures 7–9 in the Illustrative Examples section).

CASE B: STRESSES DUE TO A UNIFORM SKIN FRICTION

The stresses in an inhomogeneous and cross-anisotropic half-space due to a uniform skin
friction can be directly integrated from the point load solutions. The total load Q (force per unit
length) is distributed uniformly with depth from the surface at z ¼ 0 to the depth at z ¼ L
(Figure 3). Taking an infinitesimal element dZ along the z-axis, the elementary force can be
expressed as follows:

dQ ¼
F

L

� �
dZ ð11Þ

Hence, integrating Z in Equations (1)–(2) between the limits 0 and L gives:
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Effect of soil inhomogeneity for the point load case

Soil 1 with k=0 (numerical)
Mindlin's (1936) and
Geddes's solutions (1966a)
Soil 1 with k=-0.1 

Soil 1 with k=-0.3

Soil 1 with k=-0.5 

  Effect of soil inhomogeneity
for the uniform skin friction case

Soil 1 with k=0 (numerical)

Geddes's solutions (1966a)

Soil 1 with k=-0.1

Soil 1 with k=-0.3

Soil 1 with k=-0.5

   Effect of soil inhomogeneity for the 
linear variation of skin friction case

Soil 1 with k=0 (numerical)

Geddes's solutions (1966a)
Soil 1 with k=-0.1
Soil 1 with k=-0.3
Soil 1 with k=-0.5

    Effect of soil inhomogeneity for the 
non-linear parabolic variation of skin friction case

Soil 1 with k=0 (numerical)
Wang's solutions (2003)
Soil 1 with k=-0.1
Soil 1 with k=-0.3
Soil 1 with k=-0.5

(a) (b)

(c) (d)

Figure 6. Effect of soil inhomogeneity. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in inhomogeneous Soil 1: Point load in (a); uniform skin friction
in (b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).
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tu
n

rz ¼
�F

4pC33L
�B1

1

u1x
½e�u1xz � e�u1xðz�LÞ� þ B2

1

ðk� u2xÞ
½eðk�u2xÞz � eðk�u2xÞðz�LÞ�

�

þ B1
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D
1

u1x
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D
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u2x
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þB4
D3

D
1

u1x
ð1� e�u1xLÞeðk�u2xÞz � B2

D4
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�
ð13Þ
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Figure 7. Effect of soil inhomogeneity. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in inhomogeneous Soil 2: Point load in (a); uniform skin friction
in (b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2004; 28:1233–1255

C.-D. WANG AND E. PAN1242



where su
n

zz and tu
n

rz denote the vertical normal and shear stresses in the Hankel-transformed
domain. The physical domain stresses are found by taking the inverse Hankel transforms, i.e.

suzz

turz

( )
¼

Z 1

0

x
su

n

zz J0ðxrÞ

tu
n

rz J1ðxrÞ

( )
dx ð14Þ

where suzz and turz are the vertical normal and shear stresses in the physical domain due to the
uniform skin friction. We remark that these expressions reduce to Geddes’s/Wang’s solutions
[5, 7] if the half-space is homogeneous and isotropic/cross-anisotropic, respectively.
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Figure 8. Effect of soil inhomogeneity. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in inhomogeneous Soil 3: Point load in (a); uniform skin friction
in (b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).
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CASE C: STRESSES DUE TO A LINEAR VARIATION OF SKIN FRICTION

The linearly varying skin friction assumed for a total load of Q (force per unit length) is shown
in Figure 4. The load applied over a depth dZ is given by:

dQ ¼ 2F
Z
L2

� 	
dZ ð15Þ
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Figure 9. Effect of soil inhomogeneity. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in inhomogeneous Soil 4: Point load in (a); uniform skin friction
in (b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).
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Following the same approach as for Case B, i.e. substituting Equation (15) into Equations
(1)–(2), and integrating Z from 0 to L gives the following expression:

