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Abstract: This paper studies the growth of self-organized quantum dots in strained
semiconductors in the Stranski–Krastanov growth mode using the kinetic Monte Carlo
simulation method. The four nearest and four next nearest neighbours of each atom in the
square lattice grid with a periodic boundary condition are considered in the calculation of the
binding energy among atoms. The elastic strain energy is accurately evaluated by the rigorous
point eigenstrain half-space Green’s function and is incorporated for the first time into the
kinetic Monte Carlo model. The set of relevant growth parameters such as growth
temperature, surface coverage, flux rate, and growth interruption time, is investigated and
optimal values are identified. It is shown clearly that when the long-range elastic strain energy
is included in the simulation, uniform size and ordered spatial distribution can be achieved.
Furthermore, the growth of stacked quantum dot layers is also simulated briefly and vertical
alignment is observed that could lead to progressively uniform island size and spatial ordering.

Keywords: quantum dot, self-organization, Stranski–Krastanov growth, elastic strain energy,
strained semiconductor, kinetic Monte Carlo, Green’s function

1 INTRODUCTION

Nanoscale quantum dot (QD) superlattices have been
intensively studied in recent years owing to their con-
fined optical and electronic properties with potential
applications in optoelectronics and semiconductor
devices [1, 2]. Self-organized growth is a promising
way to grow QD islands with uniform size and
ordered spatial distribution. However, it is still very
challenging to grow high-density and dislocation-
free QD layers self-organizationally, even under the
Stranski–Krastanov growth model [3–5]. Since,
experimentally, this trial-and-error growth approach
could be very expensive and time-consuming,
numerical simulation methods can be utilized to
provide important information and guidance to
experimentalists. As the self-organized QD growth is
a competitive balance between the binding and
thermal energies, involving atom deposition and
diffusion, certain kinetic Monte Carlo (KMC) models

have been proposed to simulate the process numeri-
cally [6, 7]. It was observed by Schöll and Bose [8] and
Elsholz et al. [9], among others, that a probability
governed by the Arrhenius law including the sole
atomic binding energy would result in the Ostwald
ripening phenomenon in the KMC model. However,
when the long-range elastic strain energy is consid-
ered, cooperative growth, where larger islands lose
some atoms to smaller ones, could be achieved.

Long-range strain-controlled QD growth mechan-
isms have been investigated, including those consid-
ering the elastic energy induced by the latticemisfit as
the sole dominant parameter in the self-organized
growth [5]. This elastic energy due to the misfit lattice
has also been utilized to explain the correlation and
anticorrelation features observed in the layer-by-
layer QD growth [4, 10, 11]. Motivated perhaps by
these observations, the long-range elastic strain
energy was recently introduced into the Arrhenius
law by Meixner et al. [7], based on the point/line
force Green’s function solution, and interesting
features differing from those without elastic strain
were observed. However, it is understood that
during the epitaxial growth the strain energy is due
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to the lattice misfit (eigenstrain) between the sub-
strate and the adatoms rather than the point/line
force, and thus the corresponding Green’s function
due to the point eigenstrain should be employed in
order to simulate correctly the growth process.
In this article, a KMC model is developed that

includes the correct and accurate elastic strain
energy due to the lattice-misfit eigenstrain [12, 13].
The semiconductor material is assumed to be GaAs
(001), and the strain energy is calculated as an inte-
gration of the point eigenstrain half-space Green’s
function [12–14]. This strain energy modified KMC
model was used to study the effect of growth param-
eters on the QD growth pattern. These parameters
include temperature T , flux rate F to the surface
during deposition, surface coverage c, and growth
interruption time ti [7, 15–17]. The simulated island
ordering and narrow size distribution are discussed
and optimized growth parameters are identified.
In order to study the growth of stacked QD layers or

the so-called superlattice structure, the self-
organized growth model is briefly extended from
the horizontal plane to the third dimension, which
is the growth direction. It is well known that the
growth parameters can greatly affect the QD structure
[18, 19] and the strain energy generated by the buried
QDs can induce spatial correlations between islands
at the surface and those below [20]. The strain field
on the surface generated by the QDs below contri-
butes to the QD island spatial ordering on the surface
[5, 21, 22]. A thermodynamic equilibrium theory
including the elastic strain has shown that vertical
correlations and anticorrelations in multilayered
superlattices are functions of layer thickness [23],
but the effect of kinetics in these stacks is not well
understood [11]. Therefore, this paper also presents
KMC simulation incorporating the strain fields on
the topmost layer and the layers below, including
also the interaction among them. For a three-layered
QD structure, the simulated results show that, with
increasing layer number, uniform island size and
ordered spatial distribution could be achieved.

