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The two-dimensional behavior of laminated magnetoelectroelastic plates is investigated for
two specific geometries: laminates under conditions of cylindrical bending and homogeneous
plates under traction-free conditions. These plates are composed of a collection of elastic,
piezoelectric, and magnetostrictive layers with perfect bonding between each interface. We
investigate the through-thickness behavior of the five primary unknowns (the three
displacements and the electric and magnetic potentials) under a variety of boundary
conditions and aspect ratios using a discrete-layer theory. Results are compared with exact
solutions for the case of cylindrical bending and finite element models for traction-free
deformation. Excellent agreement is found between the approaches, and generalizations
regarding global plate behavior are summarized.
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INTRODUCTION

M
AGNETOELECTROELASTIC laminates possess coup-

led field behavior between the elastic, electric, and

magnetic field variables that depend strongly on the

specific edge and surface conditions and the combination

of the material parameters within the different layers.

These laminates can contain three different types of

materials: (1) elastic materials that possess physical

relations between stress and strain fields and electric

displacement and electric fields, but no coupling between

the elastic and electric fields nor the elastic and magnetic

fields; (2) piezoelectric materials that possess the same

couplings as elastic materials but also possess coupling

between the electric and elastic fields; and (3) magnetos-

trictive materials that possess the same couplings as

elastic materials but also possess coupling between the

magnetic and elastic fields. Problems involving coupled

magnetoelectroelastic media are significantly more com-

plex than the far more usual piezoelectric laminates

(Tzou, 1993; Saravanos, 1999), and have been considered

by Harshe et al. (1993), Nan (1994), and Benveniste

(1995), and the three-dimensional behavior of magne-

toelectroelastic laminates under simple support has been

studied by Pan (2001) and Pan and Heyliger (2002). An

exact solution for magnetoelectroelastic laminates in

cylindrical bending has also been obtained by Pan and

Heyliger (2002).

In this study, the basic through-thickness behavior of
magnetoelectroelastic laminates is considered using an

approximate discrete-layer representation of the three
displacement components, the electric potential, and the
magnetic potential. There are two primary objectives of

this work. First, we determine the fundamental behavior
of these five fields and the additional secondary fields of

stress, electric displacement, and magnetic flux when
these plates are subjected to mechanical, electric, or
magnetic excitation. Second, we seek limits on the

accuracy of theories that may be introduced to more
efficiently model the behavior of these structural compo-
nents while maintaining much of the accuracy of more

complex approximate models. Two primary geometries
are studied: the laminated plate under cylindrical
bending, for which an exact solution exists (Pan and

Heyliger, 2002), and the completely traction-free plate
under surface potentials. Both problems are considered

to develop initial estimates for the level of sensing and
actuation that may be possible, and outline the limi-
tations of various plate theories in modeling these novel

components.

THEORY

Geometry and Governing Equations

We consider a laminated solid that is either very

thin or infinitely long in the y-direction and composed
of an arbitrary number of elastic, piezoelectric,
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or magnetostrictive layers. The laminate has dimensions

Lx in the x-direction as has total thickness h, with

individual layer thicknesses of h1, h2, and so on labeled

from the bottom up. Each layer has the constitutive

equations that can be expressed as (Harshe et al., 1993):

�i ¼ Cik�k � ekiEk � qkiHk

Di ¼ eik�k þ �ikEk þ dikHk

Bi ¼ qik�k þ dikEk þ �ikHk

ð1Þ

Here Cij , �ij , and �ij are the components of elastic

stiffness and dielectric and magnetic permittivity,

respectively. The symbols �i, Di, and Bi denote the

components of stress, electric displacement, and mag-

netic flux, and �k, Ek, and Hk denote the components of

linear strain, electric field, and magnetic field, respec-

tively. The standard contraction in indices has been used

here for the elastic variables (i.e. �4 ¼ �23, etc.).
The components of strain, electric field, and magnetic

field are related to the displacement field ui, and the

electric and magnetic potentials � and  by the relations

�ij ¼
1

2

@ui
@xj

þ
@uj
@xi

� �
ð2Þ

Ei ¼ ��, i ð3Þ

Hi ¼ � , i ð4Þ

Within the laminate, the body force vector fi and the

free charge density � are given functions of position.

Under these conditions, the equations of equilibrium,

and the Gauss’s laws for electrostatics and magnetism

are given as

�ij, j þ fi ¼ �ui, tt ð5Þ

Di, i ¼ �f ð6Þ

Bi, i ¼ 0 ð7Þ

The nonzero terms for the rotated orthotropic

property tensors for the materials used in this study

can be expressed in matrix form as follows:

½C � ¼

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

2
666666664

3
777777775

½q� ¼
0 0 0 q14 q15 0
0 0 0 q24 q25 0
q31 q32 q33 0 0 q36

2
4

3
5

½e� ¼
0 0 0 e14 e15 0
0 0 0 e24 e25 0
e31 e32 e33 0 0 e36

2
4

3
5

½�� ¼
�11 �12 0
�12 �22 0
0 0 �33

2
4

3
5

½d � ¼
d11 d12 0
d12 d22 0
0 0 d33

2
4

3
5

½�� ¼
�11 �12 0
�12 �22 0
0 0 �33

2
4

3
5

The specific values for each of the material parameters
used for the examples presented later in this study are
given in Table 1. Many of the nonzero terms in these
matrices come only from a rotation of orthotropic
properties about the z-axis. Also, the coupling coeffi-
cients dik are zero for the materials considered in this
study, and the coupling between the electric and
magnetic fields are therefore generated by the so-called
product property that links strain generated by electric
field with an induced magnetic field, and vice versa.
However, they are easily included in this formulation.

Table 1. Material properties and units for the three materials
used in numerical examples.

