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Abstract The present paper presents a boundary ele-
ment analysis of penny-shaped crack problems in two
joined transversely isotropic solids. The boundary ele-
ment analysis is carried out by incorporating the fun-
damental singular solution for a concentrated point load
in a transversely isotropic bi-material solid of infinite
space into the conventional displacement boundary
integral equations. The conventional multi-region
method is used to analyze the crack problems. The
traction-singular elements are employed to capture the
singularity around the crack front. The values of the
stress intensity factors are obtained by using crack
opening displacements. The numerical scheme results
are verified with the closed-form solutions available in
the literature for a penny-shaped crack parallel to the
plane of the isotropy of a homogeneous and transversely
isotropic solid of infinite extent. The new problem of a
penny-shaped crack perpendicular to the interface of a
transversely isotropic bi-material solid is then examined
in detail. The crack surfaces are subject to the three
normal tractions and the uniform shear traction. The
associated stress intensity factor values are obtained and
analyzed. The present results can be used for the pre-
diction of the stability of composite structures and the
hydraulic fracturing in deep rock strata and reservoir
engineering.

Keywords Crack Æ Boundary element
method Æ Fundamental singular solution Æ
Anisotropy Æ Bi-materials Æ Stress intensity
factors Æ Fracture mechanics

1 Introduction

It has been well recognized that geomaterials such as
sedimentary rocks can be transversely isotropic in their
material properties, because during their formation, they
usually were subject to a dominant force action such as
gravity along one specific direction. In recent years,
many types of composite materials have been fabricated
and used for structural components. Some of the man-
made materials such as fiber reinforced plastics and
unidirectionally solidified eutectic alloys can also have
the properties to be isotropic along a series of parallel
planes and anisotropic along the direction perpendicular
to the isotropic planes. It is evident that these trans-
versely isotropic materials can contain flaws or imper-
fections or cracks. It has always been an interesting and
important task for scientists and engineers to quantify
and predict the crack behavior of these anisotropic
materials under external loading. Effort and achieve-
ments on this task before 1982 can be found in a review
report by Mura (1982). In the ensuing, we shall give a
brief review on the work and findings available in the
open literature that are mostly relevant to crack prob-
lems in anisotropic materials.

Sih et al. (1965) published one of their classic findings
about cracks in rectilinearly anisotropic bodies. They
found that an elastic singularity of the order r1=2 is al-
ways present at the crack front in a body with rectilinear
anisotropy and the magnitude of the local stresses may
be described in terms of stress intensity factors. Kassir
and Sih (1975) and Sih and Chen (1981) further inves-
tigated a number of crack problems in anisotropic solids
and composites. In particular, Kassir and Sih (1968),
Hoeing (1978) and Zhang and Mai (1989) gave the exact
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closed-form solutions for the modes I, II and III stress
intensity factors (SIFs) associated with a penny-shaped
or elliptical crack in a transversely isotropic elastic solid
occupying infinite space, where the plane of the crack
surface is parallel to the plane of the material isotropy.
Hoenig (1978) further gave the SIFs, only in terms of
compact line integral expressions, for a penny- shaped or
elliptical crack in the infinite anisotropic solid, where the
plane of the crack surface is not parallel to the plane of
the material isotropy.

In the application of large-scale hydraulic fracturing,
vertical cracks are assumed to be located in layered
strata with transversely isotropy and subject to the
loading of internal hydraulic pressures. For these
applications, Lin and Keer (1989) attempted to quantify
the crack opening displacement and the crack-front
opening displacement for a vertical planar crack in a
layered transversely isotropic medium. Due to the lack of
an effective method for defining the angular dependence
for the critical SIF, the SIFs associated with this crack
problem were not given in Lin and Keer (1989). Kou and
Keer (1995) further investigated the penny-shaped cracks
in multilayered and isotropic solids and presented
numerical values of the SIFs along the crack front.

It is well known that boundary element methods
(BEM) are a powerful method for efficiently and accu-
rately solving crack problems. Aliabadi (1997) reviewed
the BEM applications in crack problems of anisotropic
and composite materials. Tan and Gao (1992) employed
the multi-region method and quarter-point elements of
the BEM to solve several crack problems in plane or-
thotropic materials. Sollero and Aliabadi (1993) pre-
sented multi-region method together with a mixed-mode
J-integral for crack problems in two-dimensional
anisotropic bodies. Sollero and Aliabadi (1995) further
developed a dual boundary element formulation for
two-dimensional cracked bodies.

A number of investigators further incorporated the
fundamental singular solutions of an infinite anisotropic
solid given by Pan and Chou (1976) into the BEM for
analysis of the three-dimensional crack problems. Saez
et al. (1997) employed the multi-region method and
singular quarter-point elements of the BEM to analyze
three-dimensional crack problems in transversely iso-
tropic bodies. Pan and Yuan (2000) developed the dual
boundary element formulations and analyzed penny-
shaped and square-shaped cracks in anisotropic solids.
More recently, Ariza and Dominguez (2004) also
developed a dual BEM formulation for analysis of three-
dimensional fracture mechanics problems of transversely
isotropic solids.

Evidently, when the BEM associated with Pan and
Chou’s solution is used for analysis of the crack
problems in composites, the interfaces between different
materials have to be discretized. So, some investigators
attempted to use special fundamental singular solutions
for analysis of the crack problems in the anisotropic
composites. Pan and Amadei (1999) analyzed the
fracture mechanics in two-dimensional cracked aniso-

tropic bi-materials by the dual BEM where the fun-
damental singular solutions for anisotropic bi-materials
were used. Yang (2002) examined the free-edge crack
nucleation around an open hole in composite laminates
by applying a single-domain dual BEM for mul-
tilayered composites. The fundamental singular solu-
tions used in Yang (2002) satisfy the top- and bottom-
surface boundary conditions and interfacial continuity
conditions.

In the present paper, we incorporate the fundamental
singular solutions given by Yue (1995) into the bound-
ary element formulation to analyze the crack problems
in two joined transversely isotropic solids. The crack
problem is shown in Fig. 1. Yue’s fundamental singular
solutions are the problems of two joined transversely
isotropic solids subject to body-forces concentrated ei-
ther a point or along a circular ring, where the isotropic
planes of the two materials are parallel to the plane of
the material interface.

In the present BEM analysis, the conventional multi-
region method is used to overcome the mathematical
difficulties and avoid the numerical evaluation of the
finite-part integral equations associated with the dual
BEM (Pan and Amadei 1999; Yang 2002). The traction-
singular elements are employed to capture the
singularity around the crack front. The stress intensity
factors are assessed using the crack-front opening dis-
placements that can be obtained via the BEM.

The present BEM scheme is verified by comparing the
present numerical results with the closed-form solutions
for the SIFs associated with a penny-shaped crack
whose surfaces are parallel to the plane of isotropy in a
homogeneous and transversely isotropic solid of infinite
extent. The comparison indicates that the present BEM
has good accuracy. Then, the present BEM is applied to
calculate the SIF values associated with a penny-shaped
crack whose surfaces are perpendicular to the interface
of a transversely isotropic bi-material solid and subject

Fig. 1 A penny-shaped crack perpendicular to the bonded interface in
two perfectly joined dissimilar solids with transversely isotropic
properties
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to the actions of three normal and one shear tractions.
The SIF values of the modes I, II and III are presented
for different loading conditions and different crack dis-
tances from the material interface. The data are analyzed
and compared.

