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Abstract

In this paper, an exact solution is presented for the multilayered rectangular plate made of functionally

graded, anisotropic, and linear magneto-electro-elastic materials. While the edges of the plate are under

simply supported conditions, general mechanical, electric and magnetic boundary conditions can be applied
on both the top and bottom surfaces of the plate. The functionally graded material is assumed to be expo-

nential in the thickness direction and the homogeneous solution in each layer is obtained based on the

pseudo-Stroh formalism. For multilayered plate structure, the propagator matrix method is employed so

that only a 5 · 5 system of linear algebraic equations needs to be solved. The exact solution is then applied

to two functionally graded (exponential) sandwich plates made of piezoelectric BaTiO3 and magnetostric-

tive CoFe2O4, under mechanical and electric loads on the top surface. While the numerical results clearly

show the influence of the exponential factor, magneto-electro-elastic properties, and loading types on

induced magneto-electric-elastic fields, they can also serve as benchmarks to numerical methods such as
the finite and boundary element methods.
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1. Introduction

Smart or intelligent materials such as the piezoelectric and piezomagnetic ones are currently
intensively investigated, due to their ability of converting energy from one form to the other
(among magnetic, electric and mechanical energies). It is also observed that, composites made
of piezoelectric/piezomagnetic materials can exhibit the magnetoelectric coupling that is not pres-
ent in the single-phase piezoelectric or piezomagnetic material [1–3]. Recently, Pan [4] derived an
exact closed-form solution for the simply supported and multilayered plate made of anisotropic
piezoelectric and piezomagnetic materials under a static mechanical load, and Pan and Heyliger
[5] solved the corresponding vibration problem. On the other hand, Li and Dunn [6] carried out a
study on the micromechanics of magneto-electro-elastic composite materials. More recently,
Wang and Shen [7] studied the two-dimensional (2D) inclusion problem in magneto-electro-elastic
composite materials, and Gao et al. [8] solved the crack problem in 2D magneto-electro-elastic
solids.

The functionally graded material (FGM) structure has attracted wide and increasing attentions
to scientists and engineers. FGM plays an essential role in most advanced integrated systems for
vibration control and health monitoring. While He et al. [9] investigated the FGM plates with
integrated piezoelectric sensors and actuators for the active control purpose, Liew et al. [10] ana-
lyzed the post buckling of piezoelectric FGM plates subjected to thermo-electro-mechanical load-
ing. The time-dependent stress analysis in FGM elastic cylinders was carried out by Yang [11],
and the effect of the inter-diffusion reaction on the compatibility in PZT/PNN FGM materials
was analyzed by Xu et al. [12]. Almajid and Taya [13] and Almajid et al. [14] also investigated
the displacement and stress fields in piezocomposite plates with functionally graded microstruc-
ture for potential applications in the piezoelectric bimorph. More recently, a three-dimensional
(3D) exact closed-form solution was derived for anisotropic elastic [15] and piezoelectric [16]
FGM plates under simply supported edge conditions.

In this paper, we present an exact solution for a multilayered rectangular plate made of aniso-
tropic and functionally graded magneto-electro-elastic materials. The plate is simply supported
along its edges, and both mechanical and electric loads are applied on the top surface. The homo-
geneous solution is obtained based on the pseudo-Stroh formalism [17–19], and the propagator
matrix method [20,21] is employed to treat the multilayered case. In the numerical analysis,
two functionally graded (exponential) sandwich plates made of piezoelectric BaTiO3 and magne-
tostrictive CoFe2O4 are analyzed. Numerical results clearly show the influence of the exponential
factor, magneto-electro-elastic properties, stacking sequence, and loading types on the induced
magneto-electric-elastic fields, which should be of interest to the design of smart structures. Fur-
thermore, these numerical examples could also serve as benchmarks to numerical methods such as
the finite and boundary element methods.
2. Problem statement and basic formulations

Let us assume that there is an N-layered rectangular plate made of anisotropic and functionally
graded magneto-electro-elastic materials and that its four sides are simply supported. The dimen-
sions of the layered plate are Lx · Ly · H with H being the thickness. Each layer can be homo-
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geneous or functionally graded with exponentially varying material properties. A Cartesian coor-
dinate system is attached to the plate with its origin being at one of the four corners on the bottom;
the plate is in the positive z-region. Layer j is bounded by its lower interface (or surface) at z = zj
and upper interface (or surface) at z = zj+1 with its thickness hj = zj+1 � zj. Obviously, the bottom
surface is at z = z1 (=0) and the top surface at z = zN+1 (=H). Without loss of generality, external
loads (mechanical, electric or magnetic) will be applied on the top surface of the N-layered plate.

