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Measurement of mechanical properties
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In this paper, a pig’s rectum was studied as a model biomaterial and its mechanical
behaviors under tensile, compressive, and shear stresses were measured accurately using
a multipurpose microtesting system. Based on the stress-strain relations of samples of
different orientations, the tangential moduli were calculated through a reverse method
combined with self-correlation analysis. The experimental data exhibited pronounced
nonlinear and anisotropic characteristics. It was found that the effective compliance in
tension along the longitudinal direction was larger than that along the circumferential
direction, but smaller than that along the out-of-plane direction.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
The accurate measurement of mechanical properties
of soft tissues are of basic scientific interest and
immense technological importance to a variety of
clinical practices such as organ registration [1, 2], dose
optimization [3], tumor detection [4, 5], hyperthermia
treatment [6], and so on, and has been an active re-
search area for decades. On the one hand, the external
loads applied on the samples, which are often of the
dimensions around several millimeters, are usually less
than 1–2 N, which demands a high accuracy of load
transducer around 10−2 N (0.5% of the full scale) and
the fine resolution of displacement sensor in the range
of 5–50 µm [7]. On the other hand, the large extent
of deformation up to 150% makes the application of
most of conventional low-level-signal transducers,
e.g. piezoelectric loadcells, irrelevant. Furthermore, in
tissue dynamics studies, very often pre-conditioning is
required to minimize the degree of history dependence
so as to assure that the experimental data can reflect
the in-vivo organ behaviors [8]. Because of these
difficulties, currently the reliable experimental results
of soft tissues, e.g. rectal walls, are rare [9]. The limited
literature data are either based on simple methods
that can only provide order-of-magnitude assessments
[10–14] or cannot reflect the nonlinear/anisotropic
nature of the biomaterials [15–18].

One way to solve these problems is to use small-
scale, high-compliance testing frames, which can be
broadly classified into two groups: integrated systems
[19–21] and non-integrated systems [22, 23]. In the
experimental studies on individual cells, the former,
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for which the sample and the testing machine must
be placed on the same wafer, are more widely ap-
plied. However, for soft tissues, the complexity in
sample preparation and assembly can be prohibitively
difficult.

Recently, based on a research on microtesting
technologies [24], a multipurpose non-integrated mi-
crotesting system has been built up in one of the
authors’ lab. A two-compound-flexure structure was
employed to assure the precision positioning. The
displacement resolution is 20 nm, which is close
to the molecular level; and the load resolution is
at the level of tens of µN. The accurate and re-
peatable performance of the system has been doc-
umented in [24]. By using different holding stages
this system can be applied to perform microscale ten-
sile, compression, bending, shear, and nano-indentation
tests.

2. Experimental
The pig’s rectum samples studied in this paper were
provided by the Strasburg Provision, Inc. Immediate
after being separated from the animal body, the fresh
rectum was cut open along the longitudinal direction,
cleaned with cold water, and stored in water at room
temperature for less than 0.5 h before testing. The ef-
fect of osmotic swelling will be ignored in the following
discussion. The average thickness of the rectal wall was
measured to be 1.7 mm through the high-resolution dig-
italized images of the sample profile taken by a Nikon
CP4500 camera.
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Figure 1 (a) Tensile specimens and (b) shear/compression specimens of
the rectal wall.

By using a parallel blade couple, tensile specimens
were cut along three different orientations from the rec-
tal wall on a flat cutting stage: x1, x2, and xinc, as de-
picted inFig. 1. Direction x1 is along the longitudinal
axis; x2 is along the circumferential (transverse) axis,
and xinc is 45 ◦ away from them. The uncertainty in tis-
sue orientation mostly came from the misalignment of
the parallel blades and the guiding marks in the cutting
stage, which is at the level of ±0.5 ◦. The areas of large
horizontal folds and anal columns were avoided. The
specimen width was 1.0 mm. The specimens for shear
and compression tests were cut through the similar pro-
cedure with the in-plane dimension of 4.0 × 4.0 mm
and the edges parallel to x1 and x2, respectively.