2 MODELLING APPROACH

2.1 Atomic hopping probability

This paper presents simulation based on the
activated atom diffusion incorporating the local
elastic strain energy field. The hopping probability
of an atom from one lattice site to a nearest or next
nearest neighbour site in the horizontal (x‚ y) plane
is governed by the Arrhenius law [24, 25]

p ¼ �0 exp

�
�Es þ En � Estrðx‚ yÞ

kBT

�
ð1Þ

where �0 is the attempt frequency (¼ 1013 s�1), T the
temperature, and kB the Boltzmann’s constant. Also
in equation (1), Es and En are the binding energies to
the surface and to the neighbouring atoms respec-
tively. Finally, Estrðx‚ yÞ, as a function of the plane
coordinates ðx‚ yÞ, is the energy correction from the
long-range strain field due to the latticemisfit between
the substrate and the deposited material. While the
binding energy to the surface is assumed to be
constant in this article (actually, Es ¼ 1.3 eV), that to
the neighbouring atoms, i.e. En, is evaluated as below.

It is assumed that the strength of a single nearest
neighbour bond is Eb (¼ 0.3 eV), and it is reduced
by a factor �ð¼ 1=

ffiffiffi
2

p
Þ for the next nearest neigh-

bours. To evaluate the diffusion barrier, the binding
energy at the site S0, where the diffusing atom is
located, is calculated to be

Es0 ¼ nEb þ �mEb ð2Þ

with n4 4 and m4 4 being, respectively, the number
of nearest and next nearest atoms. Similarly, for the
site S1 to where the atom is going to hop

Es1
¼ gðn0Eb þ �m0EbÞ ð3Þ

where n0 4 4 and m0 4 4 are respectively the number
of nearest and next nearest atoms at the new site
S1, and g (¼ 0.2) describes the coupling between
adjacent lattice sites. Therefore, the overall binding
energy En caused by the neighbour interaction for a
diffusion process from site S0 to site S1 is given by
the difference of the binding energies at the corre-
sponding lattice sites [7, 11]

En ¼ ðn� gn0ÞEb þ ðm� gm0Þ�Eb ð4Þ

Thus, for diffusion along step edges or around corners,
the hopping probability is slightly enhanced.

2.2 Off, edge, and corner diffusion

There are three different kinds of diffusion for each
atom in the periodic lattice area: off, edge, and
corner diffusions (Fig. 1). ‘Off’ diffusion means an
atom diffuses away from its neighbours. The diffusion

Fig. 1 Schematic of off, edge, and corner diffusions on the
horizontal (x‚ y) plane
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barrier for ‘off’diffusion is increased by (next) nearest
neighbour bonds En. ‘Edge’ diffusion means that an
atom diffuses along the edge of an island, and some
of the bonds to the (next) nearest neighbour stay
intact. Consequently, the energy barrier for diffusion
along an edge Eedge will generally be smaller than
Eoff. ‘Corner’ diffusion means that an atom diffuses
around the corner of some islands. For ‘corner’ diffu-
sion, the number of intact bonds to nearest and next
nearest neighbours is smaller than that of ‘edge’diffu-
sion. Thus, in summary, the barrier relation among
‘off’, ‘corner’, and ‘edge’ atoms is Eoff > Ecorner > Eedge.

2.3 Incorporation of the strain energy field

As pointed out in the introduction, while the strain
energy field is very important in self-organized
growth, it needs to be accurately calculated. In
other words, for the strained semiconductor struc-
ture, use should be made of the strain energy due to
the point eigenstrain, instead of that due to the
point/line force. The correct formulation for the cal-
culation of the strain energy is strictly presented
below, leaving the details in Appendix 2 for reference.
Within the framework of continuum elasticity, the

elastic strain induced by an island of atoms can be
obtained using the Green’s function solution for the
anisotropic semiconductor substrate [12, 13]. Assum-
ing that there is a point misfit strain (or eigenstrain)
��ij (due to the misfit lattice difference) at x, then the
induced elastic strain at y can be found as