Parameter CoFeO4 BaTiO3 PVDF

C11 (GPa) 286.0 166.0 238.0
C22 286.0 166.0 23.6
C33 269.5 162.0 10.6
C13 170.5 78.0 4.4
C23 170.5 78.0 2.15
C12 173.0 77.0 6.43
C44 45.3 43.0 1.92
C55 45.3 43.0 2.19
C66 56.5 44.5 3.98
e31 (C/m2) 0.0 �4.4 �0.13
e32 0.0 �4.4 �0.14
e33 0.0 18.6 �0.28
e24 0.0 11.6 �0.01
e15 0.0 11.6 �0.01
q31 (N/Am) 580.3 0.0 0.0
q32 580.3 0.0 0.0
q33 699.7 0.0 0.0
q24 550.0 0.0 0.0
q15 550.0 0.0 0.0
�11 (10�9 C2/Nm2) 0.080 11.2 11.0625
�22 0.080 11.2 10.6023
�33 0.093 12.6 10.6023
d11¼d22¼d33 0.0 0.0 0.0
�11 (10�6Ns2/C2) �590.0 5.0 5.0
�22 �590.0 5.0 5.0
�33 157.0 10.0 10.0
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Variational Formulation

Following a formulation that is standard in varia-
tional methods of approximation (Reddy, 1984), we

multiply the equations of equilibrium, Gauss’s law, and
Gauss’s law for magnetism by arbitrary functions
that physically represent a virtual displacement �ui, a
virtual electrostatic potential ��, and a virtual magnetic

potential � , respectively. We then integrate the result
over the volume of our domain and set the result equal
to zero. This results inZ

V

�uið�ij, j þ fiÞdV ¼ 0 ð8Þ

Z
V

��ðDi, i � �f ÞdV ¼ 0 ð9Þ

Z
V

� ðBi, iÞdV ¼ 0 ð10Þ

Integrating these equations by parts and applying the
divergence theorem yields

0 ¼

Z
V

�ij��ij � �uifi
� �

dV �

I
S

�ijnj�uidS ð11Þ

0 ¼

Z
V

Dj��, j þ �f ��
� �

dV �

I
S

Djnj��dS ð12Þ

0 ¼

Z
V

Bj� , jdV �

I
S

Bjnj� dS ð13Þ

Substituting the governing constitutive equations into

these equations yields the final weak form as

0¼

Z
V

C11
@u

@x
þC13

@w

@z
þC14

@v

@z
þC16

@v

@x
þe11

@�

@x

��

þe31
@�

@z
þq11

@ 

@x
þq31

@ 

@z

�
@�u

@x

þ C12
@u

@x
þC23

@w

@z
þC24

@v

@z
þC26

@v

@x
þe12

@�

@x

�

þe32
@�

@z
þq12

@ 

@x
þq32

@ 

@z

�
@�v

@y

þ C13
@u

@x
þC33

@w

@z
þC36

@v

@x
þe33

@�

@z
þq33

@ 

@z

� �
@�w

@z

þ C14
@u

@x
þC44

@v

@z
þC45

@u

@z
þ
@w

@x

� �
þe14

@�

@x
þq14

@ 

@x

� �
@�v

@z

þ C45
@v

@z
þC55

@u

@z
þ
@w

@x

� �
þe15

@�

@x
þq15

@ 

@x

� �
@�u

@z
þ
@�w

@x

� �

þ C16
@u

@x
þC36

@w

@z
þC66

@v

@x
þe16

@�

@x
þe36

@�

@z

�

þq16
@ 

@x
þq36

@ 

@z

�
@�v

@x
�ðfx�uþ fy�vþ fz�zÞ

�
dV

�

I
S

tx�uþ ty�vþ tz�z
� �

dS ð14Þ

0¼

Z
V

e11
@u

@x
þ e12

@v

@y
þ e14

@v

@z
þ
@w

@y

� �
þ e15

@u

@z
þ
@w

@x

� ���

þ e16
@u

@y
þ
@v

@x

� �
� �11

@�

@x
� �12

@�

@y
�d11

@ 

@x
�d12

@ 

@y

�
@��

@x

þ e21
@u

@x
þ e22

@v

@y
þ e24

@v

@z
þ
@w

@y

� �
þ e25

@u

@z
þ
@w

@x

� ��

þ e26
@u

@y
þ
@v

@x

� �
� �12

@�

@x
� �22

@�

@y
�d12

@ 

@x
�d22

@ 

@y

�
@��

@y

þ e31
@u

@x
þ e32

@v

@y
þ e33

@w

@z
þ e36

@u

@y
þ
@v

@y

� ��

� �33
@�

@z
�d33

@ 

@z

�
@��

@z
��f ��

�
dV�

I
S

Djnj��dS ð15Þ

0¼

Z
V

q11
@u

@x
þq12

@v

@y
þq14

@v

@z
þ
@w

@y

� �
þq15

@u

@z
þ
@w

@x

� ���

þq16
@u

@y
þ
@v

@x

� �
�d11

@�

@x
�d12

@�

@y
��11

@ 

@x
��12

@ 

@y

�
@� 

@x

þ q21
@u

@x
þq22

@v

@y
þq24

@v

@z
þ
@w

@y

� �
þq25

@u

@z
þ
@w

@x

� ��

þq26
@u

@y
þ
@v

@y

� �
�d12

@�

@x
�d22

@�

@y
��12

@ 

@x
��22

@ 

@y

�
@� 

@y

þ q31
@u

@x
þq32

@v

@y
þq33

@w

@z
þq36

@u

@y
þ
@v

@x

� ��

�d33
@�

@z
��33

@ 

@z

�
@� 

@z

�
dV�

I
S

Bjnj� dS ð16Þ

Hence we do not seek direct solutions of the dis-
placements and potentials to the governing differential
equations, but rather approximate solutions to the weak
form given in these equations. There are many different
combinations of functions that could be used to appro-
ximate the independent unknowns and their variations,
but we introduce an approach that allows for numerous
simplified plate theories to be included as a special case
while retaining the freedom to make the analysis as
accurate as possible.