2 BEM for two joined transversely isotropic solids

2.1 Fundamental singular solutions for two joined
transversely isotropic solids

Yue (1995) presented the closed-form fundamental sin-
gular solutions for the elastic fields of two joined
transversely isotropic solids subject to concentrated
point body-forces. The two solids occupy an infinite
space. Their interface is planar and is perfectly bonded.
The isotropic planes of the two transversely isotropic
solids are parallel to the interface. The classical theory of
Fourier integral transform was employed to solve the
partial differential equations governing the response of
the two joined transversely isotropic solids subject to the
concentrated body-forces. The fundamental singular
solutions of displacements and stresses are presented in
the forms of the elementary harmonic functions.

The vectors of displacements u ¼ ðux uy uzÞT, vertical
stresses Tz ¼ ðrxz ryz rzzÞT and plane strains Cp ¼
ðexx exy eyyÞT are directly obtained by Fourier integral

transform. For an easy reference, the fundamental sin-
gular solutions are briefly given in the Appendix A.

The solutions for plane stresses Tp ¼ rxx rxy ryy
� �T

,
vertical strains Cz ¼ exz eyz ezz

� �T
can be easily evaluated

by using the results for Tz and Cp and the constitutive
equation (A1).

2.2 The boundary integral equations

The numerical formulation of the BEM in two joined
transversely isotropic solids using Yue’s solutions can be
briefly summarized in the following. When the body
forces are absent, the boundary integral equations for
the fundamental solutions can be expressed as follows,

Cij Pð Þuj Pð Þ ¼
Z

S
u�ij P;Qð Þtj Qð ÞdS Qð Þ

�
Z

S
t�ij P;Qð Þuj Qð ÞdS Qð Þ ð1aÞ

where uj and tj are, respectively, the displacements and
tractions on the boundary surface S; u�ij and t�ij are the
displacements and tractions of the fundamental solu-
tions; P and Q denote, respectively, the source and in-
tegration points on the boundaries S; and Cij is a
coefficient dependent on the local boundary geometry at
the source point P. The Cij can be evaluated using the
following equations,

Cij Pð Þ ¼ lim
e!0

Z

Se

t�ij P;Qð ÞdS Qð Þ ð1bÞ

where Se is an infinitesimal spherical surface of center P
and radius e enclosed in the solids. It is noted that
Eq. (1a) does not contain the integration on the layer
interface surface because the fundamental solution
strictly satisfies the interface conditions. So, it is not
necessary to have the discretization along the material
interfaces in this BEM formulation. The eight-node
isoparametric elements are employed to discretize the
boundaries away from the crack front. Equation (1a)
can be discretized to obtain a set of linear equation
system for the solution of unknown boundary dis-
placements and tractions.

Straightforward application of the BEM to the crack
problems leads to the mathematical degeneration if the
two crack surfaces are considered coplanar (Aliabadi
1997). The modified multi-region method (Jia et al. 1989;
Yue et al. 2003) is further used here. In brief, for a crack
in an infinite domain, we can form the first closed curved
surface by adding an open imaginary surface in the solid
to one of the crack surfaces. We can also form the sec-
ond closed curved surfaces by adding the open imagi-
nary surface in the solids to the other crack surface. The
two closed curved surfaces divide the entire solids into
two regions. The open imaginary surface serves a com-
mon boundary between the two regions and crack sur-
faces are the actual surfaces. The two regions are then
joined together such that equilibrium of the tractions
and compatibility of the displacements are forced on the
common boundary.

2.3 Numerical methods for the crack front

As pointed out by Sih et al. (1966), the singularity of the
crack front in anisotropic elastic media is the same as the
one in the isotropic media. Therefore, the boundary
elements of capturing the singularity around the crack
front in an isotropic medium can be further employed.
Several singular elements are available for modeling the
behavior near the crack front. In this study, we adopted
the traction-singular elements to model the singular
fields around the crack front. Figure 2 illustrates the
shape functions of the traction-singular elements. They
can be expressed as follows (Luchi and Rizzuti 1987).

For displacements, we have:

N i
d ¼

1

4
1þ nnið Þ 1� giþ

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

1þ g
p

gi

h i

� nniþ
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p
þ gi

� �
� ni

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p
� ni 1þ gið Þ

h i

for i¼ 1;2;3;4 ð2aÞ

N i
d ¼

1

2
n2i 1þ nnið Þ

ffiffiffi
2
p
þ 2

� � ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
� 1þ

ffiffiffi
2
p� �

1þ gð Þ
h i

þ 1

2
g2i 1� gi þ

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

1þ g
p

gi

h i

1� n2
� �

for i ¼ 5; 6; 7; 8 ð2bÞ
For tractions, we have:
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N i
t ¼

1
ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p N i

d for i ¼ 1; 2; 5 ð3aÞ

N i
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p N i

d for i ¼ 3; 4; 6; 7; 8 ð3bÞ

The shape functions (2) are used for the elements adja-
cent to a crack front on the crack faces or on the aux-
iliary boundary surfaces. The shape functions (3) are
used only for the elements closely adjacent to the crack
front on the auxiliary boundary surfaces, where the
traction is singular.

Higher order singularities in the integrands can occur
because of the introduction of the special shape func-
tions in the traction-singular elements. As a result, the
numerical quadrature proposed by Luchi and Rizzuti
(1987) was used to solve the singular integrals. A
sequence of coordinate transformations with subdivision
of the singular elements was used to remove the singu-
larities from the integrands. Nine different cases are to
be dealt with in evaluating the above integrals,
depending on the location of the source point P (taken
at nodal points only). More detailed discussions on the
relevant topics may be found in Luchi and Rizzuti
(1987) or Yue and Xiao (2002).

2.4 Formulae for calculating the stress intensity factors

According to the work of Kassir and Sih (1966), there is
an asymptotic relation between the crack opening dis-
placements (CODs) near the crack front and the SIFs
for cracked transversely isotropic media. Using the
leading terms of the asymptotic relation, Ariza and
Dominguez (2004) presented the formulae of the modes
I, II and III SIFs in terms of the crack opening dis-
placements at a quarter-point node of the element. In
Pan and Yuan (2000), an extrapolation method of the
CODs is employed for calculating the SIFs. This method
also requires an asymptotically analytical expression of
the crack-front CODs in terms of SIFs and can use the
CODs at any point to calculate the SIFs. Owing to

utilizing the extrapolation method, the high accuracy
can be obtained. Herein, we employed the formulae
proposed by Pan and Yuan (2000) to calculate the SIFs.

Let x1; x2; x3ð Þ be a local Cartesian co-ordinate system
attached to the crack front shown in Fig. 3. The x2-axis
is normal to the crack surface, the x3 tangential to the
crack front. The x1-axis is thus formed by the interaction
of the plane normal to the crack front and the plane
tangential to the crack plane. The CODs can be defined
as

Dui x1; x2; x3ð Þ ¼ u�i x1; x2; x3ð Þ � uþi x1; x2; x3ð Þ;
i ¼ 1; 2; 3

ð4Þ

where the superscripts þ and � correspond to the crack
surfaces whose normal directions are n ¼ þ1 and
n ¼ �1 for local co-ordinates attached to the crack
front, respectively.