sl
n

zz ¼
F

2pC33C44L2
A1

1

u21x
2
½e�u1xz � ð1� u1xLÞe�u1xðz�LÞ�

(

þA2
1

ðk� u2xÞ
2
feðk�u2xÞz � ½1þ ðk� u2xÞL�eðk�u2xÞðz�LÞg

�A1
D1

D
1

u21x
2
½e�u1xz � ð1þ u1xLÞe�u1xðzþLÞ�

�A3
D2

D
1

u22x
2
½1� ð1þ u2xLÞe�u2xL�eðk�u1xÞz

�A4
D3

D
1

u21x
2
½1� ð1þ u1xLÞe�u1xL�eðk�u2xÞz

� A2
D4

D
1

ðk� u2xÞ
2
feðk�u2xÞz � ½1� ðk� u2xÞL�eðk�u2xÞðzþLÞg

)
ð16Þ
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n

rz ¼
�F

2pC33L2
B1

1

u21x
2
½e�u1xz � ð1� u1xLÞe�u1xðz�LÞ�

(

þB2
1

ðk� u2xÞ
2
feðk�u2xÞz � ½1þ ðk� u2xÞL�eðk�u2xÞðz�LÞg

þB1
D1

D
1

u21x
2
½e�u1xz � ð1þ u1xLÞe�u1xðzþLÞ�

þB3
D2

D
1

u22x
2
½1� ð1þ u2xLÞe�u2xL�eðk�u1xÞz

þB4
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D
1

u21x
2
½1� ð1þ u1xLÞe�u1xL�eðk�u2xÞz
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D
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ðk� u2xÞ
2
feðk�u2xÞz � ½1� ðk� u2xÞL�eðk�u2xÞðzþLÞg

)
ð17Þ

where sl
n

zz and tl
n

rz are the vertical normal and shear stresses in the Hankel-transformed domain.
Similarly, the stresses in the physical domain (slzz; t

l
rzÞ are obtained via numerical integral of

slzz

tlrz

( )
¼

Z 1

0

x
sl

n

zzJ0ðxrÞ

tl
n

rzJ1ðxrÞ

8<
:

9=
;dx ð18Þ

Again, if the half-space is homogeneous and isotropic/cross-anisotropic, Equation (18) is
reduced to Geddes’s/Wang’s solutions [5, 7], respectively.
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CASE D: STRESSES DUE TO A NON-LINEAR PARABOLIC
VARIATION OF SKIN FRICTION

A total load of Q (force per unit length), applied along the vertical axis z in increments varying
non-linearly parabolic with depth, from zero at the surface to a maximum at depth L is
investigated (Figure 5). The incremental load dQ over a depth d� can be expressed as:

dQ ¼ 3F
Z2

L3

� �
dZ ð19Þ

Substituting Equation (19) into Equations (1)–(2) and integrating the result for Z from 0 to L
gives the following expression:
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n
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3F

4pC33C44L3
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where sn
n

zz and tn
n

rz represent the stress components in the Hankel-transformed domain. The
stresses in the physical domain ðsnzz; t

n
rzÞ are expressed as follows:

snzz

tnrz

( )
¼

Z 1

0

x
sn

n

zz J0ðxrÞ

tn
n

rz J1ðxrÞ

( )
dx ð22Þ

Since no analytical solution for this loading case is available for a homogeneous and isotropic
half-space, the numerical results for an isotropic medium are examined by utilizing the closed-
form solutions of Wang [7] via a limiting process. It is found that the results obtained using the
presented solution are in full agreement with Wang’s solutions [7] if the half-space is
homogeneous and isotropic/cross-anisotropic.

ILLUSTRATIVE EXAMPLES

A parametric study is conducted to verify the solutions and to investigate the effect of material
inhomogeneity, the type and degree of material anisotropy, and the loading types on the vertical
normal stress. For typical ranges of cross-anisotropic parameters, Gazetas [14] summarized
several experimental data regarding deformational cross-anisotropy of clays and sands. He
concluded that the ratio E=E0 ranged from 0.6 to 4 for clays and was as low as 0.2 for sands. For
the heavily over-consolidated London clay, however, the ratio for E=E0 is in the range 1.35–2.37
and for G0=E0 is in 0.23–0.44 [15–18]. Besides, the hypothetical ratio n=n0 varying between 0.75
and 1.5 is the possible range of the Poisson’s ratios [7]. Hence, the degree of anisotropy of
London clay, including the ratios E=E0;G0=E0; and n=n0; is accounted for investigating its effect
on the stress. The elastic properties for several types of isotropic and cross-anisotropic soils as
foregoing mentioned are listed in Table II. The values adopted in Table II for E and n are
50 MPa and 0.3, respectively.