�kpðy; xÞ ¼ 1
2 �

�
lm½�kml‚pyðx; yÞ þ �p

ml‚ky
ðx; yÞ� ð5Þ

where the superscript k or p (¼ 1, 2, 3) on the right-
hand side of equation (5) indicates the direction of
the point force, and the subscript prime followed by
py or ky in the stress component �ml denotes the deri-
vative of Green’s stress. With the elastic strain (5) due
to a point misfit lattice, the strain energy at y due to
an island of atoms with area A (with unit thickness
in the out-of-plane z direction) at variable x can be
calculated as (see also Appendix 2 for detail)

EstrðyÞ ¼
1

2
Cijkl

ðð
A

�ijðy; xÞ�klðy; xÞdAðxÞ ð6Þ

where Cijkl is the elastic stiffness tensor. In the follow-
ing calculation, it is assumed that the misfit strain is
hydrostatic, i.e. ��ij ¼ ���ij with �� ¼ 0:07. The non-
zero elastic coefficients for GaAs (001) [13] are taken
to be C11 ¼ 118, C12 ¼ 54, and C44 ¼ 59 (109 N/m2).

2.4 Kinetic Monte Carlo algorithm

The simulation routine is based on a continuous time
Monte Carlo scheme. The BKL algorithm named after

Bortz, Kalos, and Lebowitz [26] is very efficient for the
problem at hand, since the independence of a parti-
cular timescale is of great advantage in simulating
surface diffusion.

In the present program, atom diffusion processes
are simulated one by one. The principal course of
the simulated diffusion is the same and can be
sketched in the following. Each atom at most has
four possible nearest and four possible next nearest
diffusion positions (Fig. 2), or four nearest and four
next nearest neighbours. Every possible diffusion
step of a given atom is done by evaluating the
probability p from equation (1). These eight possible
diffusion probabilities to nearest and next nearest
neighbour positions are stored and added to find
the total diffusion probability, patom, for the atom.
The total probability that anything might happen at
all is then given by adding all the probability patom
to obtain ptotal. During the simulation, an atom is
randomly chosen to move across the surface by
hopping to the nearest or next nearest lattice site.
The key is to assign a proper weight to each atom to
be chosen, considering that different atoms contri-
bute differently to the overall probability ptotal (see,
for example, equations (1) and (4)). From the eight
possible diffusion processes of the selected atom,
one is chosen in accordance with its likelihood and
executed. The corresponding time interval �t
is calculated and added to the elapsed simulation
time.

The movement of an atom also alters the diffusion
barriers for the neighbouring atoms in the previous
neighbourhood as well as in the new one. As such,
the moving atom and all the atoms in its surrounding
area have to be recalculated to obtain the new diffu-
sion probabilities. As for the strain energy, strictly
speaking, it would have to be calculated at each
step. However, since the strain evaluation is a lengthy
procedure and the strain only slightly changes with
the motion of a single atom, it turns out that it is

Fig. 2 Schematic of nearest (x and y directions in solid
lines) and next nearest (diagonal directions in
dashed lines) neighbour positions of each atom in
the horizontal (x‚ y) plane
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optimal to calculate the strain field at every 2500
jump steps (the present examples show that, for
steps between 1000 and 3500, the simulation patterns
are nearly identical; in consideration of both
efficiency and accuracy, strain energy is calculated
in this paper at every 2500 steps). To speed up
further the computation, the strain energy calcula-
tion does not extend over the whole system but only
over a circular area of a given radius r around the
point where the strain is to be evaluated, due to
the rapid decay of this field. In the following
examples, such a radius r is taken to be 30 lattice
grids [8]. The detailed simulation steps are listed in
Appendix 3.

3 EFFECT OF GROWTH PARAMETERS ON ISLAND
SIZE AND ORDERING

For most electronic and optical applications that
include active QD layers, it is important to have
many equally shaped dots. Unfortunately, the prob-
lem of generating self-organized QD patterns
cannot be solved in a straightforward manner. Even
though Stranski–Krastanov growth is known to be
suitable for self-organized QD growth, there are
many parameters that can considerably influence
the growth result. Some of the relevant parameters
are temperature T , flux rate F , coverage c, and inter-
ruption time ti. There follows, a discussion of the
effect of these parameters on the island growth of
material GaAs (001) on a 200� 200 lattice size with a
periodic boundary condition and with strain energy
for all atoms being updated at every 2500 hopping
steps.