Discrete-Layer Approximation

Since the plate geometry is such that the length in y is
either extremely thin or infinitely long, there is no
dependence on this spatial variable in any of the five
independent unknowns. Approximations to the three
displacements, the electrostatic potential, and the mag-
netic potential are generated in terms of the global (x, z)
coordinates, with the dependence of the displacements
on the z coordinate separated from the functions in x.
This allows for global functions in x and z that result in
a subsequent reduction of the size of the computational
problem. Hence approximations for the five unknown
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field quantities are sought in the form (Pauley and

Dong, 1976; Reddy, 1987)

uðx,z, tÞ ¼
Xn
j¼1

UjðxÞ�
u
j ðzÞ ¼

Xm
i¼1

Xn
j¼1

UjiðtÞ�
u
i ðxÞ�

u
j ðzÞ

vðx,z, tÞ ¼
Xn
j¼1

VjðxÞ�
v
j ðzÞ ¼

Xm
i¼1

Xn
j¼1

VjiðtÞ�
v
i ðxÞ�

v
j ðzÞ

wðx,z, tÞ ¼
Xn
j¼1

WjðxÞ�
w
j ðzÞ ¼

Xm
i¼1

Xn
j¼1

WjiðtÞ�
w
i ðxÞ�

w
j ðzÞ

�ðx,z, tÞ ¼
Xn
j¼1

�jðxÞ�
�
j ðzÞ ¼

Xm
i¼1

Xn
j¼1

�jiðtÞ�
�
i ðxÞ�

�
j ðzÞ

 ðx,z, tÞ ¼
Xn
j¼1

�jðxÞ�
 
j ðzÞ ¼

Xm
i¼1

Xn
j¼1

�jiðtÞ�
 
i ðxÞ�

 
j ðzÞ

ð17Þ

The approximations for each of the five field quantities

are constructed in such a way as to separate the depend-

ence along the axis with that in the direction perpendi-

cular to the plate axis. The reason for this is that the

change in the material properties forces a break in the

gradients of the displacements across an interface. This

can be easily seen by considering the specialized case of

elastostatic and electrostatics. In the former case, the

shear stress must be continuous across an interface, but

the shear modulus is different for two layers. Hence the

shear strain must be different, implying changes in the

slope of the displacement variables across the interface.

Similar behavior is true for the electric displacement

and magnetic flux. This character is crucially different

from equivalent single layer theories, in which the fields

through the thickness are generally assumed to have

continuous derivatives across a dissimilar material

interface. The loss of accuracy that is consistent with

such an approximation is an open question for magneto-

electroelastic laminates.
In the thickness direction, one-dimensional

Lagrangian interpolation polynomials are used for

�jðzÞ for each of the five variables. For the in-plane

approximations (i.e. that in the x-direction), different

types of approximations can be used for the one-

dimensional functions �jðxÞ. Power and Fourier series

are used in the present study. For a laminate with n

layers, (n�1) is the number of subdivisions through the

parallelepiped thickness (typically taken equal to or

greater than the number of layers in the parallelepiped),

and Uji,Vji,Wji,�ji, and �ji are the values of the

respective component at height j corresponding to the

ith in-plane approximation function (Reddy, 1987).
Substituting these approximations into the weak

form, collecting the coefficients of the variations of the

displacements, and placing the results in matrix form
yields the result

Kuu½ � Kuv½ � Kuw½ � Ku�
	 


Ku 
	 


Kvu½ � Kvv½ � Kvw½ � Kv�
	 


Kv 
	 


Kwu½ � Kwv½ � Kww½ � Kw�
	 


Kw 
	 


K�u
	 


K�v
	 


K�w
	 


K��
	 


K� 
	 


K u
	 


K v
	 


K w
	 


K �
	 


K  
	 


2
6666664

3
7777775

Uf g

Vf g

Wf g

�f g

�f g

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

f u
� �
f v

� �
f w

� �
f �

� �
f  

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð18Þ

The elements of each of these submatrices have a very
specific form as a result of the pre-integration of the
thickness dependence. The submatrices are in fact com-

posed of smaller submatrices that consist of the fully-
integrated thickness approximation functions multiplied
by the various in-plane functions. We have shown the

explicit form of each of these submatrices in the
Appendix prior to the insertion of the specific discrete-
layer approximations.

There are two key features of the structure of the final
matrix statement. First, the submatrices related to the

through-thickness approximations do not change for
problems with different boundary conditions. They are
fixed functions that remain the same regardless of what

behavior is being represented in-plane (except for their
relative contributions through their respective multi-
plying coefficient). Hence these submatrices are analy-
tically preintegrated and fixed in our algorithm,

eliminating this computational step. Second, we select
linear Lagrangian interpolation polynomials for our
approximations in z. This explicitly allows for a dis-

continuity of the derivatives of the functions across
a discrete-layer interface. This type of approximation
is selected because there is continuity of the primary
unknowns u, v,w,�, as well as the secondary

unknowns �xz, �yz, �zz, Dz, and Bz across a dissimilar
material interface. Examining the constitutive equa-
tions, it is clear that if there is a jump in the numerical

value of the elements of the constitutive tensors, there
must be a concomitant discontinuity in the thickness-
direction slope of the primary unknowns. Hence we

enforce this behavior via the selection of our through-
thickness basis functions. It is stressed that there are
many acceptable choices for these basis functions, and
those selected here are one combination of many that

could alternatively be used.

NUMERICAL EXAMPLES AND DISCUSSION

We consider two geometries in this section to assess

the level of accuracy of the discrete-layer model and
determine the order of approximation necessary for
reasonable results. The first example is the laminate
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under simple support, a geometry that is very useful
in that an exact solution is available with which to
compare (Pan, 2002). The second geometry is the com-
pletely traction-free plate under the effects of applied
surface potential leading to an imposed electric or
magnetic field.
Three different materials are studied in the examples

that follow. The first is the much-studied piezoelectric
solid BaTiO3, the second is the purely magnetostrictive
material CoFe2O4, and the third is the piezoelectric
polymer PVDF. The material properties for all of these
solids are given in Table 1 along with the appropriate
units for each (Berlincourt et al., 1964; Tashiro et al.,
1981).