Fig. 2(a) depicts the tensile experimental set up. Type
18-8 locking washers were applied such that the grips
could be self-tightened even when the relaxation of the
rectal wall was significant. The specimen was first fixed
between the loading plates and the holding plates at the
working station, and then mounted on the microtest-
ing machine through a self-aligning and self-locking
track. To avoid sample slippage in the grips, a super-
glue was applied between the sample and the holding
plates. The holders and alignment devices, as well as the
body of the compound flexure frame, were made from
A17075 aluminum alloy. One of the loading plates, “A”,
was connected to the displacement compound flexure,
and the other, “B”, was attached to the loadcell com-
pound flexure. Initially the distance between plates “A”
and “B” l0 = 1.0 mm. Through the displacement con-
trolled precision actuator attached to the displacement
compound flexure, plate “A” was driven with a constant
rate of 0.1 mm/sec. Due to the specimen stiffness, plate
“B” moved with “A”, causing the displacement of load-
cell compound flexure. With the frame compliance that
has been calibrated to be K = 1.2174 N/mm, the axial
load, P , can be obtained as

P = K · δB (1)

(a)

(b)

(c)

Figure 2 Schematic diagrams of loading stages for (a) tensile test;
(b) compression test; and (c) shear test.

where δB is the displacement of loadcell compound flex-
ure measured through the loadcell sensor. The differ-
ence between δA and δB gives the elongation of the
specimen

δ = δA − δB (2)

where δA is the displacement of plate “A”. Thus, the
engineering stress and strain can be calculated as P/A0
and δ/l0, respectively, with A0 being the initial cross-
sectional area of the specimen. Altogether 10 tensile
tests were performed on specimens of different orienta-
tions depicted in Fig. 1(a), and the typical stress-strain
curves are shown in Fig. 3. Prior to the testing of each
sample, four to five pre-fatigue cycles were applied

184



(a)

(b)
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Figure 3 Typical stress-strain curves of tensile tests: (a) along the lon-
gitudinal direction (x1); (b) along the transverse direction (x2); and
(c) along the inclined direction (xinc).

until the hysteresis loops converged, assuring that the
degree of history dependence of the material behavior
was minimized. The strain range of preconditioning
treatment was kept below 0.4 to avoid any possible per-
manent damages. During the experiment on specimens
cut along the x1 direction, a series of high-resolution
photos were taken using a Nikon CP4500 camera
for the calculation of the effective in-plane shear
resistance, which will be discussed shortly.

Figure 4 A typical stress-strain curve of compression test along the out-
of-plane direction (x3).

In order to evaluate the out-of-plane compliance,
compression tests were performed using two compres-
sion plates attached to the displacement and loadcell
compound flexures, respectively, as shown in Fig. 2(b).
Through Equations (1) and (2) the compressive load
and deformation can be obtained by measuring the dis-
placements of the two compound flexures. Altogether
three specimens were tested, and a typical stress-strain
curve is shown in Fig. 4.

The effective out-of-plane shear resistances were
measured through the simple shear tests depicted in
Fig. 2(c). The two loading plates were parallel to each
other. The distance between them was set to 1.7 mm,
the same as the thickness of the rectal wall. The two
surfaces of the square shear specimen were attached to
loading plates “A” and “B” through adhesive joints, re-
spectively. The shear displacement was taken as δA−δB
and thus the effective shear strain could be obtained as

γ = (δA − δB)/d0 (3)

where d0 = 1.7 mm is the sample thickness. The effec-
tive shear stress, τ , was obtained through Equation (1).
A typical shear stress-strain curve is shown in Fig. 5.

Figure 5 Typical stress-strain curves of simple shear tests: (a) G13 and
(b) G23.
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3. Results and discussion
The stress-strain curves of the rectal wall in Figs. 3–
5 exhibit clearly the nonlinear characteristics. In gen-
eral, therefore, a constitutive model capable of describ-
ing these material behaviors is required [8]. In certain
biomedical applications, e.g. in image registration and
computational anatomy [1, 2], however, it was found
that a linear representation is sufficient as a first-order
approximation, especially when the strain range under
consideration is within the linear region.

Due to the anisotropic nature of the rectal wall, in
this paper the stress-strain relation will be discussed in
context of orthotropic model. The principal directions
of the material are along the x1-, x2-, and x3-axes, and
thus there are totally nine independent material param-
eters to be determined (see Appendix A for details).
The tangential moduli are estimated through the strain
offset method in the range of 0.4–0.6 using a linear re-
gression algorithm. As such, the effective tangents are
approximately determined with an average regression
constant R2 equal to 0.98. The effective tensile resis-
tances along the longitudinal axis, E1, and along the
transverse axis, E2, are determined through the tensile
stress-strain curves along the x1- and x2-directions, re-
spectively. The effective out-of-plane compression re-
sistance, E3, is calculated using the compression curves
along the x3-direction. Through the shear experiments
with the shear plane normal to the x3 axis and the shear
directions along the x1 and x2 axes, the effective shear
resistances, G13 and G23, can be obtained.