Based on Equations (1), (2), (5) (for a point load), Equations (12)–(14) (for a uniform skin
friction), Equations (16)–(18) (for linear variation of skin friction), and Equations (20)–(22) (for
non-linear parabolic variation of skin friction), a FORTRAN program was written to calculate
the stresses. In the program, the vertical normal and shear stresses at any point in the half-space
can be computed. However, the vertical normal stress is of greater significance in practical
problems; hence, numerical results are shown only for this component at the depth z below the
pile tip ðz=L > 1Þ: According to the results reported in Figures 6–14, the effect of the soil
inhomogeneity, the type and degree of soil anisotropy, and the loading types on the vertical
normal stress is investigated below.

Firstly, the non-dimensional vertical normal stress ðs
p*
zz L

2=F ; s
u*
zz L

2=F ; s
l *
zz L

2=F ; s
n*
zz L

2=FÞ
for Soils 1–4 (Table II) below the line of load ðr ¼ 0Þ resulted from a point load, a uniform skin

Table II. Elastic coefficients for different soils ðE ¼ 50 MPa; n ¼ 0:3Þ:

Soil type E=E0 G0=E0 n=n0

Soil 1. Isotropy 1.0 0.385 1.0
Soil 2. Cross-anisotropy 2.37 0.385 1.0
Soil 3. Cross-anisotropy 1.0 0.23 1.0
Soil 4. Cross-anisotropy 1.0 0.385 1.5
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friction, a linear variation of skin friction, and a non-linear parabolic variation of skin
friction vs the non-dimensional ratio z=L is given in Figures 6(a)–6(d), Figures 7(a)–7(d),
Figures 8(a)–8(d), and Figures 9(a)–9(d), respectively. In order to check the accuracy of the
proposed solutions, comparisons with the homogeneous and isotropic solutions of Mindlin [3]
and Geddes [5], and homogeneous and cross-anisotropic solutions of Wang [7], are also
carried out by a limiting procedure. The results based on the presented numerical techniques are
in good agreement with previous ones [3, 5, 7]. The inhomogeneity parameter k is chosen to
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Figure 10. Effect of soil anisotropy. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in Soils 1–4 for k ¼ 0: Point load in (a); uniform skin friction in

(b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).
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vary from 0 (homogeneous) to �0:5ðk50; denotes a soft surface, whereas E;E0;G0 increase
with the increase of depth). Figures 6(a)–6(d) indicate that for the given pile length ðLÞ and
loading type (point load in Figure 6(a), uniform skin friction in Figure 6(b), linear variation
of skin friction in Figure 6(c), and non-linear parabolic variation of skin friction in
Figure 6(d)), the stress variation with the depth ðzÞ has similar trends for Soil 1 (isotropy,
E=E0 ¼ 1:0; G0=E0 ¼ 0:385; n=n0 ¼ 1:0). In particular, the magnitude of the induced vertical
normal stress in Soil 1 by each loading case decreases with the increasing z=L (from 1 to 3), and
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Figure 11. Effect of soil anisotropy. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in Soils 1–4 for k ¼ �0:1: Point load in (a); uniform skin friction
in (b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).
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it obeys the order (from large to small): k ¼ �0:1 > k ¼ �0:3 > k ¼ �0:5 > k ¼ 0 ðk50;E;E 0;
G0 increase with the increasing depth). Figures 7–9 show the induced stress by the four different
loading types for Soil 2 (cross-anisotropy, E=E0 ¼ 2:37;G0=E0 ¼ 0:385; n=n0 ¼ 1:0Þ; Soil 3 (cross-
anisotropy, E=E0 ¼ 1:0; G0=E0 ¼ 0:23; n=n0 ¼ 1:0), and Soil 4 (cross-anisotropy, E=E0 ¼ 1:0;
G0=E0 ¼ 0:385; n=n0 ¼ 1:5Þ; respectively. It is interesting that for Soil 2 with k ¼ �0:5; while a
non-zero compressive stress may still exist at a relatively large depth (i.e., z=L > 3) when the soil
is under the point load (Figure 7(a)), the induced vertical normal stress might be transferred to
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Figure 12. Effect of soil anisotropy. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in Soils 1–4 for k ¼ �0:3: Point load in (a); uniform skin friction
in (b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).
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tensile for the skin friction cases at z=L > 1:4 (Figures 7(b)–(d)). For Soil 3 shown in Figures
8(b)–8(d), the stress distribution is similar to that for Soil 2, with the inhomogeneity parameter k
at �0:3; instead of �0:5 for Soil 2. Figures 9(b)–9(d) plot the stress distribution for Soil 4. It is
observed that different skin friction cases predict nearly identical and close-to-zero vertical
normal stress, except for the point load case when k ¼ �0:5:

Secondly, the non-dimensional vertical normal stress vs z=L for the inhomogeneity para-
meter k ¼ 0;�0:1;�0:3; and �0:5; also resulted from the presented loading types, is given in
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Figure 13. Effect of soil anisotropy. Variation of non-dimensional vertical normal stress with non-
dimensional depth below the loading line in Soils 1–4 for k ¼ �0:5: Point load in (a); uniform skin friction
in (b); linear variation of skin friction in (c); and non-linear parabolic variation of skin friction in (d).
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Figures 10(a)–10(d), 11(a)–11(d), 12(a)–12(d), and 13(a)–13(d), respectively. Figures 10(a)–10(d)
show that for k ¼ 0 (homogeneous and isotropic soil (Soil 1), and homogeneous and cross-
anisotropic soils (Soils 2–4)), the magnitude of induced vertical normal stress by each loading
case decreases with increasing z=L (from 1 to 3), and follows the order: Soil 3 > Soil 2 > Soil
1 ¼ Soil 4. In other words, the ratio n=n0 (Soil 4, E=E0 ¼ 1:0; G0=E0 ¼ 0:385; n=n0 ¼ 1:5) has
nearly no influence on the stress. We also found that the variation of the stress in different soils
is very small when z=L > 2: From Figures 11(a)–11(d), we observed that for k ¼ �0:1; the stress
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Figure 14. Effect of loading types. Variation of non-dimensional vertical normal stress with
non-dimensional depth below the loading line in Soil 3: k ¼ 0 in (a); k ¼ �0:1 in (b); k ¼ �0:3

in (c); and k ¼ �0:5 in (d).
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in the isotropic soil (i.e. Soil 1) for all the loading cases is considerably larger than that in the
cross-anisotropic soils (i.e. Soils 2–4). For k ¼ �0:3 and �0:5; however, the feature of the stress
distribution becomes complicated (Figures 12 and 13). The stress induced by the skin friction
loads for k ¼ �0:3 becomes tensile for Soil 3 when z=L > 1:4 (Figures 12(b)–12(d)), whereas for
k ¼ �0:5 it becomes tensile in both Soils 2 and 3 when z=L > 1:5 (Figures 13(b)–13(d)). We also
noticed that the stress induced by the point load for k ¼ �0:5 can be tensile in Soil 4 (Figure 13(a)).

Finally, Figure 14 illustrates the effect of different loading types on the induced vertical
normal stress in Soil 3 (cross-anisotropy, E=E0 ¼ 1:0; G0=E0 ¼ 0:23; n=n0 ¼ 1:0). From Figure
14(a), we observed that, when k ¼ 0; the stress quickly approaches to zero for all the loading
types; however, a non-zero vertical normal stress can exist even when z=L > 3 (Figures
14(b)–14(d)). Perhaps the most interesting feature is that for k ¼ �0:1;�0:3 and �0:5; a tensile
stress can be induced when the soil is under the skin friction loads (Figures 14(b)–14(d)). It is
clear that the magnitude of vertical normal stress strongly depends on the soil inhomogeneity,
particularly when k ¼ �0:3 or �0:5:

CONCLUSIONS AND DISCUSSIONS

In this article, solutions are presented for the vertical normal and shear stresses induced by
various loadings associated with a pile in a continuously inhomogeneous and cross-anisotropic
half-space. The planes of cross-anisotropy are parallel to the surface of the half-space and the
Young’s and shear moduli in the half-space are assumed to vary exponentially with depth. The
loading types include an embedded point load for an end-bearing pile, and the uniform skin
friction, linear variation of skin friction, and non-linear parabolic variation of skin friction for a
friction pile, respectively. These solutions are expressed in terms of the Hankel transform using
the recently developed point load solutions [10]. Numerical techniques are proposed to carry out
the inverse Hankel transform. It is shown that the stresses predicted based on the presented
formulation for the special cases are in good agreement with previous published results. These
include the homogeneous isotropic solutions of Geddes [5] for a point load (the same as the
Mindlin’s solution [3]), a uniform skin friction, and linear variation of skin friction when the
medium is isotropic. They also include the homogeneous cross-anisotropic solutions of Wang [7]
for the four different loads when the medium is cross-anisotropic. Furthermore, parametric
studies are carried out for London clay and some interesting results are summarized as follows:

1. For the isotropic Soil 1 (Figure 6), the magnitudes of the induced vertical normal stresses
by each loading decrease with increasing depth z=L (from 1 to 3), and the stresses are all
under compression.