3.1 With and without strain energy

The nearest and next nearest neighbour binding
energies contribute to the shape of the compact
islands; however, the island–island interaction is
very weak without strain energy. As the strain
energy is calculated based on the point eigenstrain
Green’s function, it is expected that the absolute
value of strain energy is the largest at the boundary
area of an island, and with increasing distance away
from the island it decays rapidly [12, 13, 20]. Thus,
the interaction among islands could lead to spatial
ordering due to the long-range strain field. This is
why, without elastic strain energy, neither ordered
size nor ordered spatial distribution can be observed,
and Ostwald ripening would be expected [9, 27]. To
demonstrate the importance of strain energy, island
ordering of adatoms with and without elastic strain
energy is shown in Fig. 3 for simulation parameters
T ¼ 750K, F ¼ 1.0Ml/s, c ¼ 20 per cent, and
ti ¼ 200 s.

From Fig. 3 it is clear that, without considering the
elastic strain energy, the nearest and next nearest
neighbour binding energy can still lead to isolated
islands but no ordered island size and spatial distri-
bution can be observed (Fig. 3(a)). However, when
the strain energy is included, all the islands have
approximately the same size and the distance
between any two islands is also about the same,
showing clearly ordered island size and spatial distri-
bution (Fig. 3(b)).

3.2 Temperature T

The growth temperature T can greatly affect the
simulation result. If the temperature T is too low,
the deposited atoms will just stick to the surface with-
out enough thermal energy to diffuse (Fig. 4(a)). In
this case, of course, no self-organization is expected
to happen. If, on the other hand, the temperature is
too high, then interatomic bonds are too weak to be
broken and an ensemble of monomers and small
polymers with atoms performing random walks over
the surface would be expected. For this situation,
large islands are inherently unstable. Therefore, only
for certain temperatures can the self-organization
be effective.

The temperature dependence of the average island
size is shown in Fig. 4 for fixed flux rate F ¼ 1Ml/s
and coverage c ¼ 20 per cent. Here, deposition stops
after 0.2 s of simulation time and the growth interrup-
tion time ti is 200 s. It can be seen from Fig. 4 that,
starting from T ¼ 550K, the higher the temperature,
the larger is the average island size. Correspondingly,
the islands become more and more ordered (Figs 4(a)
to (d)). However, when the temperature is equal to, or
higher than, 850K, the thermal energy dominates,
and the order of island arrays breaks down with
increasing temperature (Figs 4(e) to (f)). Therefore,
the optimal temperatures for this testing model are
values around 800K.

Fig. 3 Island ordering of adatoms without (a) and with (b)
elastic strain energy. Simulation parameters are
T ¼ 750K, F ¼ 1.0Ml/s, c ¼ 20 per cent, and
ti ¼ 200 s on a 200� 200 grid. The strain energy
field is updated at every 2500 steps in (b)
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3.3 Flux rate F

The flux rate F is defined as the deposition of material
on the surface per unit time, and it is therefore a
measurement of how fast the material is deposited
on the surface. It does not include any equation con-
cerning processes connected with self-organization
and influences only indirectly the kinetics of growth
by indicating the density of atoms on the surface
and the nucleation rate of islands. Since flux is
present during the time of deposition only, it might
be assumed that it is less important during growth
interruption. However, different values of flux rate
can lead to significant differences in the surface
morphology at the end of deposition. Under low
flux rate (e.g. F ¼ 0.01Ml/s in Fig. 5(c)), the system
will have enough time during the deposition process
to come close to an equilibrium size distribution

with large-size islands. On the other hand, a small-
size island distribution is associated with a high flux
rate. In other words, in general, the lower the flux
rate, the larger is the equilibrium island size, as
illustrated in Fig. 5 for different flux rates with fixed
temperature T ¼ 700K, coverage c ¼ 20 per cent,
and interruption time ti ¼ 200 s. Note that, to
highlight the effect of the flux rate, the strain energy
field is not included in this simulation.

3.4 Surface coverage c

The surface coverage c describes how much material
is deposited on the surface. This parameter certainly
has an important effect on size distribution as islands
of equilibrium size cannot be expected if there is not
enough deposited material on the surface. On the

Fig. 4 Atom island ordering under different temperatures (T is 550K in (a), 650K in (b), 750K in (c),
800K in (d), 850K in (e), and 950K in (f)). Simulation parameters are F ¼ 1.0Ml/s, c ¼ 20 per
cent, and ti ¼ 200 s on a 200� 200 grid. The strain energy field is updated every 2500 steps