For an anisotropic and linearly magneto-electro-elastic material, the coupled constitutive equa-
tions for each layer can be written as
ri ¼ Cikck � ekiEk � qkiHk

Di ¼ eikck þ eikEk þ dikHk

Bi ¼ qikck þ dikEk þ likHk

ð1Þ
where ri, Di and Bi are the stress, electric displacement and magnetic induction (i.e., magnetic
flux), respectively; ci, Ei and Hi are the strain, electric field and magnetic field, respectively; Cij,
eij and lij are the elastic, dielectric and magnetic permeability coefficients, respectively; eij, qij
and dij are the piezoelectric, piezomagnetic and magnetoelectric coefficients, respectively. Appar-
ently, various uncoupled cases can be reduced from Eq. (1) by setting the appropriate coupling
coefficients to zero.

For a functionally graded material with exponential variation in the z-direction, the material
coefficients in Eq. (1) can be described by
CikðzÞ ¼ C0
ike

gz; eikðzÞ ¼ e0ike
gz; likðzÞ ¼ l0

ike
gz

eikðzÞ ¼ e0ike
gz; qikðzÞ ¼ q0ike

gz; dikðzÞ ¼ d0
ike

gz
ð2Þ
where g is the exponential factor characterizing the degree of the material gradient in the z-direc-
tion, and the superscript 0 is attached to indicate the z-independent factors in the material co-
efficients. It is obvious that g = 0 corresponds to the homogeneous material case.

For an orthotropic solid, with transverse isotropy being a special case, the material coefficients
in Eq. (1) can be written as
½C� ¼

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Sym C55 0

C66

2
66666666664

3
77777777775
; ½e� ¼

0 0 e31

0 0 e32

0 0 e33

0 e24 0

e15 0 0

0 0 0

2
66666666664

3
77777777775
; ½q� ¼

0 0 q31

0 0 q32

0 0 q33

0 q24 0

q15 0 0

0 0 0

2
66666666664

3
77777777775

ð3Þ

½e� ¼
e11 0 0

0 e22 0

0 0 e33

2
64

3
75; ½d� ¼

d11 0 0

0 d22 0

0 0 d33

2
64

3
75; ½l� ¼

l11 0 0

0 l22 0

0 0 l33

2
64

3
75 ð4Þ
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The extended strain (using tensor symbol for the elastic strain cik)–displacement relation is
cij ¼ 0:5ðui;j þ uj;iÞ
Ei ¼ �/;i; Hi ¼ �w;i

ð5Þ
where ui, / and w are, respectively, the elastic displacement, electric potential, and magnetic
potential.

The equations of equilibrium, including the balance of the body force and electric charge and
current, can be written as:
rij;j þ fi ¼ 0

Dj;j � fe ¼ 0

Bj;j � fm ¼ 0

ð6Þ
where fi, fe, and fm are, respectively, the body force, electric charge density, and electric current
density (or magnetic charge density as compared to the electric charge density).
3. Stroh-type general solutions

For a simply supported and FGM plate, we seek the solution of the extended displacement
vector u in the form [4]
u �

ux
uy
uz
/

w

2
6666664

3
7777775
¼ esz

a1 cos px sin qy

a2 sin px cos qy

a3 sin px sin qy

a4 sin px sin qy

a5 sin px sin qy

2
6666664

3
7777775

ð7Þ
where
p ¼ np=Lx; q ¼ mp=Ly ð8Þ

with n and m being two positive integers.

It is noted that solution (7) represents only one of the terms in a double Fourier series expan-
sion when solving a general boundary value problem. Therefore, in general, summations for n and
m over suitable ranges are implied whenever the sinusoidal term appears.