Simply-Supported Laminates

As an initial focus, examples are considered for
problems which have been studied using an exact
approach by Pan (2001), and Pan and Heyliger (2002)
for the case of static of simply-supported plates. We first
consider a plate with dimensions of Lx¼ 0.01m and
h¼ 0.001m. The loading is a positive normal traction in
the positive z direction on the upper face of the laminate
that has the form:

tz ¼ sin
�x

Lx

� �
ð19Þ

All other tractions on the top and bottom surfaces of the
laminate are zero, as well as the specified electric dis-
placement and magnetic flux. In this study, we restrict
the edge boundary conditions to be consistent with
those of geometric simple support (i.e. the transverse
displacement w is specified to be zero, with zero normal
traction also specified along the edge length). In terms of
the electric and magnetic field variables, they are zero
along the edges, but nonzero fields can be specified
along the top and bottom surfaces of the laminate.
The in-plane approximation functions for each of the

five field variables are given in the form:

�u
j ðxÞ ¼ cos px ð20Þ

�v
j ðxÞ ¼ cos px ð21Þ

�w
j ðxÞ ¼ sin px ð22Þ

��j ðxÞ ¼ sin px ð23Þ

��
j ðxÞ ¼ sin px ð24Þ

where p ¼ np=Lx. Here the index j is a single integer that
is linked to the numbers used for p in each of the terms.
For the loading considered here, only a single term
needs to be used to match the exact solution, as the

fields with n¼ 1 identically satisfy the ðxÞ dependence of

all five field variables. Following this step, all variables

depend only on z.

SINGLE-LAYER MAGNETOSTRICTIVE PLATE
The first example considered is a single ply, homo-

geneous plate of the magnetostrictive CoFe2O4. The

plate is divided into a sequentially higher number of

layers starting with 2, then 4, 8, 16, and finally 32. Hence

the size of the resulting matrices to be solved are

15, 25, 45, 85 and 165 for these five cases.
The in-plane displacement u is shown in Table 2a as a

function of thickness position and number of discrete-

layers. The values shown are the maximum quantities

for the displacement located at the left edge of the plate

(x¼ 0). Because of the nature of the loading, the

in-plane displacement u is zero at the plate center. For

elementary plate theory, the displacements at the top

and bottom surfaces of the plate are identical since the

Kirchhoff hypothesis requires that the displacements u

and v are linear functions of z. Since the present model is

based on an elasticity approach, however, it is seen that

there is a slight difference of about 1% between the

values at the top and bottom surfaces of the layer. It is

also clear that even for a fairly small number of layers

(i.e. 4), the present results are well within 5 percent error

of the exact solution values.
The behavior of the transverse displacement w is

shown in Table 2b under a similar format. Once again,

the present results are in excellent agreement with the

exact solution. In elementary plate theory it is common

to assume that the displacement field is constant in z (i.e.

it does not vary through the thickness). From these

results, it is clear that this is not an excessively restrictive

assumption, with a difference of less than 0:10%
between values at the top and bottom surfaces. As

before, a fairly small number of layers well represents

the global plate behavior, with even 4 layers yielding

values within 5% of the exact ones. There is no coupling

between the magnetoelastic fields and the electric fields

Table 2. Maximum displacements and potential for homo-
geneous magnetostrictive CoFe2O4 under transverse load.

z (m) N¼2 N¼4 N¼ 8 N¼16 N¼ 32 Exact

a. In-plane displacement uð10�12mÞ

0.0000 0.9449 1.0496 1.0798 1.0877 1.0897 1.0903
0.0005 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057
0.0010 �0.9337 �1.0384 �1.0687 �1.0765 �1.0785 �1.0791

b. Transverse displacement wð10�12mÞ

0.0000 6.1800 6.8392 7.0290 7.0783 7.0907 7.0949
0.0005 6.2289 6.8919 7.0831 7.1328 7.1453 7.1495
0.0010 6.1840 6.8422 7.0319 7.0812 7.0937 7.0978

c. Magnetic vector potential  ð10�7C=sÞ
0.0000 �1.8121 �1.6923 �1.6586 �1.6499 �1.6477 �1.6469
0.0005 �2.4400 �2.3767 �2.3593 �2.3548 �2.3537 �2.3533
0.0010 �1.7435 �1.6239 �1.5902 �1.5815 �1.5793 �1.5785
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for this problem, and hence the scalar potential is

identically equal to zero over the entire thickness.

However, the coupling between the elastic and magnetic

field results in a nonzero vector potential (and hence

magnetic field) through the laminate thickness. This

distribution is shown in Table 2c as a function of

laminate thickness and number of layers in the

approximation. Once again, the agreement is excellent

with the exact solution. For this example, the present

model yields excellent results for a reasonably small

number of layers, and 3 digit accuracy between

approaches for 32 layers.
In Figures 1–6, the in-plane normal stresses �xx and

�yy, the normal stress �zz, the transverse shear stress �xz,
and the magnetic flux components are shown as a

function of laminate thickness for 2, 4, 8, 16, and 32

layers and are compared with the exact solution by Pan

and Heyliger (2002). In each of the sequence of figures
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Figure 1. Variation of stress component �xx through the laminate thickness for CoFe2O4 under applied traction.
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Figure 2. Variation of stress component �yy through the laminate thickness for CoFe2O4 under applied traction.
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that follows, the solid line represents the exact solution,
while the open triangles, circles, diamonds, squares, and
stars represent the discrete-layer model with 2, 4, 8, 16,
and 32 layers, respectively. The convergence agreement
is clear.

TWO-LAYER COMPOSITE LAMINATE
The second example considered is a two-layer

composite laminate formed of the two materials dis-
cussed above: the piezoelectric BaTiO3 and the magne-
tostrictive CoFe2O4. The laminate geometry is identical
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Figure 3. Variation of stress component �zz through the laminate thickness for CoFe2O4 under applied traction.
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Figure 4. Variation of stress component �xz through the laminate thickness for CoFe2O4 under applied traction.
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to that considered earlier, except that two dissimilar
layers are used through the thickness, with equal layer
thicknesses used for each lamina. The loading and
general form of the boundary conditions and approxi-
mation functions are the same as those considered in the
previous example.