Fig. 5 Island ordering of atoms under different flux rates (F ¼ 1Ml/s in (a), F ¼ 0.1Ml/s in (b), and
F ¼ 0.01Ml/s in (c)). Simulation parameters are T ¼ 700K, c ¼ 20 per cent, and ti ¼ 200 s on a
200� 200 grid. Deposition stops after 0.2 s in (a), 2 s in (b), and 20 s in (c), and the strain
energy field is not included for simplicity
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other hand, if too much material is transported to the
surface, too small a distance between islands makes
the formation of isolated islands impossible (e.g.
Figs 6(d) and (e)). For coverage below certain critical
coverage cc, the growth is mainly kinetically con-
trolled. In other words, the island size distribution is
mostly controlled by the variation in coverage and
an increase in the average island size would be
expected with increasing coverage (Figs 6(a) to (c)).
Under this condition, every island collects atoms
from its immediate vicinity without any considerable
exchange of material among islands, and its size is
directly determined by the amount of deposited
material around the island.
For temperature T ¼ 700K, flux rate F ¼ 1Ml/s,

and interruption time ti ¼ 100 s, the simulated results
on the 200� 200 grid with different coverage are
plotted in Fig. 6. From the results it can be seen
that, with increasing coverage from 10 to 30 per
cent, the average island size becomes larger and
larger. However, when the coverage is larger than 30
per cent, isolated islands cannot be easily observed.
Therefore, the critical surface coverage, cc, is some-
where between 20 and 30 per cent.

3.5 Growth interruption time ti

Another important factor to influence the growth
result is the time between the end of deposition and
the capping of the QD layer with another material,
the so-called growth interruption time, while the
time from the very beginning to the end of simulation

is named the total simulation time t (¼ tiþdeposit
time). It is known that growth interruption affects
the crystal surface dramatically and the results
before and after the interruption can be very different
[16]. Furthermore, during growth interruption, the
atoms can move to energetically favourable positions
and approach thermodynamic equilibrium. Since
there is a striking difference between the kinetically
controlled growth and the thermodynamically
dominated size distribution, the effect of growth
interruption time can be dramatic.

For temperature T ¼ 750K, flux rate F ¼ 1Ml/s,
and coverage c ¼ 20 per cent on the grid of
200� 200, the simulation results with different
growth interruption times are shown in Figs 7(a) to
(f). It is clear that with increasing ti, the island size
increases. At about ti ¼ 100 s, the size becomes
uniform, and finally when ti ¼ 200 s the ordered
island system is established. Therefore, in general,
with increasing growth interruption time, the
system ultimately reaches equilibrium.

4 QUANTUM-DOT STACKS

Having seen the effects of temperature, flux rate, sur-
face coverage, and growth interruption time on the
island formation (where only a single QD layer over
the substrate is concerned), the interaction between
QD layers is now studied. As before, the important
contribution of the strain energy field will be empha-
sized.

Fig. 6 Atom island ordering with coverage c increasing from 10 to 50 per cent in (a) to (f). Simulation
parameters are T ¼ 700K, F ¼ 1.0Ml/s, and ti ¼ 200 s on a 200� 200 grid. The strain energy
field is updated every 2500 steps
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To increase the uniformity and ordering of the QD
density over the surface, various approaches have
been proposed, including growth of QDs over
patterned substrates. Strained-layer heteroepitaxy
has been studied in the lateral as well as the vertical
direction [28–30]. Recently, it has been demonstrated
that regular three-dimensional QD superlattices with
tunable lattice constants can be achieved utilizing the
strain-mediated self-organization effect in the
Stranski–Krastanov growth mode [5, 31].
In this section, the spatial correlation in the vertical

direction is first demonstrated by simulation for a
three-layered model (one substrate and two spacer
layers, Fig. 8) with temperature T ¼ 700K, flux rate
F ¼ 0.01Ml/s, coverage c ¼ 20 per cent, growth inter-
ruption time ti ¼ 50 s (i.e. total time t ¼ 70 s), and
thickness for each spacer layer at H ¼ 5 grids (Fig.
8). Then the thickness effect of the first spacer layer
is carried out (corresponding to a two-layered