Substitution of Eq. (7) into the general strain–displacement relations (5), the constitutive equa-
tions (1), and finally into the equations of equilibrium (6) with zero force and densities, yields the
following eigenequation
½Q � gRt þ sðR� Rt þ gTÞ þ s2T�a ¼ 0 ð9Þ

where superscript t denotes the transpose of the matrix. Also in Eq. (9),
a ¼ ½a1; a2; a3; a4; a5�t ð10Þ
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R ¼

0 0 pC0
13 pe031 pq031

0 0 qC0
23 qe032 pq032

�pC0
55 �qC0

44 0 0 0

�pe015 �qe024 0 0 0

�pq015 �qq024 0 0 0

2
66666664

3
77777775
; T ¼

C0
55 0 0 0 0

C0
44 0 0 0

C0
33 e033 q033

Sym �e033 �d0
33

�l0
33

2
66666664

3
77777775

ð11Þ

Q ¼

�ðC0
11p

2 þ C0
66q

2Þ �pqðC0
12 þ C0

66Þ 0 0 0

�ðC0
66p

2 þ C0
22q

2Þ 0 0 0

�ðC0
55p

2 þ C0
44q

2Þ �ðe015p2 þ e024q
2Þ �ðq015p2 þ q024q

2Þ
Sym e011p

2 þ e022q
2 d0

11p
2 þ d0

22q
2

l0
11p

2 þ l0
22q

2

2
66666664

3
77777775

ð12Þ

We remark that when the gradient coefficient g = 0, Eq. (9) is reduced to the eigenequation for the
corresponding homogeneous case [4].

We now express the extended traction vector t as
t �

rxz

ryz

rzz

Dz

Bz

2
6666664

3
7777775
¼ eðsþgÞz

b1 cos px sin qy

b2 sin px cos qy

b3 sin px sin qy

b4 sin px sin qy

b5 sin px sin qy

2
6666664

3
7777775

ð13Þ
which is different from the corresponding homogeneous case [4]. By virtue of the constitutive
relations (1) and the displacement expression (7), we obtain
b ¼ ð�Rt þ sTÞa ð14Þ
where
b ¼ ½b1; b2; b3; b4; b5�t ð15Þ
Similarly, the in-plane stresses and electric and magnetic displacements can be expressed as
rxx

rxy

ryy

Dx

Dy

Bx

By

2
6666666666664

3
7777777777775
¼ eðsþgÞz

c1 sin px sin qy

c2 cos px cos qy

c3 sin px sin qy

c4 cos px sin qy

c5 sin px cos qy

c6 cos px sin qy

c7 sin px cos qy

2
6666666666664

3
7777777777775

ð16Þ
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where
c1
c2
c3
c4
c5
c6
c7

2
66666666664

3
77777777775
¼

�C0
11p �C0

12q C0
13s e031s q031s

C0
66q C0

66p 0 0 0

�C0
12p �C0

22q C0
23s e032s q032s

e015s 0 e015p �e011p �d0
11p

0 e024s e024q �e022q �d0
22q

q015s 0 q015p �d0
11p �l0

11p
0 q024s q024q �d0

22q �l0
22q

2
66666666664

3
77777777775

a1
a2
a3
a4
a5

2
666664

3
777775 ð17Þ
These extended stresses (Eq. (13)) should satisfy the equations of equilibrium (assuming zero body
force and zero electric and magnetic charge densities).

We remark that Eq. (9), derived for a simply supported plate, resembles the Stroh formalism
[17,18]. For the corresponding homogeneous case, this equation was named as pseudo-Stroh for-
malism because of its similarity to the Stroh formalism [4]. In the present pseudo-Stroh formalism,
an interesting feature is observed: That is, if s is a complex (or purely imaginary) eigenvalue, then
its complex conjugate is also an eigenvalue.

With aid of Eq. (14), Eq. (9) can now be recast as a 10 · 10 linear eigensystem
N
a

b

� �
¼ s

a

b

� �
ð18Þ
where
N ¼ T�1Rt T�1

�Q � RT�1Rt �RT�1 � gI

" #
ð19Þ
Depending upon the given material property, the 10 eigenvalues of Eq. (18) may not be distinct.
Should repeated roots occur, a slight change in the material constants would result in distinct
roots with negligible error [22] so that for all material situations, the simple and unified solution
given below can still be used.