It is assumed that the crack front is smooth, and the
leading singular term in the asymptotic expansion of the
stress and displacement fields near the crack front is
amenable to the generalized plane strain analysis.
Therefore, the relation of the CODs at a distance r be-
hind the crack front and the SIFs can be expressed as
(Ting 1996; Suo 1990)

Du ¼ 2

ffiffiffiffiffi
2r
p

r

L�1k ð5Þ

where Du ¼ Du1;Du2;Du3ð ÞT and k ¼ KI;KII;KIIIð ÞT are
the stress intensity factors for modes I, II and III defined
as

KI ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr
p

r22 r; h; x3ð Þjh¼0
u¼0

ð6aÞ

KII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr
p

r12 r; h; x3ð Þjh¼0
u¼0

ð6bÞ

KIII ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr
p

r23 r; h; x3ð Þjh¼0
u¼0

ð6cÞ

Expression (5) is based on Stroh formulism. L is one of
the Barnett-Lothe tensors (Ting 1996) which depends
only on the anisotropic properties of the solids in the

Fig. 2 A traction-singular element

Fig. 3 Local crack-front coordinates
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local crack-front coordinates. On the crack-front ele-
ments, equating the CODs from the numerical calcula-
tion to the analytical expression (5), one then obtains a
set of algebraic equations from which the SIFs, KI, KII

and KIII, can be solved.

3 Numerical examples

3.1 Material properties

Assume that the x-y plane is the plane of isotropy for a
transversely isotropic solid with the z-axis being the axis
of material symmetry. We introduced the following
elastic constants: Ex; lx; mxy and Ez; lz; mxz. The Ex, lx and
mxy are the Young’s modulus, shear modulus and Pois-
son’s ratio in the x-y plane of isotropy, respectively. The
Ez, lz and mxz are those quantities in the transverse
direction z. The five elastic moduli cik i ¼ 1; 2; 3; 4; 5;ð
k ¼ 1; 2Þ in formulae (A1) can be related to the above-
mentioned elastic constants as

c1k ¼ 2lx 1� m2xzEx=Ez
� �

= 1� mxy � 2m2xzEx=Ez
� �

ð7aÞ

c2k ¼ Exmxz= 1� mxy � 2m2xzEx=Ez
� �

ð7bÞ

c3k ¼ Ez 1� mxy
� �

= 1� mxy � 2m2xzEx=Ez
� �

ð7cÞ

c4k ¼ lz ð7dÞ

c5k ¼ lx ¼ Ex=2 1þ mxy
� �

ð7eÞ
For an isotropic material, the five elastic constants are
degenerated into two elastic constants as follows,

c1k ¼ c3k ¼ kþ l; c2k ¼ k; c4k ¼ c5k ¼ l: ð8Þ
where k and l are the Lame’s constants for an isotropic
material.

As shown in Table 1, four sets of the transversely
isotropic materials (TI-1, 2, 3, 4) are selected for
numerical evaluation. Pan et al. (1996, 2000) and Hoenig
(1978) selected the similar elastic constants of the TI-1
and TI-2 materials. Lin and Keer (1989) and Kassir and
Sih (1975) selected the elastic constants of the TI-3 and
TI-4 materials. In Yue (1995), the elastic constants for
the TI-3 and TI-4 materials were also used. Conse-
quently, we have the following eight cases of material
combination for the two bonded solids of an infinite
extent, shown in Table 2. Note that the cracks are al-
ways located in region 1 (z � 0þ) for all the cases under
consideration.

3.2 Loading conditions

We considered two kinds of cracks whose surfaces are
parallel or perpendicular to the plane of isotropy of a
transversely isotropic solid. The crack surfaces are sub-
ject to normal or shear tractions. The crack surfaces are
subject to the normal tension p and the shear q on the
crack surfaces respectively, i.e.,

rþz0z0 ¼ r�z0z0 ¼ �p; p � 0 ð9aÞ

rþx0y0 ¼ r�x0y0 ¼ 0 ð9bÞ

rþx0z0 ¼ r�x0z0 ¼ �q; q � 0 ð9cÞ
where 0 � r < a (crack radius a), and the superscripts þ

and � correspond to the crack surfaces whose normal
directions are n ¼ þ1 and n ¼ �1, respectively. Fur-
thermore, the x0, y0 and z0 are local coordinates attached
to the crack surfaces (Fig.1). Several loading conditions
are analyzed as follows,

q ¼ q0 ð10aÞ

p ¼ p0; p0 r=að Þ; p0 r=að Þ2 ð10bÞ
where p0 and q0 are constants, and the r is the distance of
any point on the crack surface from the origin in the
local coordinate. Ozturk and Erdogan (1996) also con-
sidered the above three normal tensions in formula (10b)
for penny-shaped cracks in the functionally graded
materials.

In the ensuing, we firstly verified the accuracy and
efficiency of the proposed method by comparing the
existing analytical and numerical solutions for the pen-
ny-shaped cracks parallel to the plane of isotropy in a
transversely isotropic solid. Then, we presented the SIF
values of penny-shaped cracks perpendicular to the
plane of isotropy in two joined transversely isotropic
solids and subject to different normal loads and uniform
shear traction (Fig. 1).

Table 1 The elastic constants of
the four materials Material types Elastic constants

Class I material (TI-1) Ex=Ez ¼ 3, mxy ¼ 0:25, lz ¼ 0:25, lz=Ez ¼ 0:4.
Class II material (TI-2) Ex=Ez ¼ 0:5, mxy ¼ 0, lz ¼ 0:4, lz=Ez ¼ 0:8.
Class III material (TI-3) c1 ¼ 41:19, c2 ¼ 14:97, c3 ¼ 42:57, c4 ¼ 11:32, c5 ¼ 11:56kPa.
Class IV material (TI-4) c1 ¼ 111:02, c2 ¼ 34:57, c3 ¼ 42:09, c4 ¼ 26:43, c5 ¼ 43:59kPa.

Table 2 Cases of two joined transversely isotropic solids

Cases z � 0þ z � 0� Note

1 TI-1 TI-1 a homogeneous solid
2 TI-2 TI-2 a homogeneous solid
3 TI-1 TI-2 two joined bi-materials
4 TI-2 TI-1 two joined bi-materials
5 TI-3 TI-3 a homogeneous solid
6 TI-4 TI-4 a homogeneous solid
7 TI-3 TI-4 two joined bi-materials
8 TI-4 TI-3 two joined bi-materials
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4 Numerical verification

We consider a penny-shaped crack whose surfaces
are parallel to the plane of isotropy in a transversely
isotropic solid of infinite extent. The crack surfaces are
subject to the uniform tension p ¼ p0. Evidently, the
cracked body is of symmetry to the x0oz0-plane. So, the
BEM formulation of the crack problem is carried out by
examining the left symmetrical part of the entire crack
geometry.

For convenience, we choose a hemisphere in a
homogeneous material to form the two regions for the
BEM analysis. Because of symmetry, it is necessary only
to analyze half of the hemisphere. We only discretize this
half hemisphere. We do not need to discretize the plane
of the symmetry into BEM meshes. Figure 4 shows the
discretized left symmetrical surface with 553 nodes and
176 elements. We use 32 traction-singular elements
along the crack front. The boundary element mesh has
been employed for analysis of the crack problems in
functionally graded materials (Xiao et al. 2005).