model). For the first case, the simulated results on
the substrate and on the first and second spacer
layers are shown in Fig. 9. In this model, atoms with
a pattern similar to Fig. 7(a) on the substrate GaAs
(001) are first deposited. Then, KMC is executed and
the simulated pattern on the substrate is shown in
Fig. 9(a) (for the first QD layer). Next, a spacer layer
is added of thickness H ¼ 5 grids on top of the first
QD layer, and again atoms are randomly deposited
on the surface of this spacer layer. Similar KMC simu-
lation is then carried out. However, when the strain
energy field on the new surface (i.e. on the top of
the first spacer layer) is calculated, not only the
strain contribution on the surface but also that from
the first QD layer (due to the previously formed
atomic pattern) is considered. The simulation again
runs to the interruption time ti ¼ 50 s and the result
is plotted in Fig. 9(b) (for the second QD layer).
Finally, following the same procedure, a new spacer
layer of thickness H ¼ 5 grids is added on top of the
second QD layer and atoms are deposited over this
spacer layer. During the simulation for this case, the
strain energy at each atom location on the surface is
evaluated by considering all the contributions of
atoms in QD layers 1 and 2 as well as those on the
surface. The simulated result is shown in Fig. 9(c)
(for the third QD layer).

It is observed from Fig. 9 that with increasing
number of spacer layers the island (i.e. QD) size
tends to become larger and the corresponding spatial
distribution becomes more uniform [5, 10, 22]. This

Fig. 7 Atom island distributions for different growth interruption times from ti ¼ 0 to ti ¼ 200 s in (a) to
(f), where (a) is the initial atom pattern when all the atoms are deposited on the surface with
growth interruption time ti ¼ 0. The simulation parameters are T ¼ 750K, F ¼ 1.0Ml/s, and
c ¼ 20 per cent on a 200� 200 grid. The strain energy field is updated every 2500 steps

Fig. 8 Schematic illustration of a three-layered QD super-
lattice
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phenomenon is understandable as the strain energy
distribution from the buried QDs enhances the
strain on the surface so that the strain energy pattern
becomes more uniform and ordered [10].
The effect of the thickness of the spacer (or buffer)

layer on the QD distribution (a two-layered model
with a substrate and a spacer layer) is now studied.
The KMC program for different thicknesses of
spacer layer is run, with results in Figs 10(b) to (f)
corresponding to H ¼ 5, 10, 15, 20, and 30 grids.
While the calculation is carried out for the whole
200� 200 grid, only the results within the 100� 100

grid are selected to show the features. It is observed
from Fig. 10 that the island size distribution over
the spacer layer with thickness H ¼ 10 grids is more
uniform than that in the first QD layer (Figs 10(c)
versus 10(a)), and that the island size distribution
over the spacer layer with H ¼ 5 grids is more
uniform than that for H ¼ 10 grids (Figs 10(b) versus
10(c)). In other words, a thinner spacer layer
corresponds to a better island distribution [22].
Furthermore, when H is equal to, or larger than, 15
grids, no apparent ordering of islands can be
observed, just as for the first QD layer case (Fig.

Fig. 9 QD distributions in the first (a), second (b), and third (c) QD layer (see Fig. 8 for illustration).
Simulation parameters are T ¼ 700K, F ¼ 0.01Ml/s, c ¼ 20 per cent, and t ¼ 70 s for each layer
on a 200� 200 grid. Thickness of the two spacer layers is five grids each. The strain energy
field is calculated every 2500 steps for each QD layer. It takes each QD layer 20 s to deposit
atoms on the surface and 50 s for growth interruption

Fig. 10 QD island distributions in the second QD layer with different thicknesses for the spacer layer:
(a) simulated result on top of the substrate (first QD layer); (b) to (f) simulated results on top of
the spacer layer with a thickness equal to 5–30 grids (second QD layer, see also Fig. 8). The
simulation parameters are T ¼ 700K, F ¼ 0.01Ml/s, c ¼ 20 per cent, and t ¼ 70 s for each QD
layer on a 200� 200 grid. The strain energy field is updated every 2500 steps. It takes each
QD layer 20 s to deposit atoms on the surface and 50 s for interruption. For illustration, only
the (100� 100) portion of the 200� 200 grid is chosen
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10(a)). This is due to the fact that, when the
spacer (buffer) layer is too thick, the strain energy
contribution from the QDs below the spacer layer
(e.g. from the first QD layer) is almost negligible as
compared with the contribution from the lateral
islands on the surface.