Thus, let us assume that the first five eigenvalues have positive real parts (if the root is purely
imaginary, we then pick up the one with positive imaginary part) and the reminders have opposite
signs to the first five. We distinguish the corresponding 10 eigenvectors by attaching a subscript to
a and b. Then the general solution for the extended displacement and traction vectors (of the
z-dependent factor) are derived as
u

t

� �
¼ A1hes


zi A2he�s
zi
B1heðs


þgÞzi B2heð�s
þgÞzi

� �
K1

K2

� �
ð20Þ
where
A1 ¼ ½a1; a2; a3; a4; a5�; A2 ¼ ½a6; a7; a8; a9; a10�
B1 ¼ ½b1; b2; b3; b4; b5�; B2 ¼ ½b6; b7; b8; b9; b10�
hes
zi ¼ diag½es1z; es2z; es3z; es4z; es5z�

ð21Þ
and K1 and K2 are two 5 · 1 constant column matrices to be determined.
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Eq. (20) is a general solution for a simply supported magneto-electro-elastic FGM plate and
reduces to the solution for the corresponding homogeneous plate case. It should be further no-
ticed that new FGM thin plate models could also be reduced from this solution by expanding
the exponential term in terms of a Taylor series [23]. This is particularly convenient since one need
only to replace the diagonal exponential matrix with its Taylor series expansion [24,25].

With Eq. (20) being served as a general solution for a FGM magneto-electro-elastic plate, solu-
tions for the corresponding multilayered FGM plate can be obtained using the continuity condi-
tions along the interface and the boundary conditions on the top and bottom surfaces of the plate.
To handle a multilayered structure with relatively large numbers of layers, we employ the pro-
pagator matrix method, instead of the conventional approach [26,27]. The propagator matrix
method was developed exclusively for layered structures and possesses certain merits (for a brief
review, see [21]), as can be observed in the next section.
4. Solution of multilayered FGM system

From the general solution (20), we solve the column coefficient matrices K1 and K2 for layer j
Table

Mater

C2)

C0
11 ¼

166

e031 ¼
�4.4

e011 ¼
11.2
K1

K2

� �
j

¼ A1hes

ðz�zjÞi A2he�s
ðz�zjÞi

B1heðs

þgÞðz�zjÞi B2heð�s
þgÞðz�zjÞi

" #�1
u

t

� �
j

ð22Þ
where the subscript j indicates layer j and s* are the eigenvalues of layer j.
Let z = zj and zj+1 in Eq. (22), we find that the column coefficient matrices K1 and K2 can be

expressed by the displacement u and traction t on either the lower interface or the upper interface
of layer j. In other words, we have
K1

K2

� �
j

¼
A1 A2

B1 B2

� ��1

j

u

t

� �
zj

¼ A1hes

hji A2he�s
hji

B1heðs

þgÞhji B2heð�s
þgÞhji

� ��1

j

u

t

� �
zjþ1

ð23Þ
where hj = zj+1 � zj is again the thickness of layer j.
Therefore, we can finally express the displacement u and traction t on the upper interface by

those on the lower interface of layer j as
u

t

� �
zjþ1

¼ A1hes

hji A2he�s
hji

B1heðs

þgÞhji B2heð�s
þgÞhji

� �
j

A1 A2

B1 B2

� ��1

j

u

t

� �
zj

ð24Þ
1

ial coefficients of the piezoelectric BaTiO3 (C
0
ij in 109 N/m2, e0ij in C/m2, e0ij in 10�9 C2/(N m2), and l0

ij in 10�6 N s2/

C0
22 C0

12 C0
13 ¼ C0

23 C0
33 C0

44 ¼ C0
55 C0

66 ¼ 0:5ðC0
11 � C0

12Þ
77 78 162 43 44.5

e032 e033 e024 ¼ e015
18.6 11.6

e022 e033 l0
11 ¼ l0

22 l0
33

12.6 5 10
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Assuming that the displacement u and traction t are continuous across the interfaces, Eq. (24) can
be applied repeatedly so that one can propagate the physical quantities from the bottom surface
z = 0 to the top surface z = H of the multilayered FGM plate. Consequently, we have
Table

Mater

10�6 N

C0
11 ¼

286

q031 ¼
580.3

e011 ¼
0.08

Fig. 1

the co

requir
u

t

� �
H

¼ PNðhNÞPN�1ðhN�1Þ � � � P 2ðh2ÞP 1ðh1Þ
u

t

� �
0

ð25Þ
2

ial coefficients of the magnetostrictive CoFe2O4 (C
0
ij in 109 N/m2, q0ij in N/(Am), e0ij in 10�9 C2/(N m2), and l0

ij in

s2/C2)