The tensile tests along the inclined direction, xinc,
provide comprehensive information of the effective in-
plane Poisson’s ratio, ν12, and in-plane shear resistance
G12. The effective tensile resistance along xinc, En, is
related to E1 and E2 through (see Appendix A)

En = n4

E1
+

(
1

G12
− 2

ν12

E1

)
m2n2 + m4

E2
(4)

Hence, with the value of ν12 obtained through the self-
correlation image analysis of the high resolution photos
taken in the tensile tests, G12 can be calculated using
the parameters obtained above. Finally, The remain-
ing two out-of-plane effective Poisson’s ratios (ν13 and
ν23) were estimated by optimizing the constraints on
the symmetry of the tangential stiffness matrix and pos-
itive strain energy [25, 26], and the results are listed in
Table I. The standard deviations are estimated based on
the calibration data.

T ABL E I The tangential moduli and effective Poisson’s ratios of the
rectal wall

Properties Mean value Standard derivation

E1 (kPa) 59.9 8.6
E2 (kPa) 147.0 20.6
E3 (kPa) 37.3 5.7
G12 (kPa) 29.3 —
G13 (kPa) 10.7 6.9
G23 (kPa) 40.6 9.6
ν12 0.54 0.12
ν13 0.32 —
ν23 0.59 —

According to Table I and the stress-strain curves
shown in Fig. 3, it can be seen that at the early stage
the tensile resistance of the rectal wall is quite low,
while if the effective strain exceeds a critical value,
εcr, the tangential modulus become much larger. The
critical strain is of the maximum value around 40%
along the longitudinal direction and the minimum value
around 13% along the transverse direction. Along the
inclined direction, εcr ≈ 33% is somewhat in between.
Furthermore, it is noticed that the effective tensile re-
sistance along the axial direction, E1, is much smaller
than that along the circumferential direction, E2, which
is in consistent with the fact that the number density of
fibers along the x2 axis is higher than that along the x1
axis.

These phenomena should be attributed to the sig-
moidal structure of the rectal wall consisting of a large
number of horizontal folds with the characteristic width
ranging from sub-µm level to sub-mm level [8]. Dur-
ing the tensile experiment along direction x1, since the
tensile resistance of the large folds is lower than that
of small folds, the larger ones will be unfolded first,
resulting in the low beginning tensile resistance dis-
cussed above. At εcr, most of the large folds have been
unfolded and more and more small ones are involved in
the load bearing sections, and as a result the tangential
modulus becomes increasingly high. Eventually when
all the folds are unfolded the testing curve should reflect
the intrinsic response of tissue fibrils. At this stage the
effective modulus can be much higher than E1 and the
strain is around 300–500% [27], which is beyond the
range of the microtesting system and is of little interest
for clinical practices.

Along the transverse direction, on the other hand,
the number and the size of longitudinal folds are
much lower than that of the horizontal ones, except
for the end area of the rectum. Therefore, the critical
strain at which the large folds are unfolded is much
lower than that along the x1 axis and, also due to
the relatively high number density of fibers, the ten-
sile resistance is much higher. Note that the effective
out-of-plane shear modulus G23 is larger than G13,
which agrees with the trend of the effective tensile
moduli.

Fig. 4 shows the out-of-plane compression resistance
curve. Through Table I, it can be seen that E3 is smaller
than both of E1 and E2. Although the compression re-
sistance and the tensile resistance are not necessarily
the same, this result demonstrates clearly that the rectal
wall is more compliant under the out-of-plane loading
than under the in-plane loading, which should be related
to the layered structure consisting of the soft matrix. We
also remark that after the compressive strain exceeds the
proportional limit, E3 decreases as the strain rises, re-
sembling the behavior of a foamed material [28]. One
the other hand, the high values of the effective Pois-
son’s ratios around 0.5 suggest that the rectal wall is
incompressible. A deeper understanding of these phe-
nomena must be based on examining the details of the
microstructure of soft tissues.