For the uniform tension on crack surfaces (p ¼ p0)
and the crack surfaces parallel to the plane of isotropy of
a homogeneous and transversely isotropic medium, the
mode I stress intensity factor is KI ¼ 2p0

ffiffiffiffiffiffiffiffi
a=p

p
(Hoenig

1978). It should be noted that for penny-shaped or
elliptical cracks whose surfaces are parallel to the plane
of isotropy of a transversely isotropic medium and
subject to the uniform tension, the SIF values in an
infinite isotropic solid is independent of the material
property. For cases 1 and 2, numerical results of the
normalized mode I SIFs (KI=p0

ffiffiffiffiffiffi
pa
p

) along the crack
front vary from 0.63 to 0.64, compared with the value
2=p � 0:6366 in the analytical solutions. The largest
derivation for the SIFs using the BEM is less than 1 per
cent.

For the uniform shear on crack surfaces (q ¼ q0) and
the crack surfaces parallel to the plane of isotropy of a
transversely isotropic medium, the modes II and III

stress intensity factors are related to elastic constants
and presented as follows (Hoenig 1978),

KI ¼ 0 ð11aÞ

KII ¼ q0
ffiffiffiffiffiffi
pa
p

cos h=R1 ð11bÞ

KIII ¼ �q0

ffiffiffiffiffiffi
pa
p

S cos h= TR1ð Þ ð11cÞ
where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2xy

� �
=2

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ mxy
� �

lx=lz � mxzð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2xy

� �
Ex=Ez � m2xz

rs

ð11dÞ

T ¼ 1þ mxy
� � ffiffiffiffiffiffiffiffiffiffiffi

lx=lz

p
ð11eÞ

R1 ¼ p 1þ S=Tð Þ=4 ð11fÞ
The numerical and analytical solutions for case 1 are
shown in Fig. 5. The maximum difference between the
analytical and numerical solutions of the normalized
mode II SIFs (KII=p0

ffiffiffiffiffiffi
pa
p

) is 0.5% whilst the one be-
tween the analytical and numerical solutions of the
normalized mode III SIFs (KIII=p0

ffiffiffiffiffiffi
pa
p

) is about 1.4%. It
may be found that the results obtained from the
numerical method are in very good agreement with
analytical solutions.

5 Numerical results and discussions

We now apply the BEM to solve the penny-shaped crack
problems in the transversely isotropic bi-material solid
as shown in Fig. 1. The material properties and the
loading conditions are given in Sect. 3 above. We will
have four loading cases. We will present and discuss the

Fig. 4 Boundary element mesh of the crack body

Fig. 5 Comparison of the SIFs ðKII=q0
ffiffiffiffiffiffi
pa
p

;KIII=q0
ffiffiffiffiffiffi
pa
p Þ of the crack

parallel to the plane of isotropy between the numerical and analytical
solutions for case 1 and q ¼ q0
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SIF values for the crack front associated with the four
loading cases below.

5.1 The crack surfaces are subject to the uniform
tension p ¼ p0

At first, we consider the penny-shaped cracks perpen-
dicular to the plane of isotropy in two joined trans-
versely isotropic solids and subject to the uniform
tension p ¼ p0. The examples consider penny-shaped
cracks located in region 1 at a distance h from the bi-
material interface. For the cases, the cracked body also
is symmetric with respect to the x0oz0-plane (see Fig. 1).
Thus, the boundary element mesh shown in Fig. 4 can
be used to analyze the crack problems. The normalized
SIF values (KI=p0

ffiffiffiffiffiffi
pa
p

) for this loading (p ¼ p0) are
presented in Figs. 6a–d and Table 3.

For crack problems in a homogenous and trans-
versely isotropic medium, i.e., case 1 and case 2, the
stress intensity factors are shown in Figs. 6a and 6b. The
mode I SIF values along the crack front are symmetric
with the plane y0oz0. In Figs. 6a and 6b, it can be found

that the anisotropy of the materials exerts an obvious
influence on the SIFs. Note that the mode I SIFs in a
homogenous and isotropic medium is KI=p0

ffiffiffiffiffiffi
pa
p ¼ 2=p

along the crack front. It is interesting that for the case of
the crack surfaces perpendicular to the plane of the
isotropy, the SIF values vary along the crack front. The
similar phenomena are also found in Hoenig (1978), Pan
and Yuan (2000).

Figure 6a also shows the variations of the normalized
SIFs (KI=p0

ffiffiffiffiffiffi
pa
p

) along the crack front with the crack
distances from the material interface for case 1 and case
3. It can be found that the material in region 2 exerts a
weak influence on the SIFs along the crack front in
h 2 90�; 180�½ � and the effect of region 2 on the SIFs
along the crack front in h 2 0�; 90�½ � is not obvious. With
the crack distances from the material interface decreas-
ing, the SIFs along the crack front around h ¼ 180�

increase slowly.
Figure 6b also illustrates the variations of the nor-

malized SIFs (KI=p0
ffiffiffiffiffiffi
pa
p

) along the crack front with the
crack distances from the material interface for case 2 and
case 4. It can be found that the material of region 2
exerts an obvious influence on the SIFs along the crack

Fig. 6 Variation of the SIFs ðKI=p0
ffiffiffiffiffiffi
pa
p Þ with the crack distance from the material interface p ¼ p0
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front in h 2 90�; 180�½ � and has relatively weak influence
on the SIFs along the crack front in h 2 0�; 90�½ �. With
the crack distances from the material interface decreas-
ing, the SIFs along the crack front around h ¼ 180�

decrease.
Figures 6c and 6d present the variations of normal-

ized SIF (KI=p0
ffiffiffiffiffiffi
pa
p

) along the crack front for case 5 and
case 6. For case 5, the SIFs are close to the ones of the
crack in an isotropic medium. This is because the elastic
parameters of the material TI-3 are approximate to
those of an isotropic medium. For case 6, the anisotropy
of the material TI-4 exerts an obvious influence on the
SIFs along the crack front.

Figure 6c also shows the variations of the normal-
ized SIFs (KI=p0

ffiffiffiffiffiffi
pa
p

) along the crack front with the
crack distances from the materials for case 6 and case
7. It can be found that the SIFs become small because
of the existence of the material in region 2. The vari-
ations of the SIFs are obvious in h 2 90�; 180�½ �. And
the influence of region 2 on the SIFs is relative weak in
h 2 0�; 90�½ �. With the crack distances from the mate-
rial interface decreasing, the influence becomes more
obvious, especially for the crack front around
h ¼ 180�.

Figure 6d also shows the variations of the normalized
SIFs (KI=p0

ffiffiffiffiffiffi
pa
p

) along the crack front with the crack
distances from the material interface for case 6 and case
8. It can be found that the SIFs become larger than the
ones in the homogeneous medium (case 6) with the crack
distances from the material interface decreasing. The
variations of the SIFs are more obvious in h 2 90�; 180�½ �
than in h 2 0�; 90�½ �.

Evidently, the above variations of the SIFs along the
crack front are due to the existence of material in region
2. For region 2 having a stiffer material than region 1,
region 2 tends to constrain the crack opening and the
SIFs decrease. And for region 2 having a more com-
plaint material than region 1, region 2 tends to make the
crack opening easy and the SIFs increase.

5.2 The crack surfaces are subject to the triangle
tension p ¼ p0 r=að Þ

Secondly, we consider the penny-shaped cracks per-
pendicular to the plane of isotropy in two joined
transversely isotropic solids and subject to the normal
tension p ¼ p0 r=að Þ. For the cases, the cracked body
also is symmetric with respect to the x0oz0-plane (see,
Fig. 1). Thus, the boundary element mesh shown in
Fig. 4 can further be used to analyze the crack
problems. The normalized SIF values (KI=p0

ffiffiffiffiffiffi
pa
p

) for
the loading p ¼ p0 are presented in Figs. 7a–d and
Table 4.