In Table 3a–d, the in-plane displacement, transverse
displacement, electrostatic scalar potential, and mag-
netic vector potential are shown at the top and bottom
surfaces of the laminate and at the interface locations
between dissimilar layers as a function of the total
number of layers. The value of N¼ 2 is the minimum

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10
−8

0

0.2

0.4

0.6

0.8

1
x 10

−3

In–Plane Magnetic Flux B
x
 (N/Am)

T
hi

ck
ne

ss
 z

 (
m

)

N=2
N=4
N=8
N=16
N=32
Exact

Figure 5. Variation of magnetic flux component Bx through the laminate thickness for CoFe2O4 under applied traction.
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Figure 6. Variation of magnetic flux component Bz through the laminate thickness for CoFe2O4 under applied traction.
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number that could be rationally used for this type of
structure, as each geometric layer requires at least
one discrete-layer to represent the material behavior.
The convergence is rapid, and even the magnetic vector
potential behavior is well-represented by a relatively
small number of layers. Although not shown in these
tables, the discrete-layer model has a significant advant-
age over other types of plate theories in that the
requirement of, say, traction continuity (which implies
discontinuity of shear strain and therefore through-
thickness displacement gradient) is modeled as a matter
of course. Allowing the through-thickness approxima-
tions to be discontinuous in slope across an interface
captures the exact behavior of these fields, frequently
leading to more accurate results.
In Figures 7–10, the in-plane normal stresses �xx

and �yy, the normal stress �zz and the transverse shear
stress �xz are shown as a function of laminate thickness
for 2, 4, 8, 16, and 32 layers and are compared with the
exact solution of Pan and Heyliger (2002). The in-plane
normal stress components are discontinuous at the
dissimilar layer interface, and hence there is a slight
break in magnitude caused by the difference material
properties and displacement gradient across the inter-
face. Hence for the laminate, there is an increase in stress
consistent with the increase in relative stiffness in going
from the BaTiO3 to the CoFe2O4. The transverse normal
and transverse shear stress components are continuous.
It is clear from these figures that in terms of stress
computation, a small number of layers could be used to
accurately represent the behavior of these field compo-
nents through the thickness, as the results for 4, 8, or 16
discrete layers are in excellent agreement with the exact
solution.
In Figures 11–14, the components of the electric dis-

placement and the magnetic flux are shown as a function

of laminate thickness for 2, 4, 8, 16, and 32 layers and
are compared with the exact solution of Pan and
Heyliger (2002). Here the mismatch in properties is
even more significant, as crossing the interface results
in going from a piezoelectric medium to a magneto-
strictive medium, with the magnetostrictive and piezo-
electric coefficients going from zero to nonzero. The
field behavior in these two types of layers is very similar
because of the nature of the coupling with the electric
and magnetic field, and the resulting through-thickness
fields reflect this similarity. The normal component of
the electric displacement is shown in Figure 12, and
the normal component of magnetic flux is shown in
Figure 14. Two features of these curves are especially
apparent. First, the electric displacement in the magne-
tostrictive layer and the magnetic flux in the piezo-
electric layer are effectively linear. Second, the magnetic
flux in the magnetostrictive layer and the electric
displacement in the piezoelectric layer are highly non-
linear, with this behavior varying so dramatically that
the field quantities given by 2 and 4 discrete layers being
very poor approximations of the true field behavior.
Only for the case of 8 layers are these quantities well
represented and even close to the exact solution. This
behavior is in direct contrast to the elastic stress fields,
for which even 4 layers gives excellent results. Hence for
a laminate with the aspect ratio considered here
(L/t¼ 10), a minimal number of layers (i.e. 4) may be
adequate to represent the three displacement compo-
nents and the respective stress fields for each layer of the
laminate, but at least 8 layers may be required to
adequately represent the electric and magnetic potentials
flux variables.

TWO-LAYER ANGLE PLY
The piezopolymer polyvinlidene flouride (PVDF ) is

of interest because it is orthotropic, this means that v,
�yz, �xy, and Dy are different from zero. A two-layer
angle ply [�45/þ45] is constructed with the same load
and boundary conditions as in the first numerical
example, with layer thicknesses H1 ¼ H2 ¼ 0:0005m.
Results showed excellent agreement with the exact
solution by Pan and Heyliger (2002), which is a genera-
lization of the solutions by Heyliger (1994) and Heyliger
and Brooks (1996), and they can be seen for the stress
components �zz and �xz, and for the electrostatic
displacement Dz in Figures 15–17.

INFLUENCE OF ASPECT RATIO
In nearly all plate theories, the behavior of the field

variables changes dramatically as the plate aspect ratio
increases. For elastic laminates, the displacement
components tend to approach the kinematic behavior
of Kirchhoff plate theory and the stress fields tend
to become smooth through the laminate thickness.
We investigate this dependence for the two-layer

Table 3. Maximum displacements and potential for the two-
layer laminate BaTiO3/CoFe2O4 under transverse load.

z (m) N¼2 N¼ 4 N¼ 8 N¼ 16 N¼ 32 Exact

a. In-plane displacement u (10�12m)
0.0000 1.0436 1.1267 1.1420 1.1558 1.1573 1.1578
0.0005 �0.0576 �0.0634 �0.0650 �0.0654 �0.0655 �0.0655
0.0010 �1.1720 �1.2636 �1.2891 �1.2957 �1.2973 �1.2979

b. Transverse displacement w (10�12m)
0.0000 7.2310 7.7784 7.9309 7.9701 7.9799 7.9832
0.0005 7.2807 7.8316 7.9850 8.0244 8.0344 8.0377
0.0010 7.2463 7.7946 7.9473 7.9865 7.9964 7.9997

c. Electrostatic scalar potential � ð10�4 VÞ
0.0000 2.1346 2.1389 2.1404 2.1408 2.1409 2.1410
0.0005 2.1574 2.1616 2.1632 2.1636 2.1637 2.1637
0.0010 1.3134 1.2500 1.2327 1.2283 1.2272 1.2268

