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Abstract

An approximate solution for the free vibration problem of two-dimensional magneto-electro-elastic laminates is

presented to determine their fundamental behavior. The laminates are composed of linear homogeneous elastic,

piezoelectric, or magnetostrictive layers with perfect bonding between each interface. The solution for the elastic

displacements, electric potential, and magnetic potential is obtained by combining a discrete layer approach with the Ritz

method. The model developed here is not dependent on specific boundary conditions, and it is presented as an alternative

to the exact or analytical approaches which are limited to a very specific set of edge conditions. The natural frequencies and

through-thickness modal behavior are computed for simply supported and cantilever laminates. Solutions for the simply

supported case are compared with the known exact solution for piezoelectric laminates, and excellent agreement is

obtained. The present approach is also validated by comparing the natural frequencies of a two-layer cantilever plate with

known analytical solution and with results obtained using commercial finite element software.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Magneto-electro-elastic laminates show significant interactions between the elastic, electric, and magnetic
fields due to the coupled nature of the constitutive equations. These laminates have direct application in
sensing and actuating devices, such as damping and control of vibrations in structures. There have been
several studies on the electric and mechanical behavior of piezoelectric laminates. Lee [1–4] published a series
of papers incorporating the piezoelectric effect into the classical laminate theory. Tzou and Gadre [5]
presented the dynamic equations for generalized multi-layered thin shells based on Love’s theory and
Hamilton’s principle. More recently, Heyliger [6] and Heyliger and Brooks [7] presented an exact solution for
the static behavior of laminated piezoelectric plates with simple supports. Heyliger and Brooks [8] also
obtained the exact solution for the free vibration behavior of piezoelectric plates in cylindrical bending, by
extending the free vibration solution of purely elastic simply supported plates to the corresponding
piezoelectric case.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Research on the behavior of magneto-electro-elastic laminates is relatively recent. Problems involving
magneto-electro-elastic media have been considered by Harshe [9], Nan [10], and Benveniste [11] by
developing expressions to determine the effective magnetoelectric effect in composites having piezoelectric and
magnetostrictive phases. The exact closed-form solution for three-dimensional simply supported magneto-
electro-elastic laminates was presented by Pan [12] based on the quasi-Stroh formalism and the propagator
matrix method. Later, Pan and Heyliger [13,14] extended that solution to the corresponding free vibration
problem, and to the static cylindrical bending of magneto-electro-elastic laminates. An approximate solution
based on a discrete layer model was also obtained by Heyliger and Pan [15] and Heyliger et al. [16] for the
cases of two- and three-dimensional magneto-electro-elastic laminates. More recently, Jiang and Ding [17]
presented an analytical solution for the study of beams, Lage et al. [18] developed a layerwise mixed finite
element model for plates, Buchanan [19] published a comparison between layered and multiphase models for
the static and dynamic analysis of magneto-electro-elastic plates, Latheswary et al. [20] studied the dynamic
response of moderately thick composite plates.

In this study, the governing equations of motion for two-dimensional linear magneto-electro-elastic
laminates are solved using a discrete layer approximate model. Approximations for the three displacements
and electric and magnetic potentials are constructed for each homogeneous layer such that the dependence on
the in-plane directions and that on the thickness direction of the laminated plate can be separated. This
separation allows for breaks in the gradients of the three displacement components and the two potentials
across a dissimilar material interface. The free vibration behavior of a single homogeneous piezoelectric layer
is studied first to check the present formulation with the known exact solution. The present approach is also
validated by comparing the natural frequencies and mode shapes of a two-layer PZT-5A/graphite-epoxy
cantilever plate with the analytical solution presented by Vel et al. [21], and with several finite element models.
Finally, the natural frequencies, through-thickness modes shapes, and the influence of the piezoelectric and
piezomagnetic coefficients on the natural frequencies of a two-layer BaTiO3/CoFe2O4 cantilever plate are
analyzed.
2. Theory

2.1. Geometry

Laminates are considered with the z-axis out of the laminate plane and the x- and y-axes are the
corresponding in-plane axes of the laminate. This is shown in Fig. 1. The laminates are considered to be either
very thin or infinitely long in the y-direction and are composed of an arbitrary number of elastic, piezoelectric,
or magnetostrictive layers. The laminate has dimensions Lx in the x-direction and has total thickness H, with
individual layer thicknesses h1, h2, and so on. Layer 1 is the bottom layer of the laminate and layer n is the top
layer.
z

y

x

h

Lx

hi

Layer i

Fig. 1. Laminate geometry.
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2.2. Governing equations