C0
22 C0

12 C0
13 ¼ C0

23 C0
33 C0

44 ¼ C0
55 C0

66 ¼ 0:5ðC0
11 � C0

12Þ
173 170.5 269.5 45.3 56.5

q032 q033 q024 ¼ q015
699.7 550

e022 e033 l0
11 ¼ l0

22 l0
33

0.093 �590 157

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Proportional Factor in Material Properties

0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

η=-10
η=-5
η=0
η=5
η=10

. Variation of the FGM proportional coefficient for g = �10,�5,0,5,10 (z in m and g in m�1). For z 2 [0.2,0.3],

efficient is the exponential factor eg(z�0.2). The proportional coefficient in z 2 [0,0.1] is obtained via symmetric

ement.
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where
z

Fig. 2

electro

in (b).
PkðhkÞ ¼
A1hes


hki A2he�s
hki
B1heðs


þgÞhki B2heð�s
þgÞhki

� �
k

A1 A2

B1 B2

� ��1

k

ðk ¼ 1; . . . ;NÞ ð26Þ
is called the propagating matrix or propagator.
Eq. (25) is a surprisingly simple relation, and for given boundary conditions, can be solved for

the unknowns involved. As examples, the mechanical and electric loads will be discussed.
In the first example, we assume that, on the top surface (z = H) the z-direction traction compo-

nent is applied, i.e.,
rzz ¼ r0 sin px sin qy ð27Þ

which may represent one of the terms in the double Fourier series solution for a general loading
case (uniform or point loading). All other traction components on both surfaces are assumed to
be zero. Thus, Eq. (25) is reduced to
u

t

� �
H

¼
M1 M2

M3 M4

� �
u

0

� �
0

ð28Þ
where the four submatrices Mj are the multiplications of the propagator matrices in Eq. (25).
Applying the traction boundary condition (27), the left-hand side of Eq. (28) on the top surface

is expressed as
u

t

� �
H

¼ ½ux; uy ; uz;/;w; 0; 0; r0 sin px sin qy; 0; 0�t ð29Þ
-4E-012 -2E-012 0 2E-012 4E-012
ux

0.00

0.05

0.10

0.15

0.20

0.25

0.30
η=-10
η=-5
η=0
η=5
η=10

(a)

B

F

B

0 2E-012 4E-012 6E-012 8E-012 1E-011
uz

η=-10
η=-5
η=0
η=5
η=10

(b)
B

F

B
0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

. Variation of the elastic displacement components ux and uz (m) along the thickness direction in FGM magneto-

-elastic B/F/B for factor g = �10,�5,0,5,10 (m�1) caused by a surface load on the top surface. ux in (a) and uz
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The unknown extended displacements on both surfaces of the multilayered FGM plate can thus
be solved from Eq. (28).

In the second example, the traction vector t on the bottom surface is again assumed to be zero,
but we apply an electric potential / to the top surface (z = H), given as,
Fig. 3

magn

and w
/ ¼ /0 sin px sin qy ð30Þ

For this case, the left-hand side of Eq. (28), i.e. the boundary values on the top surface, becomes
u

t

� �
H

¼ ½ux; uy; uz;/0 sin px sin qy;w; 0; 0; 0;Dz; 0�t ð31Þ
-3E-006 -2.8E-006 -2.6E-006 -2.4E-006 -2.2E-006 -2E-006 -1.8E-006

ψ

η=-10
η=-5
η=0
η=5
η=10

(b)

B

F

B

-3E-006 -2.5E-006 -2E-006 -1.5E-006 -1E-006 -5E-007

ψ

η=-10
η=-5
η=0
η=5
η=10

(d)

F

B

F
0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

0 0.0004 0.0008 0.0012 0.0016 0.002 0.0024
φ

η=-10
η=-5
η=0
η=5
η=10

(a)

B

F

B

0.0016 0.0018 0.002 0.0022 0.0024 0.0026
φ

η=-10
η=-5
η=0
η=5
η=10

(c)

F

B

F
0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

. Variation of electric potential / (V) and magnetic potential w (C/s) along the thickness direction in FGM

eto-electro-elastic plates for factor g = �10,�5,0,5,10 (m�1) caused by a surface load on the top surface. / in (a)

in (b) for B/F/B, and / in (c) and w in (d) for F/B/F.
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Following the same procedures, all the unknowns on the top and bottom surfaces can be found
from Eq. (28).