In these tables and figures, it can be found that the
loading p ¼ p0 r=að Þ causes the similar variations of the
SIFs to p ¼ p0 along the crack front with the crack dis-
tances from the material interface for the eight cases.
Table 6 presents a comparison of the results for p ¼ p0T
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and p ¼ p0 r=að Þ at the crack front h ¼ 180�. These data
are obtained by the following formula for the same
loading, [KI=p0

ffiffiffiffiffiffi
pa
p

for a transversely isotropic solid –
KI=p0

ffiffiffiffiffiffi
pa
p

for two joined transversely isotropic solids] %.
It can be found that the absolute increments in Ta-

ble 6 decrease from p ¼ p0 to p ¼ p0 r=að Þ for the same
crack distance to the material interface. This indicates
that the effects of materials in region 2 on the SIFs be-
come weak with the load on the crack surfaces
decreasing.

5.3 The crack surfaces are subject to the circular
tension p ¼ p0 r=að Þ2

Thirdly, we consider the penny-shaped cracks perpen-
dicular to the plane of isotropy in two joined trans-
versely isotropic solids and subject to the normal tension
p ¼ p0 r=að Þ2. For the cases, the cracked body also is
symmetric with respect to the x0oz0-plane (see Fig. 1).
Thus, the boundary element mesh shown in Fig. 4 can
further be used to analyze the crack problems. The
normalized SIF values (KI=p0

ffiffiffiffiffiffi
pa
p

) for the loading
p ¼ p0 are presented in Figs. 8a–d and Tables 5.

In these tables and figures, it can also be found that
the loading p ¼ p0 r=að Þ2 induces the similar variations of

Table 4 Variations of the SIFs (KI=p0
ffiffiffiffiffiffi
pa
p

) for the eight cases, p ¼ p0 r=að Þ

h degree Case 1 Case 3 Case 2 Case 4 Case 5 Case 7 Case 6 Case 8

h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a

90.00 0.5967 0.59785 0.59625 0.404425 0.398865 0.40128 0.49518 0.48927 0.49152 0.5537 0.55895 0.55775
112.50 0.57175 0.57515 0.5717 0.45136 0.44148 0.44626 0.4942 0.48526 0.48904 0.5448 0.5528 0.55045
135.00 0.5031 0.51085 0.50355 0.51515 0.493125 0.50555 0.494915 0.47878 0.48702 0.5024 0.5159 0.5102
157.50 0.42624 0.444915 0.427105 0.5348 0.478255 0.51855 0.5006 0.46333 0.48835 0.45007 0.47762 0.460385
180.00 0.3925 0.429455 0.39352 0.52945 0.434415 0.50915 0.5048 0.432915 0.489645 0.43289 0.48379 0.445

Fig. 7 Variation of the SIFs ðKI=p0
ffiffiffiffiffiffi
pa
p
Þ with the crack distance from

the material interface p ¼ p0ðr=aÞ
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the SIFs to p ¼ p0 and p ¼ p0 r=að Þ along the crack front
with the crack distances from the material interface for
the eight cases. Table 6 also presents a comparison of
the results for p ¼ p0 and p ¼ p0 r=að Þ, p ¼ p0 r=að Þ2 at
the crack front h ¼ 180�. It can be found that the
absolute increments of the SIFs in Table 6 decrease from
p ¼ p0, p ¼ p0 r=að Þ to p ¼ p0 r=að Þ2 for the same crack
distance to the material interface. This further verifies
the above conclusion that the effect of the material in
region 2 on the SIFs becomes weak with the load on the
crack surfaces decreasing.

5.4 The crack surfaces are subject to the uniform
shear traction

Lastly, we consider the SIF values of the crack perpen-
dicular to the material interface and subject to shear
traction q ¼ q0. For such uniform shear loading, the
mode II and mode III SIF values are non-zero while the
mode I SIF values are always zero. If the crack is in a
homogeneous and isotropic solid and is subject to the
uniform shear, the analytical solutions of the two mode
SIFs are in very agreement with the numerical solution.
These two solutions are shown in Figs. 9 and 10.

Table 5 Variations of the SIFs (KI=p0
ffiffiffiffiffiffi
pa
p

) for the eight cases, p ¼ p0 r=að Þ2

h degree Case 1 Case 3 Case 2 Case4 Case 5 Case 7 Case 6 Case 8

h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a

90.00 0.4882 0.48915 0.48795 0.35189 0.34808 0.34973 0.4211 0.41701 0.41861 0.45763 0.46122 0.4604
112.50 0.47402 0.47674 0.47411 0.38892 0.382 0.38535 0.42007 0.41381 0.41653 0.45439 0.46000 0.45831
135.00 0.42971 0.43586 0.43019 0.4355 0.41967 0.42873 0.4202 0.40858 0.41461 0.42693 0.43692 0.43248
157.50 0.37468 0.38993 0.37544 0.44374 0.40143 0.43212 0.42441 0.39589 0.41551 0.3894 0.41161 0.39703
180.00 0.34917 0.38067 0.35002 0.43522 0.36192 0.42063 0.42766 0.37022 0.4165 0.37768 0.42098 0.38684

Fig. 8 Variation of the SIFs ðKI=p0
ffiffiffiffiffiffi
pa
p
Þ with the crack distance

from the material interface p ¼ p0ðr=aÞ2
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5.4.1 The mode II SIF values

The mode II SIF values are given in Fig. 9 and Table 7.
Obviously, the magnitudes of SIF values in a trans-
versely isotropic mass are different from the ones in an
isotropic mass. For case 1 and case 5, the absolute SIF
values are less than the ones in an isotropic mass. For
cases 2 and 6, the absolute SIF values decrease in the
neighborhood of h = 0� and 180� and increase in the
neighborhood of h = 90� (excluding h = 90�). It can be
found that region 2 exerts more obvious influence on the
SIF values near h =1800 than h = 0�. And for case 3
and case 8, the absolute SIF values increase and for case

4 and case 5, the absolute SIF values decrease near h =
0� and h =180�.

5.4.2 The mode III SIF values

The mode II SIF values are given in Fig. 10 and Table 8.
By comparing the SIF values in the isotropic and
transversely isotropic solids, it can be found the trans-
versely isotropic properties strongly effects the SIF val-
ues. Due to symmetry of the geometric and loading
conditions, the SIF values at h=0� and h= 180� are
equal to zero and the maximum absolute values of the
SIFs appear at h ¼ 90�. Thus, region 2 has an obvious

Table 6 Comparison of the SIFs (KI=p0
ffiffiffiffiffiffi
pa
p

) among three different loadings at h ¼ 180�

h Case 3 Case 4 Case 7 Case 8

p0 p0 r=að Þ p0 r=að Þ2 p0 p0 r=að Þ p0 r=að Þ2 p0 p0 r=að Þ p0 r=að Þ2 p0 p0 r=að Þ p0 r=að Þ2

1:01a 4.44 3.70 3.15 )13.39 )9.50 )7.33 )9.65 )7.19 )5.74 6.22 5.10 4.33
1:05a 1.86 1.46 1.19 )9.32 )6.40 )4.82 )5.96 )4.26 )3.31 3.88 3.01 2.48
1:10a 0.78 0.60 0.48 )6.07 )4.03 )2.96 )3.94 )2.72 )2.06 2.71 1.99 1.58
1:15a 0.37 0.26 0.21 )4.25 )2.77 )2.00 )2.92 )1.96 )1.46 2.13 1.51 1.16
1:20a 0.12 0.10 0.09 )3.18 )2.03 )1.46 )2.31 )1.52 )1.12 1.77 1.21 0.92

Fig. 9 Variation of the SIFs ðKII=p0
ffiffiffiffiffiffi
pa
p
Þ with the crack distance

from the material interface, q ¼ q0
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influence on the SIF in the neighborhood of h ¼ 90�.
The effect of region 2 on the mode III SIFs are similar to
the ones on the mode II SIFs. For case 3 and case 8, the
absolute SIF values of mode III increase and for case 4
and case 5, the absolute SIF values of mode III decrease.