d. Magnetic vector potential  ð10�7 C=sÞ
0.0000 �1.9834 �1.7744 �1.7172 �1.7026 �1.6989 �1.6977
0.0005 �2.6335 �2.4631 �2.4166 �2.4048 �2.4018 �2.4008
0.0010 �2.6173 �2.4479 �2.4018 �2.3900 �2.3870 �2.3860
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Figure 7. Variation of stress component �xx through the laminate thickness for BaTiO3=CoFe2O4 under applied traction.
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Figure 8. Variation of stress component �yy through the laminate thickness for BaTiO3=CoFe2O4 under applied traction.
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Figure 9. Variation of stress component �zz through the laminate thickness for BaTiO3=CoFe2O4 under applied traction.
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Figure 10. Variation of stress component �xz through the laminate thickness for BaTiO3=CoFe2O4 under applied traction.
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Figure 11. Variation of electric displacement component Dx through the laminate thickness for BaTiO3/CoFe2O4 under applied traction.
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Figure 12. Variation of electric displacement component Dz through the laminate thickness for BaTiO3/CoFe2O4 under applied traction.
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Figure 13. Variation of magnetic flux component Bx through the laminate thickness for BaTiO3/CoFe2O4 under applied traction.
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Figure 14. Variation of magnetic flux component Bz through the laminate thickness for BaTiO3/CoFe2O4 under applied traction.
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Figure 15. Variation of stress component �zz through the laminate thickness for the two-ply [�45/þ45] laminate under applied traction.
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Figure 16. Variation of stress component �xz through the laminate thickness for the two-ply [�45/þ45] laminate under applied traction.
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magnetoelectroelastic laminate considered in the pre-
vious section for the same static loading considered in
the previous section. The laminate thickness is fixed as
before, but the side lengths of the plate are changed to
vary the L/t ratio. Of interest here is the nature of the
electrostatic and magnetic potentials as the laminate
becomes thin. The field behavior is plotted by normal-
izing against the maximum value of � or  through the
laminate thickness for five aspect ratios: 2, 4, 6, 10, and
50. A total of 40 layers (20 per physical layer) are used to
compute the fields through the thickness.
The results of these analyses for the electrostatic

and magnetic potentials are shown in Figures 18 and 19.
The through-thickness characteristics depend strongly
on aspect ratio, but quickly tend to a very specific
behavior as the aspect ratio increases. There is little
change in behavior for L=t > 10, and this ratio provides

a reasonable estimate on the limiting value where more

complex through-thickness field behaviors may be

required.

The Completely Free Laminate

A completely traction-free plate is considered with

applied surface potential. The intent of this example is

to examine the basic deformation characteristics of these

simple geometries using the model developed in this

study. First, a single layer BaTiO3 laminate with total

thickness h ¼ 0:001m and Lx ¼ 0:01m is analyzed.

Over the upper surface of the plate, the sinusoidal

electrostatic potential is applied, and the bottom and

side surfaces of the plate are fixed at zero electrostatic

potential. All surfaces of the plate are traction free.
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Figure 17. Variation of electrostatic displacement component Dz through the laminate thickness for the two-ply [�45/þ45] laminate under
applied traction.

Table 4. Maximum elastic displacements and electrostatic potential for the two-ply [�45/þ45] laminate under
applied traction.

z
10�3m

u�10�12m v�10�12m w�10�12m /�10�4 V

DL Exact DL Exact DL Exact DL Exact

0.000 4.961 4.963 2.070 2.071 3.459 3.460 �4.436 �4.445
0.250 2.412 2.413 2.046 2.047 3.465 3.467 �2.311 �2.319
0.500 0.005 0.005 2.072 2.073 3.467 3.469 �1.718 �1.725
0.750 �2.401 �2.403 2.045 2.045 3.467 3.469 �2.881 �2.889
1.000 �4.953 �4.955 2.069 2.069 3.463 3.465 �5.580 �5.589
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Such a loading is of course more interesting than apply-
ing a constant voltage on upper and lower surfaces,
which would give constant strains in the x and z direc-
tions but no shear strain in the x–z plane. To eliminate
the rigid-body modes of the plate, the displacements

u ¼ v ¼ w ¼  ¼ 0 are specified at the plate center at the
middle of the laminate span.

For this loading scenario, the approximation func-
tions are different than those used in the previous sect-
ion. The in-plane functions for u, v,w, and  are selected
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Figure 18. Through-thickness dependence of electrostatic potential � on laminate aspect ratio for the BaTiO3=CoFe2O4 under
applied traction.

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1
x 10

−3

Normalized Electrostatic Scalar Potential φ (V)

T
hi

ck
ne

ss
 z

 (
m

)

L/t=2
L/t=4
L/t=6
L/t=10
L/t=50

Figure 19. Through-thickness dependence of magnetic potential  on laminate aspect ratio for the BaTiO3=CoFe2O4 under
applied traction.
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as power series in x, with the general form of these
functions being given as

�m ¼ xm, ð25Þ

For the electrostatic potential, we use

��j ðxÞ ¼ sin px ð26Þ

Since the applied electric field induces symmetric

displacements, only odd power series need to be inclu-
ded in the approximation for the u displacement, while
even series are required for the w displacement for this
specific loading. The through-thickness approximation
functions remain as in the previous cases. For the results
presented here, six terms are used in the approximations
for the displacement components and single trigono-

metric terms are used for the two potentials. Combined
with 32 layers, the final number of unknowns was 999
for the discrete-layer model.
We compare the results with a two-dimensional finite

element calculation using 4-node square elements to
model half of the plate using symmetry conditions. (This
algorithm is briefly described in the Appendix). Thirty
elements are used in the length direction and 32 elements
are used in the thickness direction, leading to a total

of 5115 unknowns for this particular representation.
The results of our analysis are shown in Table 5 with
the values in the table shown at the left edge of the
plate. Very good agreement is found between the two
approaches. The largest discrepancy is about 0.6%
difference in the transverse displacement w, with the
axial displacements and potential differences nearly