5 CONCLUSIONS

The KMC model proposed in this paper shows clearly
the effect of self-organization on the dynamics of QD
island growth. The nearest and next nearest neigh-
bour binding energy may induce isolated island
pattern, but neither uniform size nor spatial ordering
can be observed in the absence of strain energy. The
long-range strain energy field due to the lattice
misfit between the substrate and adatoms is accu-
rately evaluated based on the novel point eigenstrain
Green’s function solution, which could be the key
factor in controlling the island size uniformity and
spatial ordering. All the simulation results presented
in this paper, except for the QD stacks, are limited
to two-dimensional plane island growth.
Besides the long-range strain energy, other growth

parameters can also greatly influence the simulation
results. The average island size increases with increas-
ing temperature up to a critical point which is around
800K; for a temperature higher than this critical
value, the islands begin to dissociate. The flux rate
of atoms to the surface during deposition has a pro-
nounced effect on the island size and ordering,
which demonstrates that a large size and more uni-
form ordering of islands generally corresponds to a
decreasing flux rate. By increasing the surface cover-
age, the average island size increases up to a critical
point, which is somewhere between 20 and 30 per
cent for the testing model; above this critical cover-
age, isolated islands cannot be observed. Repeated
growth of QD layers in a vertical direction, separated
by the thin buffer (or spacer) layer and directed by the
long-range strain energy field, could be a potential
way to introduce uniform island size and ordered
spatial distribution.
Finally, the results presented in this paper are based

on the so-called two-dimensional plane simulation.
As such, the program will be able to predict only the
size and spatial distribution of the islands in the
horizontal (x‚ y) plane. To investigate the three-
dimensional shape of the islands, other approaches
need to be incorporated. These include the 1þ 1
and 2þ 1 dimension simulations where the vertical
profile of the island (e.g. in the vertical (x‚ z) plane)
can be studied [32]. In predicting the vertical profile
of the islands [33], the mechanism and process
become more complicated [4, 34]. This topic, com-
bined with the two-dimensional program developed,

may require consideration of the Asaro–Tiller–
Grinfeld morphological instability of the strained
solid [35].
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8 Schöll, E. and Bose, S. Kinetic Monte Carlo simulation
of the nucleation stage of the self-organized growth of
quantum dots. Solid-State Electronics, 1998, 42, 1587–
1591.

9 Elsholz, F., Meixner, M., and Schöll, E. Kinetic Monte
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APPENDIX 1

Notation

aj eigenvectors
bj eigenvectors
c surface coverage
C11‚C12‚C44 elastic coefficients of GaAs (001)
Eb binding energy of a single nearest

neighbour
En binding energy to the surface
Es total binding energy to the

neighbouring atoms
Estrðx‚ yÞ strain energy
F flux rate
g coupling factor between adjacent

lattice sites
H spacer layer thickness
kB Boltzmann’s constant
n‚m number of nearest and next

nearest atoms respectively
patom total diffusion probability of an

atom
pj Stroh eigenvalue
ptotal probability summation of all the

atoms
r radius around the point where the

strain is to be evaluated
Ri cumulative probability
rj atom probability list
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t simulation time
T temperature
ti growth interruption time
Tðx; yÞ‚Sðx; yÞ‚ Green’s stress matrices
T
1ðx; yÞ‚S1ðx; yÞ

u random number between 0 and 1
x coordinate in the x direction
x vector for field point (x1‚ x2‚ x3)
y coordinate in the y direction
y vector for source point ( y1‚ y2‚ y3)

� reduction factor for the next
nearest neighbours (¼ 1=

ffiffiffi
2

p
)

�ij strain tensor
��ij misfit strain (or eigenstrain)
�t time step
�0 attempt frequency
�ij stress tensor

APPENDIX 2

Half-space Green’s function and elastic strain
energy

In this appendix, the Green’s function in an anisotro-
pic and linearly elastic half-space under traction-free
surface condition (Fig. 11) [14], is first briefly
reviewed and then applied to the calculation of the
elastic strain energy in atom islands. The half-space
Green’s function is expressed as the sum of the full-
space Green’s function and a complementary part.
While the full-space Green’s function is in an explicit
analytical form [36], the complementary part is
expressed in terms of a regular line integral that can
be easily evaluated by a standard quadrature scheme.
It is observed from equation (5) that the misfit

lattice ��lm-induced strain can be expressed as a
combination of the derivatives of the stresses due to
a point force, while the point force (in the j direction)

induced strain is just � j
kp. Therefore, the induced

strains due to a point eigenstrain and a point force
are completely different and should be carefully
distinguished, even though the former can be
expressed by the latter (via derivatives)! To calculate
the lattice misfit induced strain, the derivatives of
the point force induced stresses are needed with
respect to the source coordinate y, which can be
expressed as [14]