6 Summary and Conclusions

In the above, we have incorporated Yue’s fundamen-
tal singular solutions into the classic displacement
boundary integral equation formulations. The modified

multi-region method of the BEM and the traction sin-
gular elements are employed to analyze the penny-
shaped crack problems in two joined transversely iso-
tropic solids. The two orientations of the penny-shaped
cracks are discussed, i.e., the crack surfaces are parallel
and perpendicular to the isotropic plane of transversely
isotropic solids. The cases of the cracks parallel to the
isotropic plane of the transversely isotropic solid are
employed to verify the accuracy of the proposed method
by comparing the existing analytical solutions in a
homogenous and transversely isotropic solid. The results
show that the numerical results obtained by the present
BEM are in very good agreement with the closed-from
solutions.

Table 7 Variations of the SIFs (KII=q0
ffiffiffiffiffiffi
pa
p

) for the eight cases, q ¼ q0

h degree Case 1 Case 3 Case 2 Case4 Case 5 Case 7 Case 6 Case 8

h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a

90.00 0.00034 )0.00014 )0.00084 0.000305 )0.00394 )0.0021 0.000229 0.000907 0.0002 0.000348 0.002807 0.003487
112.50 )0.37869 )0.37908 )0.37957 )0.3082 )0.30738 )0.30749 )0.27035 )0.2633 )0.26641 )0.36839 )0.37527 )0.37063
135.00 )0.64484 )0.64461 )0.64502 )0.47227 )0.46408 )0.46704 )0.52072 )0.49855 )0.50913 )0.58577 )0.61123 )0.59703
157.50 )0.76122 )0.76145 )0.76032 )0.54676 )0.51746 )0.5312 )0.70191 )0.63999 )0.6765 )0.62366 )0.68301 )0.64511
180.00 )0.78446 )0.81048 )0.78259 )0.56863 )0.50477 )0.5443 )0.7675 )0.67138 )0.7321 )0.60844 )0.68925 )0.63445

Fig. 10 Variation of the SIFs ðKIII=p0
ffiffiffiffiffiffi
pa
p
Þ with the crack distance

from the material interface, q ¼ q0
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The cases of the cracks perpendicular to the isotropic
plane of the two joined transversely isotropic solids are
used to illustrate the influence of the anisotropy on the
SIFs for three different normal tractions and the shear
traction. The four transversely isotropic materials and
the eight cases of the two joined transversely isotropic
solids are considered. From the numerical solutions,
there is an evident influence of the material anisotropy
on the SIFs. Owing to the existence of another half-
space transversely isotropic solid, there are clear varia-
tions of the SIFs along the crack front, especially for the
crack front near another transversely isotropic solids.

The examples presented in the paper have shown that
the new BEM can be used to efficiently and accurately
carry out the analysis and prediction of the penny-
shaped crack problems in the two joined transversely
isotropic solids. Besides, a quite large amount of SIF
values are presented and would be useful for furthering
our knowledge on fracture mechanics of the two joined
transversely isotropic solids.

Appendix A

For a transversely isotropic bi-material solid with the
z-axis being the axis of material symmetry, x-y plane
is the plane of isotropy, shown in Fig. 1. The con-
stitutive relation between the stress rij and the strain
eij can be expressed in terms of the contracted stiffness
matrix as

rxx
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rzz
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rxz

rxy
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666666664

3

777777775

¼

c1k c1k � 2c5k c2k 0 0 0

c1k � 2c5k c1k c2k 0 0 0
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0 0 0 2c4k 0 0

0 0 0 0 2c4k 0
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3

777777775

�

exx

eyy

ezz

eyz

exz

exy

2

666666664

3

777777775

ðA1Þ

where c1k, c2k, c3k, c4k and c5k are the five elastic con-
stants for the k-th transversely isotropic solid of the

by-material system, where k ¼ 1 for 0þ � z <1 or 2 for
�1 < z � 0�.

The vectors of displacements, vertical stresses and
plane strains are, respectively, defined by

u ¼ ux uy uz
� �T

; Tz ¼ rxz ryz rzz
� �T

;

Cp ¼ exx exy eyy
� �T ðA2Þ

Without loss of generality, we assume that the body
forces are in the solid of half region k ¼ 1, i.e. h � 0þ.
The vector of a concentrated body forces is located at
(0; 0; h) and defined by

F ¼ Fx; Fy ; Fz
� �T ðA3Þ

And the field point is located at (x; y; z). The solutions
for four different cases are presented in the ensuing. Let
Dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c1kc3k
p � c2k � 2c4k, and D1k and D2k correspond

to two different transversely isotropic solids, respec-
tively. By using the classical Fourier transform tech-
niques, Yue (1995) developed the fundamental solutions
for the elastic fields in two joined transversely isotropic
solids subject to concentrated point forces. The funda-
mental solutions of displacements and stresses are pre-
sented in the forms of elementary harmonic functions
and complete elliptical integrals. For an ease of refer-
ence, the formulations of the fundamental solutions are
briefly outlined in the following.

Case a: D1 6¼ 0 and D2 6¼ 0
(i) In the solid k ¼ 1 z � 0ð Þ, we have

u ¼
n
Gv

h
0; z01;U01

i

þ
X4

n¼1
Gv

h
0; zn1;Uan1

i
þGv

h
0; c01 zj j;Uv

i

þGv

h
0; c11 zj j;Uu

�
c11
�i

�Gv

h
0; c21 zj j;Uu

�
c21
�io

F

TZ ¼
n
Gv

h
1; z01;W01

i

þ
X4

n¼1
Gv

h
1; zn1;Wan1

i

þGv

h
1; c01 zj j;Wv

i
þGv

h
1; c11 zj j;Wu

�
c11
�i

�Gv

h
1; c21 zj j;Wu

�
c21
�io

F

ðA4Þ

Table 8 Variations of the SIFs (KIII=q0

ffiffiffiffiffiffi
pa
p

) for the eight cases, q ¼ q0

h degree Case 1 Case 3 Case 2 Case4 Case 5 Case 7 Case 6 Case 8

h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a h ¼ 1:01a h ¼ 1:2a

90.00 )0.47645 )0.47699 )0.47619 )0.81142 )0.79576 )0.80253 )0.50298 )0.49461 )0.49721 )0.69211 )0.70321 )0.70027
112.50 )0.42352 )0.42508 )0.42344 )0.61159 )0.59689 )0.60329 )0.48027 )0.46982 )0.47316 )0.57462 )0.59117 )0.58663
135.00 )0.29164 )0.296 )0.29206 )0.34433 )0.32817 )0.3361 )0.38828 )0.37479 )0.3798 )0.31919 )0.33464 )0.33113
157.50 )0.13913 )0.14933 )0.13985 )0.15878 )0.13243 )0.15062 )0.2157 )0.20452 )0.20842 )0.12178 )0.12034 )0.12954
180.00 )0.0001 )0.00011 )0.0001 )0.00014 )0.00012 )0.00013 )0.00019 )0.00017 )0.00018 )0.00008 )9.1E)05 )8.3E)05
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Cp ¼
n
Gp

h
1; z01;U01

i
þ
X4

n¼1
Gp

h
1; zn1;Uan1

i

þGp

h
1; c01 zj j;Uv

i

þGp

h
1; c11 zj j;Uu

�
c11
�i

�Gp

h
1; c21 zj j;Uu

�
c21
�io

F

(ii) In the solid k ¼ 2 z � 0ð Þ, we have

u ¼ Gv 0; z02;U02½ � þ
X4

n¼1
Gv 0; zn2;Uan2½ �

( )