Magneto-electro-elastic laminates possess coupled field behavior between the elastic, electric, and magnetic
field variables. For an anisotropic and linearly magneto-electro-elastic solid, the coupled constitutive relation
for each layer can be written as [9]

si ¼ Cikgk � ekiEk � qkiHk, (1)

Di ¼ eikgk þ �ikEk þ dikHk, (2)

Bi ¼ qikgk þ dikEk þ mikHk. (3)

Here Eqs. (1)–(3) describe the stress, electric displacement, and magnetic flux fields, respectively, and si, Di,
and Bi denote the components of stress, electric displacement, and magnetic flux. The symbols Cij , �ij , and mij

are the components of elastic stiffness, and the dielectric and magnetic permittivities; gk, Ek, and Hk denote
the components of linear strain, electric field, and magnetic field; and eij, qij , and dij are the piezoelectric,
piezomagnetic, and magnetoelectric coefficients. The standard engineering contraction in indices has been
used here for the elastic variables (i.e., g4 ¼ g23, etc.). The nonzero terms for the transversely isotropic material
property tensors expressed in matrix form are shown in Appendix A, and the specific values for the different
material properties are given in Table 1 [12,21,22].
Table 1

Material properties

Parameter CoFe2O4 BaTiO3 PZT-5A PZT-4 Graphite-epoxy

C11 (GPa) 286.0 166.0 99.201 138.499 183.443

C22 286.0 166.0 99.201 138.499 11.662

C33 269.5 162.0 86.856 114.745 11.662

C13 170.5 78.0 50.778 73.643 4.363

C23 170.5 78.0 50.778 73.643 3.918

C12 173.0 77.0 54.016 77.371 4.363

C44 45.3 43.0 21.1 25.6 2.870

C55 45.3 43.0 21.1 25.6 7.170

C66 56.5 44.5 22.6 30.6 7.170

e31 (C/m2) 0.0 �4.4 �7.209 �5.2 0.0

e32 0.0 �4.4 �7.209 �5.2 0.0

e33 0.0 18.6 15.118 15.08 0.0

e24 0.0 11.6 12.322 12.72 0.0

e15 0.0 11.6 12.322 12.72 0.0

q31 (N/Am) 580.3 0.0 0.0 0.0 0.0

q32 580.3 0.0 0.0 0.0 0.0

q33 699.7 0.0 0.0 0.0 0.0

q24 550.0 0.0 0.0 0.0 0.0

q15 550.0 0.0 0.0 0.0 0.0

�11 ð10
�9C2=Nm2Þ 0.080 11.2 1.53 1.306 1.53

�22 0.080 11.2 1.53 1.306 1.53

�33 0.093 12.6 1.5 1.115 1.53

d11 ¼ d22 ¼ d33 0.0 0.0 0.0 0.0 0.0

m11 ð10
�6Ns2=C22Þ �590.0 5.0 5.0 5.0 5.0

m22 �590.0 5.0 5.0 5.0 5.0

m33 157.0 10.0 10.0 10.0 10.0

r ðkg=m3Þ 5300.0 5800.0 7750.0 7600.0 1590.0
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The components of strain, electric field, and magnetic field are related to the displacement field ui, and the
electric and magnetic potentials f and c by the relations

gij ¼
1

2

qui

qxj

þ
quj

qxi

� �
, (4)

Ei ¼ �f;i, (5)

Hi ¼ �c;i. (6)

In the case of free vibration, the absence of body force, free charge density, and free current density are
assumed. Under these conditions, the equations of motion can then be written as

sij;j ¼ rui;tt, (7)

Di;i ¼ 0, (8)

Bi;i ¼ 0. (9)

2.3. Variational formulation

Following the standard variational method of approximation (see Ref. [23]), we multiply each of the three
governing equations by the first variation of the displacements, electric and magnetic potential, respectively,
we then integrate the result over the volume of the plate, which is the domain bounding the magneto-electro-
elastic medium, and set the result equal to zero, resulting inZ

V

duiðsij;j � rui;ttÞdV ¼ 0, (10)

Z
V

dfðDi;iÞdV ¼ 0, (11)

Z
V

dcðBi;iÞdV ¼ 0. (12)

Integrating each of these equations by parts and applying the divergence theorem yields the final weak form of
the governing equations.