achieving 4-digit agreement. The deformed geometry
is shown in Figure 20, with the displacements scaled by
a factor of 106.
We then change the single-layer plate material to the

magnetostrictive CoFe2O4. In this case the laminate
is subjected to a sinusoidal magnetic potential on the
top surface, with magnetic potential in the bottom
surface specified to zero. The approximations functions

for the potentials are interchanged, i.e. power series of
x are used for the electrostatic potential, and sin px is
used for the magnetic potential. Displacements and
magnetic potential results are shown in Table 6, and
excellent agreement is again found with the FEM
results. Figure 21 shows the deformed geometry, using
a scaling factor of 105.
The bottom of the barium titanate plate remains

much flatter than that of the cobalt ferrite. Part of the

reason for this is the sign of the coupling coefficient e31
compared with q31. In the case of the BaTiO3, this value
is negative. At the left end of the laminate, the electric
field in the x-direction is negative, leading to a positive
normal strain in the z-direction. Hence the lower half

of the laminate at the left edge would have a downward
motion that partially counteracts the upward movement
from the negative shear strain �xz induced by the q15
coupling coefficient. For the CoFe2O4, the respective
coefficient is positive, leading to the opposite effect.

Comparing Tables 5 and 6, it can be seen that the
axial in-plane deformation, x-direction, caused on the
piezoelectric laminate by an applied electrostatic poten-
tial is one order of magnitude less than that in the
magnetostrictive laminate due to the application of
a similar drop in magnitude of the magnetic potential.
The difference of deformation in the z-direction is about
50, with the smaller displacement occurring in the
piezoelectric laminate. This latter ratio directly corre-
sponds to the ratio of the shear coupling coefficients q15
and e15, which provides the change in w along the axis
because of the generated axial electric and magnetic
fields. For longer plates, of course, this influence would
pale in comparison to the usual e33 and q33 terms, and
the deformation would become more uniform along the
x-axis of the plate.

Table 5. Variation of displacements and electrostatic
potential through the laminate thickness for the 1-layer

BaTiO3 free laminate under applied electrostatic potential.

z
10�3m

u – DL
10�10m

u – FEM
10�10m

w – DL
10�11m

w – FEM
10�11m

� – DL
V

� – FEM
V

0.000 �3.265 �3.266 8.778 8.841 0.000 0.000
0.031 �3.264 �3.265 8.778 8.838 0.031 0.031
0.063 �3.265 �3.265 8.778 8.836 0.062 0.062
0.094 �3.265 �3.265 8.778 8.834 0.092 0.092
0.125 �3.265 �3.265 8.778 8.832 0.123 0.123
0.156 �3.266 �3.266 8.778 8.830 0.154 0.154
0.188 �3.267 �3.267 8.778 8.828 0.185 0.185
0.219 �3.269 �3.268 8.778 8.827 0.216 0.216
0.250 �3.270 �3.270 8.778 8.826 0.247 0.247
0.281 �3.273 �3.272 8.778 8.825 0.277 0.277
0.313 �3.275 �3.274 8.778 8.824 0.308 0.308
0.344 �3.278 �3.277 8.778 8.823 0.339 0.339
0.375 �3.281 �3.280 8.778 8.822 0.370 0.370
0.406 �3.284 �3.283 8.778 8.821 0.401 0.401
0.438 �3.288 �3.287 8.778 8.820 0.432 0.432
0.469 �3.292 �3.291 8.778 8.819 0.463 0.463
0.500 �3.296 �3.295 8.779 8.819 0.495 0.495
0.531 �3.301 �3.300 8.779 8.818 0.526 0.526
0.563 �3.306 �3.305 8.779 8.817 0.557 0.557
0.594 �3.311 �3.310 8.779 8.816 0.588 0.588
0.625 �3.316 �3.315 8.779 8.815 0.619 0.619
0.656 �3.323 �3.321 8.779 8.814 0.651 0.651
0.688 �3.329 �3.328 8.779 8.813 0.682 0.682
0.719 �3.335 �3.334 8.779 8.812 0.714 0.714
0.750 �3.342 �3.341 8.779 8.811 0.745 0.745
0.781 �3.349 �3.348 8.779 8.810 0.777 0.777
0.813 �3.357 �3.356 8.779 8.808 0.809 0.808
0.844 �3.365 �3.364 8.779 8.807 0.840 0.840
0.875 �3.373 �3.372 8.779 8.805 0.872 0.872
0.906 �3.381 �3.381 8.779 8.803 0.904 0.904
0.938 �3.390 �3.390 8.779 8.801 0.936 0.936
0.969 �3.399 �3.399 8.779 8.799 0.968 0.968
1.000 �3.409 �3.409 8.779 8.796 1.000 1.000
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Table 6. Variation of displacements and magnetic potential through the laminate thickness for the 1-layer
CoFe2O4 free laminate under applied magnetic potential.