Clearly, the calculation of the tangential moduli
discussed above gives only a first-order description
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of the mechanical properties and does not constitute a
fully developed model. In order to accurately simulate
the mechanical behavior of rectal walls, hyperelastic
or viscoelastic theories must be considered.

Conclusions
By using a two-compound-flexure microtesting system,
the applied load and deformation of specimens of rectal
wall can be measured accurately. The experimental data
reveal that the rectal wall is orthotropic. At relatively
small strain, the tensile resistance along all the direc-
tions is quite low, and when the strain exceeds a critical
value significant effective strain hardening occurs. The
following conclusions are drawn:

(1) The tangential moduli along different directions,
E1, E2, and E3, differ from each other significantly.

(2) The tensile resistance along the longitudinal di-
rection is much lower than that along the transverse
direction, which can be attributed to the high number
density of horizontal folds in the rectal wall.

(3) The compliance of the rectal wall under out-of-
plane loading is higher than that under in-plane loading.

(4) Due to the pronounced nonlinear and time-
dependent characteristics, in order to study the
mechanical behavior of the rectal wall in a broad strain
range, hyperelastic and/or viscoelastic theories must
be employed.

Appendix A
The material Cartesian coordinate system (x1, x2, x3) of
the rectal wall is shown in Fig. 1. The (x1, x2)-plane is
within the rectal wall and the x3-axis is along the out-of-
plane direction. In the rectal wall, the x1-axis is along
the longitudinal direction while the x2-axis is along the
transverse direction. Assuming that in the linear region
of the response curve the rectal wall is orthotropic, we
then have the following constitutive relationship be-
tween the strain (normal and shear) and stress (normal
and shear):




ε1

ε2

ε3

γ23

γ13

γ12




= (
Ai j

)




σ1

σ2

σ3

τ23

τ13

τ12




(A1)

where (Ai j ) is the compliance matrix of the material,
which for the orthotropic case can be expressed as

(Ai j ) =




1
E1

− ν21
E2

− ν31
E3

0 0 0

− ν12
E1

1
E2

− ν32
E3

0 0 0

− ν13
E1

− ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12




i, j = 1, 2, . . . , 6

(A2)

Figure A1 Relationship between two Cartesian coordinate systems (x ,
y, z) and (x1, x2, x3), with the latter being rotated by an angle of θ from
the material coordinate system in the (x1, x2)-plane.

We now introduce a new Cartesian coordinate system
(x , y, z) which is rotated by θ in the (x1, x2)-plane with
respect to the material coordinate system (see Fig. A1).
In the new system, the constitutive relation becomes




εx

εy

εz

γyz

γxz

γxy




= (ai j )




σx

σy

σz

τyz

τxz

τxy




(A3)

where the new compliance matrix (ai j ) is of the follow-
ing non-zero elements

a11 = n4

E1
+

(
1

G12
− 2

ν12

E1

)
m2n2 + m4

E2
;

a22 = m4

E1
+

(
1

G12
− 2

ν12

E1

)
m2n2 + n4

E2

a12 =
(

1

E1
+ 1

E2
+ 2

ν12

E1
− 1

G12

)
m2n2 − ν12

E1
;

a16 =
[

2
m2

E2
− 2

n2

E1
+

(
1

G12
− 2

ν12

E1

)
(n2 − m2)

]
mn

a26 =
[

2
n2

E2
− 2

m2

E1
−

(
1

G12
− 2

ν12

E1

)
(n2 − m2)]mn;

a66 = 4

(
1

E1
+ 1

E2
+ 2

ν12

E1
− 1

G12

)
m2n2 + 1

G12

a13 = −ν23

E2
m2 − ν13

E1
n2 = −ν23

E2
m2 − ν31

E3
n2;

a23 = −ν23

E2
n2 − ν13

E1
m2 = −ν23

E2
n2 − ν31

E3
m2

a33 = 1

E3
; a36 = 2

(
ν13

E1
− ν23

E2

)
mn

= 2

(
ν31

E3
− ν23

E2

)
mn; a44 = n2

G23
+ m2

G13

a45 =
(

1

G23
− 1

G13

)
mn; a55 = m2

G23
+ n2

G13
(A4)

where m = sin θ and n = cos θ .
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