In order to obtain the extended displacement and traction vectors at any depth, say
zk 6 z 6 zk+1 in layer k, we propagate the solution from the bottom of the layered plate to the
z-level, i.e.,
z

Fig. 4

B/F/B
u

t

� �
z

¼ Pzðz� zk�1ÞPk�1ðhk�1Þ � � �P2ðh2ÞP1ðh1Þ
u

t

� �
0

ð32Þ
With the extended displacement and traction vectors at a given depth being solved, the corre-
sponding in-plane quantities can be evaluated using Eqs. (16) and (17).

Similar solutions can also be obtained for other boundary conditions. Therefore, for an aniso-
tropic, magneto-electro-elastic, and FGM multilayered rectangular plate, we have derived the ex-
act solution based on the pseudo-Stroh formalism and the propagator matrix method. In the next
section, we apply our solution to investigate the response of the sandwiched FGM plate under
mechanical and electric loads.
5. Numerical analyses

In the numerical calculation, the layered FGM plate is made of three layers. The z-independent
material coefficients are piezoelectric BaTiO3 and magnetostrictive CoFe2O4, listed respectively, in
Tables 1 and 2 [4]. It is obvious that the piezoelectric BaTiO3 and magnetostrictive CoFe2O4 are
both transversely isotropic with their symmetry axis along the z-axis. The three layers have equal
thickness of 0.1 m (with a total thickness H = 0.3 m) and the horizontal dimensions of the plate
are Lx · Ly = 1 m · 1 m. Two sandwich plates with stacking sequences BaTiO3/CoFe2O4/BaTiO3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
σxx

η=-10
η=-5
η=0
η=5
η=10

(a)

B

F

B

0 0.1 0.2 0.3 0.4 0.5
σzz

0.00

0.05

0.10

0.15

0.20

0.25
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(called B/F/B) and CoFe2O4/BaTiO3/CoFe2O4 (called F/B/F) are investigated. While the middle
layer is homogeneous, both the top and bottom layers are functionally graded with the symmetric
exponential variation shown in Fig. 1. As can also be observed from Fig. 1, five different exponen-
tial factors, i.e., g = �10,�5,0,5,10 (m�1), were studied.

For both the mechanical and electric loadings, the investigated mode is fixed at m = n = 1 (i.e.,
p = p/Lx, q = p/Ly in Eqs. (27) and (30)) and the horizontal coordinates are fixed at
(x,y) = (0.75Lx, 0.25Ly). The amplitudes in Eqs. (27) and (30) are, respectively, r0 = 1 N/m2 and
/0 = 1 V. It has been checked that under the mechanical load, the results corresponding to the
exponential factor g = 0 are exactly the same as those in Pan [4].
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5.1. Mechanical load

Fig. 2a and b shows, respectively, the variation of the elastic displacements ux (=�uy) and uz
along the z-direction in the FGM B/F/B plate. Variation of these elastic displacements in the cor-
responding F/B/F plate is similar to those in Fig. 2a and b, with only slight difference in the mag-
nitude (magnitude of the elastic displacement in B/F/B is generally larger than that in F/B/F). It is
observed that on the top and bottom surfaces, the magnitude of the horizontal displacement ux
increases with decreasing exponential factor g. Furthermore, on the top surface the horizontal
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displacement is positive, while on the bottom surface they are negative. As for the vertical dis-
placement uz, its value increases with decreasing g in the whole plate.

Fig. 3a and b shows, respectively, the variation of the electric potential / and magnetic poten-
tial w along the z-direction in the B/F/B plate. The results in the corresponding F/B/F plate are
plotted in Fig. 3c and d. It is observed that in both plate models, the magnitudes of the electric
and magnetic potentials decreases with increasing factor g. It is further noticed that even though
these potentials are continuous across the interfaces, their slopes are not (i.e., Fig. 3a at z = 0.1 m,
and Fig. 3d at z = 0.2 m).
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Fig. 4a and b shows, respectively, the variation of the stress components rxx (=ryy) and rzz
along the z-direction for the B/F/B plate. The results in the corresponding F/B/F plate are very
similar to those shown in Fig. 4a and b (for both curve shapes and magnitudes). While the normal
stress rzz does not change much for different factor g (Fig. 4b), the horizontal normal stress rxx is
very sensitive to the exponential factor g. Near the interfaces or surfaces (Fig. 4a), its magnitude
can be doubled by varying g from �10 to 10 (m�1). Furthermore, the horizontal stress component
is discontinuous across the interface, as expected.