2. For the cross-anisotropic Soil 2 (Figure 7), tensile stress can be induced in the inhomo-
geneous soil for the soft surface case (k ¼ �0:5) at depth z=L > 1:4 for the three skin
friction loads. For the point load case, the corresponding stress is compressive. Furthermore,
the k ¼ �0:3 case gives a non-zero compressive stress for the three skin friction loads.

3. For the cross-anisotropic Soil 3 (Figure 8), the stress distribution is similar to that for
Soil 2 (Figure 7), but here the same tend holds for k ¼ �0:3; instead of k ¼ �0:5:

4. For the cross-anisotropic Soil 4 (Figure 9), except for the point load case where the stress
corresponding to k ¼ �0:5 is tensile in most part of the depth z=L from 1 to 3, the stresses
for other cases are very close to zero.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2004; 28:1233–1255

STRESSES DUE TO VERTICAL SUBSURFACE LOADING 1253



5. For the homogeneous case, k ¼ 0 (Figure 10), the stresses for all the cases are very close to
zero for z=L > 2:

6. For the given inhomogeneity parameter k ¼ �0:1 (Figure 11), except for the isotropic soil
where a large compressive stress exists even for z=L > 2; the stresses for other cases are very
close to zero (for z=L > 2).

7. For the given inhomogeneity parameter k ¼ �0:3 (Figure 12), except for the point load
case where a non-zero compressive stress exists, the stresses in Soil 3 are tensile for z=L >
1:4: It is also noted that the stresses due to the skin friction loads in Soils 1 and 2 are
compressive, and in Soil 4, the stress is negligible.

8. For the given inhomogeneity parameter k ¼ �0:5 (Figure 13), tensile stress develops in
Soils 2 and 3 when under skin friction loads.

9. For the given inhomogeneous cross-anisotropic Soil 3 (Figure 14), tensile stress can be
developed if the soil is under skin friction loads, especially when k ¼ �0:3 or �0:5:

While this article has been concerned with the stresses of single piles in an inhomogeneous and
cross-anisotropic half-space, the method of analysis utilized herein can be conveniently applied
to the analysis of settlements or both of pile groups by using the principle of superposition.
Also, the presented point load solutions can be extended to simulate the pile-soil-pile as well as
pile group-pile cap interaction problems. These solutions could more realistically imitate the
actual stratum of loading situations in many areas of engineering practice, and provide a
mathematical model to the problems in soil/rock mechanics and piling engineering where the
media are of inhomogeneity and cross-anisotropy.

APPENDIX A: NOMENCLATURE

Cij ði; j ¼ 1–6) elastic moduli of the medium
dZ infinitesimal element along the z-axis
E Young’s modulus in the horizontal direction
E0 Young’s modulus in the vertical direction
F force for an end-bearing or a friction pile
G0 shear modulus in the vertical plane
Jnð Þ Bessel function of the first kind of order n
k the inhomogeneity parameter, as in e�kz

L the pile length
Q total load (force per unit length)
u1; u2 roots of the characteristic equation

Greek letters

Z the buried depth, as seen in Figure 1
n Poisson’s ratio characterizing the effect of horizontal stress on the comple-

mentary horizontal strain
n0 Poisson’s ratio characterizing the effect of vertical stress on the horizontal strain
slzz; t

l
rz stresses in the physical domain, due to the linear variation of skin friction

sl
n

zz; t
ln

rz stresses in the Hankel-transformed domain, due to the linear variation of skin
friction
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snzz; t
n
rz stresses in the physical domain, due to the non-linear parabolic variation of

skin friction
sn

n

zz ; t
nn

rz stresses in the Hankel-transformed domain, due to the non-linear parabolic
variation of skin friction

spzz; t
p
rz stresses in the physical domain, due to a point load

sp
n

zz ; t
pn

rz stresses in the Hankel-transformed domain, due to a point load

suzz; t
u
rz stresses in the physical domain, due to the uniform skin friction

su
n

zz ; t
u*
rz stresses in the Hankel-transformed domain, due to the uniform skin friction
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