z
10�3m

u – DL
10�9m

u – FEM
10�9m

w – DL
10�9m

w – FEM
10�9m

 – DL
10�9C/s

 – FEM
10�9C/s

0.000 2.423 2.422 4.838 4.846 0.000 0.000
0.031 2.458 2.457 4.838 4.846 0.033 0.033
0.063 2.489 2.488 4.838 4.846 0.066 0.066
0.094 2.518 2.516 4.838 4.847 0.100 0.100
0.125 2.543 2.541 4.838 4.847 0.133 0.133
0.156 2.564 2.563 4.838 4.847 0.166 0.166
0.188 2.583 2.581 4.838 4.848 0.199 0.199
0.219 2.598 2.596 4.838 4.848 0.232 0.232
0.250 2.610 2.608 4.838 4.848 0.265 0.265
0.281 2.619 2.617 4.838 4.848 0.298 0.298
0.313 2.624 2.623 4.839 4.849 0.330 0.330
0.344 2.627 2.625 4.839 4.849 0.363 0.363
0.375 2.626 2.625 4.839 4.849 0.395 0.395
0.406 2.622 2.621 4.839 4.849 0.428 0.428
0.438 2.615 2.614 4.839 4.850 0.460 0.460
0.469 2.605 2.604 4.839 4.850 0.492 0.492
0.500 2.591 2.590 4.840 4.850 0.524 0.524
0.531 2.575 2.574 4.840 4.851 0.555 0.555
0.563 2.555 2.555 4.840 4.851 0.587 0.587
0.594 2.533 2.532 4.840 4.851 0.618 0.618
0.625 2.507 2.507 4.840 4.851 0.649 0.649
0.656 2.479 2.478 4.840 4.852 0.680 0.680
0.688 2.447 2.447 4.840 4.852 0.710 0.710
0.719 2.412 2.412 4.841 4.852 0.740 0.740
0.750 2.375 2.375 4.841 4.852 0.770 0.770
0.781 2.334 2.335 4.841 4.853 0.800 0.800
0.813 2.291 2.291 4.841 4.853 0.830 0.830
0.844 2.245 2.245 4.841 4.853 0.859 0.859
0.875 2.196 2.197 4.841 4.853 0.888 0.888
0.906 2.144 2.145 4.841 4.854 0.916 0.916
0.938 2.089 2.090 4.841 4.854 0.945 0.945
0.969 2.032 2.033 4.841 4.854 0.972 0.972
1.000 1.971 1.974 4.841 4.855 1.000 1.000

Undeformed Geometry

Deformed Geometry

o 

Fixed Point 

Figure 20. Deformed shape of the 1-layer BaTiO3 free laminate under applied electrostatic potential.
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Although we do not present the results of extensive
convergence studies, accuracy to within several percent
of the values shown here can be obtained with far fewer
terms. For example, for only three terms in the power
series for displacements, and four discrete-layers along
with the single trigonometric term for the potential, a
maximum error of only five percent is achieved for w
at the lower left corner of the laminate for the piezo-
electric laminate, while only 3% is obtained for the
magnetostrictive laminate at the same location. Hence
this theory could quickly and easily predict estimates
for global behavior of numerous materials without the
need or cost of typical finite element approximations.

SUMMARY AND CONCLUSIONS

A discrete-layer model has been developed for
laminated magnetoelectroelastic plates, and applied
to simply-supported laminates in cylindrical bending
and single-layer plates under applied electric and
magnetic field. Excellent agreement was obtained with
exact solutions for the case of cylindrical bending and
finite element models for the case of traction-free
deformation.
We outline our more significant conclusions below.

Although restricted to the laminates considered here
using very specific material properties, we expect simi-
lar results for other geometries. The two materials

considered in this study are readily available and give
reasonable numerical predictions, but it is possible that
other materials would yield results that fall out of the
bounds of the conclusions listed here. Hence we restrict
these guidelines for the material properties assumed in
this study. Our primary conclusions are:

1. The discrete-layer model can be used to achieve 3–4
digit accuracy in the displacements and potentials
with exact solutions for a fairly large number of
layers (over 30) using linear basis functions, but
accuracy to within several percent can be achieved
with around 4 layers for the five primary unknowns.

2. For both homogeneous and layered plates, a reason-
ably small number of layers (around 5) is required
through the thickness to obtain accuracy of several
percent for the stress fields. For the electric displace-
ment and electric field distributions, a significantly
larger number of layers (around 10) is required for
similar accuracy.

3. For aspect ratios over 10, the laminate behavior
approaches that of a thin-plate model, and simplified
approximations or less layers are likely to yield more
accurate comparisons for all unknowns.

4. The global basis functions implicit in the discrete-
layer model provide a similar level of accuracy in the
primary unknowns over conventional finite elements
for studying these solids but reduce the number of
unknowns by a factor of about five.

Deformed Geometry 

Fixed Point 

Undeformed Geometry

o 

Figure 21. Deformed shape of the 1-layer CoFe2O4 free laminate under applied magnetic potential.
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5. For the same potential drop over plate thickness, the
magnetostrictive plate under pure magnetic field
generates a displacement perpendicular to the axial
magnetic field approximately 50 times larger than
that of a similar potential drop in electric potential.
This is the same ratio of magnitude in shear
coefficients q15 and e15.

Careful selection of the laminate properties allows for
a broad range of behaviors in both electric and magnetic
field, raising the possibility of a sensor or actuator with
a very broad range of applications. Under time varying
inputs, the behaviors could become even more complex
since the electric and magnetic fields become more
directly linked through the full Maxwell’s equations. In
addition, there are numerous other issues not considered
in this study that are excellent candidates for further
study. These include the possibility of mixing orders of
approximation for different variables through the thick-
ness, aspect ratio limits for the stress, electric displace-
ments, and magnetic flux variables, and the influence of
free edges on the secondary unknowns.
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APPENDIX

Element Stiffness Matrices

The entries in the element coefficients can be
expressed as
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Finite Element Model

For the completely free laminate, a comparison is
made between the discrete-layer model and a more
standard finite element approximation of the three dis-
placements and the two potential functions. In this case,
the dependence of the field variables is not separated
into the two coordinate functions, but is completed in
a more standard way as is usual in finite element
methods. Specifically, each of the five field variables are
approximated in the form (using the displacement u as
an example)

uðx, yÞ ¼
X4
j¼1

ujNjðx, yÞ ð27Þ

Here the Nj functions are local basis functions defined
only over an element. This is distinctly different than
the discrete-layer model, in which the functions in x
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are taken as global basis functions defined over the
complete length in x for the laminate and those in z are
one-dimensional Lagrangian polynomials.
Substitution of these approximations into the weak

form of the governing equations yields an element
matrix equation of a similar form to that of Equation
(18) for the discrete-layer model. The use of standard
finite elements, however, usually implies that the
equations are reordered to minimize bandwidth. In
addition, as these equations are defined only over
an element, conventional methods are used for
element assembly into a global system of equations.
More details of this sort of approach can be found in
Reddy (1984).
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