F

Tz ¼ Gm 1; z02;W02½ � þ
X4

n¼1
Gm 1; zn2;Wan2½ �

( )

F

Cp ¼ Gp 1; z02;U02½ � þ
X4

n¼1
Gp 1; zn2;Uan2½ �

( )

F

ðA5Þ

where z01 ¼ c01 zþ hð Þ, z11 ¼ c11 zþ hð Þ, z21 ¼ c21zþ c11h,
z31 ¼ c11zþ c21h, z41 ¼ c21 zþ hð Þ, z02 ¼ c01h� c02z, z12 ¼
c11h� c12z, z22 ¼ c11h� c22z, z32 ¼ c21h� c12z, z42 ¼ c21h
�c22z. c0k, c1k and c2k (k ¼ 1; 2) are given as follows,

c0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c5k=c4k

p
;

c1k ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
c3kc4k
p

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffiffiffiffiffic1kc3k
p � c2kÞð

ffiffiffiffiffiffiffiffiffiffiffiffi
c1kc3k
p þ c2k þ 2c4kÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffiffiffiffiffic1kc3k
p þ c2kÞDk

q i
;

c2k ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
c3kc4k
p

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffiffiffiffiffic1kc3k
p � c2kÞð

ffiffiffiffiffiffiffiffiffiffiffiffi
c1kc3k
p þ c2k þ 2c4kÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffiffiffiffiffic1kc3k
p þ c2kÞDk

q i
:

Case b: D1 ¼ 0 and D2 6¼ 0
(i) In the solid k ¼ 1 z � 0ð Þ, we have

u ¼
n
Gv

h
0; z01;U01

i
þGv

h
0; za0;Ub11

i

þ zGv

h
1; za0;Ub21

i
þ hGv

h
1; za0;Ub31

i

þ zhGv

h
2; za0;Ub41

i
þGv

h
0; c01 zj j;Uv

i

þGv

h
0; ca zj j;Ux

i
þ zGv

h
1; ca zj j;Uy

io
F

T ¼
n
Gv

h
1; z01;W01

i
þGv

h
1; za0;Wb11

i

þ zGv

h
2; za0;Wb21

i
þ hGv

h
2; za0;Wb31

i

þ zhGv

h
3; za0;Wb41

i
þGv

h
1; c01 zj j;Wv

i

þGv

h
1; ca zj j;Wx

i
þ zGv

h
2; ca zj j;Wy

io
F

ðA6Þ

Cp ¼
n
Gp

h
1; z01;U01

i
þGp

h
1; za0;Ub11

i

þ zGp

h
2; za0;Ub21

i
þ hGp

h
2; za0;Ub31

i

þ zhGp

h
3; za0;Ub41

i
þGp

h
1; c01 zj j;Uv

i

þGp

h
1; ca zj j;Ux

i
þ zGp

h
2; ca zj j;Uy

io
F

(ii) In the solid k ¼ 2 z � 0ð Þ, we have

u ¼
n
Gv

h
0; z02;U02

i
þGv

h
0; za1;Ub12

i

þ hGv

h
1; za1;Ub22

i
þGv

h
0; za2;Ub32

i

þ hGv

h
1; za2;Ub42

io
F

Tz ¼
n
Gv

h
1; z02;W02

i
þGv

h
1; za1;Wb12

i

þ hGv

h
2; za1;Wb22

i
þGv

h
1; za2;Wb32

i

þ hGv

h
2; za2;Wb42

io
F

ðA7Þ

Cp ¼
n
Gp

h
1; z02;U02

i
þGp

h
1; za1;Ub12

i

þ hGp

h
2; za1;Ub22

i
þGp

h
1; za2;Ub32

i

þ hGp

h
2; za2;Ub42

io
F

where za0 ¼ ca zþ hð Þ, za1 ¼ cah� c12z, za2 ¼ cah� c22z,
c11 ¼ c21 ¼ ca and c12 ¼ c22 ¼ cb.

Case c: D1 6¼ 0 and D2 ¼ 0
In this case, the solutions for u;Tz and Cp in the solid

k ¼ 1 z � 0ð Þ can be obtained by substituting cb for c22 in
Eqs. (A4) for case a. in the solid k ¼ 2 z � 0ð Þ, we have

u ¼
n
Gv

h
0; z02;U02

i
þGv

h
0; zb1;Uc12

i

þ zGv

h
1; zb1;Uc22

i
þGv

h
0; zb2;Uc32

i

þ zGv

h
1; zb2;Uc42

io
F

Tz ¼
n
Gv

h
1; z02;W02

i
þGv

h
1; zb1;Wc12

i

þ zGv

h
2; zb1;Wc22

i
þGv

h
1; zb2;Wc32

i

þ zGv

h
2; zb2;Wc42

io
F

ðA8Þ

Cp ¼
n
Gp

h
1; z02;U02

i
þGp

h
1; zb1;Uc12

i

þ zGp

h
2; zb1;Uc22

i
þGp

h
1; zb2;Uc32

i

þ hGp

h
2; zb2;Uc42

io
F

where zb1 ¼ c11h� cbz and zb2 ¼ c21h� cbz
Case d: D1 ¼ 0 and D2 ¼ 0
In this case, the solutions for u;Tz and Cp in the solid

k ¼ 1 z � 0ð Þ can be obtained by substituting cb for c12
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and c22 in Eqs. (A6) for case b. in the solid k ¼ 2 z � 0ð Þ,
we have

u ¼
n
Gv

h
0; z02;U02

i
þGv

h
0; zab;Ud12

i

þ zGv

h
1; zab;Ud22

i
þ hGv

h
1; zab;Ud32

i

þ zhGv

h
2; zab;Ud42

io
F

Tz ¼
n
Gv

h
1; z02;W02

i
þGv

h
1; zab;Wd12

i

þ zGv

h
2; zab;Wd22

i
þ hGv

h
2; zab;Wd32

i

þ zhGv

h
3; zab;Wd42

io
F

ðA9Þ

Cp ¼
n
Gp

h
1; z02;U02

i
þGp

h
1; zab;Ud12

i

þ zGp

h
2; zab;Ud22

i
þ hGp

h
2; zab;Ud32

i

þ zhGp

h
3; zab;Ud42

io
F

where zab ¼ cah� cbz.
In the above equations, the fundamental solution

matrices Gv n; z;U½ � and Gp n; z;U½ � (n ¼ 0; 1; 2; 3; z � 0)
are defined in the following,