@Tðx; yÞ
@yj

¼ @T1ðx; yÞ
@yj

� 1

2�2

ð�
0

�BBG3hgjiAT d�

@Sðx; yÞ
@yj

¼ @S1ðx; yÞ
@yj

� 1

2�2

ð�
0

�CCG3hgjiAT d�

ð7Þ

where an over bar stands for a complex conjugate
while superscript ‘T ’ denotes the matrix transpose.
The definitions of Green’s T and S matrices are
given as

T ¼
�131 �2

31 �331

�132 �2
32 �332

�133 �2
33 �333

2
64

3
75‚ S ¼

�111 �2
11 �3

11

�112 �2
12 �3

12

�122 �2
22 �3

22

2
64

3
75

ð8Þ

with T
1ðx; yÞ and S

1ðx; yÞ corresponding to the full-
space counterparts. Also, in equation (7)

hg1i ¼ diag½cos �‚ cos �‚ cos ��

hg2i ¼ diag½sin �‚ sin �‚ sin ��

hg3i ¼ diag½ p1ð�Þ‚ p2ð�Þ‚ p3ð�Þ�
ð9Þ

ðG3Þij ¼
ð�BB�1ð�ÞBð�ÞÞij

f��ppið�Þx3 þ pjð�Þy3 � ½ðx1 � y1Þ cos �
þðx2 � y2Þ sin ��g3

ð10Þ

with pið�Þ being the Stroh eigenvalues and Að�Þ, Bð�Þ
the corresponding eigenmatrices, while matrixCð�Þ is
related to Að�Þ [37]. Note that all these eigenvalues
and matrices are functions of the stiffness matrix
Cijkl and the integral variable � [14, 37, 38].

As has been presented in the text, with equation (5),
the interactive strain energy at point y of island B due
to neighbouring island A (Fig. 12) can be expressed as
an integration, given in equation (6) and repeated
below for convenience

EstrðyÞ ¼
1

2
Cijkl

ðð
A

�ijðy; xÞ�klðy; xÞ dAðxÞ ð11Þ

The integration of equation (11) on the right-hand
side can be approximated by the summation of n

Fig. 11 Geometry of the half-space Green’s function with
the source point at yð y1‚ y2‚ y3Þ and the field
point at xðx1‚ x2‚ x3Þ

Effect of elastic strain energy on self-organized pattern formation 81

JNN30 # IMechE 2005 Proc. IMechE Vol. 218 Part N: J. Nanoengineering and Nanosystems



discretized areas over the island A as

EstrðyÞ ¼
1

2
Cijkl

X
n

�ijðy; xnÞ�klðy; xnÞ�An ð12Þ

Since the Green’s functions have been precalculated,
each�A in equation (12) can be very small. It actually
can be small enough to include only one atom. In
other words, if there are N atoms in island A with
coordinate xn, then the induced strain energy at y in
island B can be finally expressed simply as (assuming
that each atom has the same mass m)

EstrðyÞ ¼
1

2
Cijklm

XN
n¼1

�ijðy; xnÞ�klðy; xnÞ ð13Þ

APPENDIX 3

Detailed simulation steps

1. Set simulation time t ¼ 0 and hopping step¼ 0.
2. Randomly grow seeds in the lattice grid, for

example, 20 per cent of the total atoms.
3. Extend the original area using a periodic condi-

tion (Fig. 13).
4. Judge the number and position of nearest and

next nearest neighbours for each atom, and
judge the position for each atom in the second
box (Fig. 14). This information is used to calculate
the overall binding energy En (equation 4).

5. Calculate the probability for each atom, and, if
the hopping step reaches 2500, update the
strain energy field. After that, set the hopping
step back to 0.

6. Form a list of rj ¼ patom½ j� (probability) and calcu-
late the cumulative function

Ri ¼
Xi

j¼1

rj for i ¼ 1‚ 2‚ . . . ‚N ð14Þ

where N is the total number of atoms in the
system.

7. Take a random number u 2 ½0‚ 1Þ.
8. Find the ith atom and carry out the hopping

according to the value Ri, for which
Ri�1 < uR4Ri, where R is the total probability
ptotal.

9. Make a jump for the atom in accordance with the
likelihood of the eight possible diffusion pro-
cesses.

10. Update the time by t ¼ tþ�t, where

�t ¼ � log u=R ð15Þ

11. Update the total hopping step.
12. Update the jumping probability of each atom and

each class.
13. Return to step 3.

Fig. 12 Illustration of the interactive strain energy among
atoms. The strain energy at the atom point y of
island B due to island A is the integration over
the atom area of island A

Fig. 13 Illustration of the periodic boundary condition

Fig. 14 Illustration of the atom neighbours
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