The variations of the electric displacements Dx (=�Dy), Dz and magnetic inductions Bx (=�By),
Bz along the z-direction are plotted, respectively, in Figs. 5a–d and 6a–d. While Figs. 5a,b and
6a,b are for the B/F/B plate, Figs. 5c,d and 6c,d for the F/B/F plate. It is observed, from these
figures, that because of the material property discontinuities in different layers, the horizontal elec-
tric displacement and magnetic induction are discontinuous across the interfaces. It is also inter-
esting to note that the magnitude of horizontal electric displacement (magnetic induction) is very
small in magnetostrictive CoFe2O4 (piezoelectric BaTiO3) layers, due to the fact that for magne-
tostrictive CoFe2O4 (piezoelectric BaTiO3) material, the piezoelectric (piezomagnetic) coefficients
are zero. Furthermore, the similarity among the response curves should be also noticed: Dx in Fig.
5a vs. Bx in Fig. 6c; Dz in Fig. 5b vs. Bz in Fig. 6d; Dx in Fig. 5c vs. Bx in Fig. 6a; and Dz in Fig. 5d
vs. Bz in Fig. 6b.

5.2. Electric load

Fig. 7a and b shows, respectively, the variations of the elastic displacements ux (=�uy) and uz
along the z-direction for the B/F/B plate, whilst Fig. 7c and d is the corresponding elastic displace-
ments for the F/B/F plate. In contrast to the mechanical load case, we observe here clearly that the
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elastic displacements in the two sandwich plates are completely different from each other. In par-
ticular, the magnitude of the elastic displacements in B/F/B is roughly one order larger than that
in F/B/F.

The magnetic potential w along the z-direction in the B/F/B and F/B/F plates are shown, respec-
tively, in Fig. 8a and b. It is interesting that for both sandwich plates, relatively large magnetic
potential can be induced in the bottom layer when an electric potential is applied on the top sur-
face. Furthermore, in the bottom layer, the magnitude of the magnetic potential in B/F/B is larger
than that in F/B/F.
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Fig. 9a and b shows, respectively, the variation of the stress components rxx (=ryy) and rzz
along the z-direction for the B/F/B plate. The results for the corresponding F/B/F plate are plotted
in Fig. 9c and d. In contrast to the mechanical load (Fig. 4a and b); the stacking sequence now has
a dramatic influence on the stress components in terms of both the curve shape and magnitude
(Fig. 9a vs. Fig. 9c and Fig. 9b vs. Fig. 9d). Furthermore, the normal stress component rzz can
be greatly altered by varying the exponential factor g (Fig. 9b and d), as compared to the mechan-
ical loading case.

Finally, Fig. 10a and b shows, respectively, the variations of magnetic inductions Bx (=�By), Bz

along the z-direction in F/B/F case. It is observed that the magnetic induction changes dramati-
cally in the top and bottom layers (magnetostrictive CoFe2O4), and it is almost zero in the middle
layer (piezoelectric BaTiO3). In other words, relatively large magnetic field can still be induced in
the magnetostrictive layer even if an electric load is applied.
6. Conclusions

In this paper, an exact solution is presented for a layered rectangular plate made of anisotropic
and functionally graded magneto-electro-elastic materials. The plate is under simply supported
edge conditions and both the mechanical and electric loads are applied on the top surface of
the plate. While the homogeneous solution in each FGM layer is derived based on the pseudo-
Stroh formalism, the propagator matrix method is employed to handle the multilayered struc-
tures. In the numerical study, two sandwich plates are analyzed, which are made of piezoelectric
BaTiO3 and magnetostrictive CoFe2O4, with material properties varying exponentially in
the thickness direction within the top and bottom layers. It is observed that, in general, different
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exponential factors will produce different magnitudes for the response curves. Furthermore, the
stacking sequences (B/F/B or F/B/F) and the boundary conditions (mechanical or electric load)
can have significant effects on the induced magnetic, electric, and elastic fields. An interesting
example is that, under the mechanical load, the normal stress component rzz is very insensitive
to the exponential factor; however, under the electric potential, different exponential factors
can produce completely different normal stress components. While the numerical examples can
serve as benchmarks for various numerical methods, the special characteristics discussed in this
paper should be useful to the design of smart structures based on the piezoelectric and magneto-
strictive FGMs.
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