4pGv n; z;U½ � ¼ /22

gn02 zð Þ �gn11 zð Þ 0

�gn11 zð Þ gn20 zð Þ 0

0 0 0

0

B@

1

CA

þ
/11gn20 zð Þ /11gn11 zð Þ /13gn10 zð Þ
/11gn11 zð Þ /11gn02 zð Þ /13gn01 zð Þ
�/31gn10 zð Þ �/31gn01 zð Þ /33gn00 zð Þ

0

B@

1

CA

4pGp n; z;U½ �

¼ /22

gn12 zð Þ �gn21 zð Þ 0
1
2 gn03 zð Þ � gn21 zð Þ½ � 1

2 gn30 zð Þ � gn12 zð Þ½ � 0

�gn12 zð Þ gn21 zð Þ 0

0

B@

1

CA

þ
/11gn30 zð Þ /11gn21 zð Þ �/13gn20 zð Þ
/11gn21 zð Þ /11gn12 zð Þ �/13gn11 zð Þ
/11gn12 zð Þ /11gn03 zð Þ �/13gn02 zð Þ

0

B@

1

CA

ðA10Þ
where z > 0; n ¼ 0; 1; 2; 3; and the harmonic functions
g0lm zð Þ are given by

g000 zð Þ ¼ 1

R
;

g002 zð Þ ¼ 1

Rz
1� y2

RRz

� �
;

g010 zð Þ ¼ � x
RRz

;

g030 zð Þ ¼ x
2R2

z

2x2

RRz
� 3

� �

g001 zð Þ ¼ � y
RRz

;

g011 zð Þ ¼ � xy
RR2

z
;

g021 zð Þ ¼ y
2R2

z

2x2

RRz
� 1

� �
;

g020 zð Þ ¼ 1

Rz
1� x2

RRz

� �

g012 zð Þ ¼ x
2R2

z

2y2

RRz
� 1

� �
;

g003 zð Þ ¼ y
2R2

z

2y2

RRz
� 3

� �

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, Rz ¼ Rþ z.

For n � 1, the harmonic function gnlm zð Þ
(0 � lþ m � 3) can be obtained by using the following
transfer formula,

gnlm zð Þ ¼ �
@g n�1ð Þlm zð Þ

@z
ðA12Þ

In equation (A10), the constant matrix U are defined by

U ¼
/11 0 /13

0 /22 0
/31 0 /33

0

@

1

A ðA13Þ

Each element of the constant matrix U depends only on
the 10 elastic constants cjk (j ¼ 1; 2; 3; 4; 5; k ¼ 1; 2Þ.
Their specific forms can be found in Yue (1995).

Acknowledgements The work presented in this paper was sup-
ported by the Research Grants Council of Hong Kong SAR
Government. The authors would like to thank the Editor-In-Chief
Prof. P. Wriggers, the Associate Editor Prof. D. E. Beskos and the
two peer reviewers for their valuable comments and suggestions,
which enhanced the presentation of the paper.

References

Aliabadi MH (1997) Boundary element formulations in fracture
mechanics. ASME Appl Mech Rev 1997, 50:83–96

Ariza MP, Dominguez J (2004) Boundary element formulation for
3D transversely isotropic cracked bodies. Int J Numer Meth
Eng 60:719–753

Kassir MK, Sih GC (1968) Three-dimensional stresses around
elliptical cracks in transversely isotropic solids. Eng Fract Mech
1:327–345

Kassir MK, Sih GC (1975) Three-dimensional crack problems.
Noordhoff International Publishing, pp. 336–381

Sih GC, Chen EP (1981) Cracks in composites. Martinus Nijhoff
Publishers

Lin W, Keer LM (1989) Three-dimensional analysis of cracks in
layered transversely isotropic media. Proceedings of Royal
Society (London) A424:307–322

Jia ZH, Shippy DJ, Rizzo FJ (1989) Three-dimensional crack
analysis using singular boundary elements. Int J Numer Meth
Eng 28:2257–2273

Kou CH, Keer LM (1995) Three-dimensional analysis of cracking
in a multilayered composite. ASME J Appl Mech 62:273–281

473



Kassir MK, Sih GC (1966) Three-dimensional stress distribution
around an elliptical crack under arbitrary loadings. ASME J
Appl Mech. 33:601–611

Luchi ML, Rizzuti S (1987) Boundary elements of for three-
dimensional elastic crack analysis. Int J Numer Meth Eng
24:2253–2271

Mura T (1982) Micromechanics of defects in solids. The Hague:
Martinus Nijhoff

Hoeing A (1978) The behavior of a flat elliptical crack in an
anisotropic elastic body. Int J Solids Struct 14:925–934

Ozturk M, Erdogan F (1996) Axisymmetric crack problem in
bonded materials with a nonhomogenous interfacial region. Int
J Solids Struct 33:4101–4117

Pan E, Amadei B (1999) Boundary element analysis of fracture
mechanics in anisotropic bimaterials. Eng Anal Bound Elem
23:683–691

Pan E, Yuan FG (2000) Boundary element analysis of three-
dimensional cracks in anisotropic solids. Int J Numer Meth Eng
48:211–237

Pan YC, Chou TW (1976) Point force solution for an infinite
transversely isotropic solid. ASME J Appl Mech 43:608–612

Saez A, Ariza, Dominguez J (1997) Three-dimensional fracture
analysis in transversely isotropic solids. Eng Anal Bound Elem
20:287–298

Sih GC, Paris PC, Irwin GR (1965) On crack in rectilinearly
anisotropic bodies. Int J Fract 1:189–203

Suo Z (1990) Singularities, interfaces and cracks in dissimilar
anisotropic media. Proceedings of Royal Society (London)
A427:331–358

Sollero P, Aliabadi MH (1993) Fracture mechanics analysis of
anisotropic composite laminates by the boundary element
method. Int J Frac 64:269–284

Sollero P, Aliabadi MH (1995) Anisotropic analysis of cracks in
composite laminates using the dual boundary element method.
Composite Struct 31:229–234

Tan CL, Gao YL (1992) Boundary integral equation fracture
mechanics analysis of plane orthotropic bodies. Int J Frac
53:343–365

Ting TCT (1996) Anisotropic elasticity: theory and applications.
New York: Oxford University Press

Xiao HT, Yue ZQ, Tham LG, Chen YR (2005) Stress intensity
factors for penny-shaped cracks perpendicular to graded
interfacial zone of bonded bi-materials. Eng Frac Mech.
72:121–143

Yang B (2002) Examination of free-edge crack nucleation around
an open hole in composite laminates. Int J Frac 115:173–191

Yue ZQ (1995) Elastic fields in two joined transversely iso-
tropic solids due to concentrated forces. Int J Eng Sci
33:351–369

Yue ZQ, Xiao HT (2002) Generalized Kelvin solution based
boundary element method for crack problems in multilayered
solids. Eng Anal Bound Elem 26: 691–705

Yue ZQ, Xiao HT, Tham LG (2003) Boundary element analysis of
crack problems in functionally graded materials. Int J Solids
Struct 40:3273–3291

Zhang ZG, Mai YW (1989) A simple solution for the stress
intensity factor of a flat elliptical crack in a transversely iso-
tropic solid. Eng Frac Mech 34:645–648

474