0 ¼

Z
V

ðsijdgij þ duirui;ttÞdV �

I
S

sijnjdui dS, (13)

0 ¼

Z
V

Djdf;j dV �

I
S

DjnjdfdS, (14)

0 ¼

Z
V

Bjdc;j dV �

I
S

BjnjdcdS. (15)

Substituting the governing constitutive equations into final weak form yields

0 ¼

Z
V

C11
qu

qx
þ C13

qw

qz
þ C14

qv

qz
þ C16

qv

qx
þ e11

qf
qx
þ e31

qf
qz
þ q11

qc
qx
þ q31

qc
qz

� �
qdu

qx

�

þ C12
qu

qx
þ C23

qw

qz
þ C24

qv

qz
þ C26

qv

qx
þ e12

qf
qx
þ e32

qf
qz
þ q12

qc
qx
þ q32

qc
qz

� �
qdv

qy

þ C13
qu

qx
þ C33

qw

qz
þ C36

qv

qx
þ e33

qf
qz
þ q33

qc
qz

� �
qdw

qz
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þ C14
qu

qx
þ C44

qv

qz
þ C45

qu

qz
þ

qw

qx

� �
þ e14

qf
qx
þ q14

qc
qx

� �
qdv

qz

þ C45
qv

qz
þ C55

qu

qz
þ

qw

qx

� �
þ e15

qf
qx
þ q15

qc
qx

� �
qdu

qz
þ

qdw

qx

� �

þ C16
qu

qx
þ C36

qw

qz
þ C66

qv

qx
þ e16

qf
qx
þ e36

qf
qz
þ q16

qc
qx
þ q36

qc
qz

� �
qdv

qx

�r
q2u
qt2

duþ
q2v

qt2
dvþ

q2z
qt2

dw

� ��
dV �

I
S

ðtxduþ tydvþ tzdzÞdS, ð16Þ

0 ¼

Z
V

e11
qu

qx
þ e14

qv

qz
þ e15

qu

qz
þ

qw

qx

� �
þ e16

qv

qx
� �11

qf
qx
� d11

qc
qx

� �
qdf
qx

�

þ e21
qu

qx
þ e24

qv

qz
þ e25

qu

qz
þ

qw

qx

� �
þ e26

qv

qx
� �12

qf
qx
� d12

qc
qx

� �
qdf
qy

þ e31
qu

qx
þ e33

qw

qz
þ e36

qv

qx
� �33

qf
qz
� d33

qc
qz

� �
qdf
qz

�
dV �

I
S

DjnjdfdS, ð17Þ

0 ¼

Z
V

q11

qu

qx
þ q14

qv

qz
þ q15

qu

qz
þ

qw

qx

� �
þ q16

qv

qx
� d11

qf
qx
� m11

qc
qx

� �
qdc
qx

�

þ q21

qu

qx
þ q24

qv

qz
þ q25

qu

qz
þ

qw

qx

� �
þ q26

qv

qx
� d12

qf
qx
� m12

qc
qx

� �
qdc
qy

þ q31

qu

qx
þ q33

qw

qz
þ q36

qv

qx
� d33

qf
qz
� m33

qc
qz

� �
qdc
qz

�
dV �

I
S

BjnjdcdS, ð18Þ

where u, v, and w represent the displacement components in the x-, y-, and z-directions, respectively, and f
and c represent the electric and magnetic potentials. It is important to mention here that Eq. (16) will actually
result in three different equations when the coefficients of the variations of the mechanical displacements are
collected.

2.4. Discrete-layer approximation and solution

The basic idea behind the Ritz method is to approximate the displacements ui, and the electric and magnetic
potentials f and c by a finite linear combination of the form (see Refs. [23,24])

uiðx; y; z; tÞ ¼
Xn

j¼1

ci
jG

ui

j ðx; y; z; tÞ þ Gui

0 ,

fðx; y; z; tÞ ¼
Xn

j¼1

cjG
f
j ðx; y; z; tÞ þ Gf

0 ,

cðx; y; z; tÞ ¼
Xn

j¼1

cjG
c
j ðx; y; z; tÞ þ Gc

0 (19)

and then determine the parameters cj to satisfy the principle of virtual displacements. Here, cj denotes the
undetermined coefficients, and Gj the approximation functions which must satisfy the boundary conditions
and be continuous, as required by the variational principle.

Approximations to the three displacements (for elastic media), the three displacements and electrostatic
potential (for piezoelectric media), and the three displacement and magnetic potential (for magnetostrictive
media) are generated in terms of the global (x; y; z)-coordinates. In this study, the approximations for each
of the five field quantities are constructed in such a way as to separate the dependence in the plane with that
in the direction perpendicular to the interface. Additionally, the laminates are considered infinitely long in the
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y-direction, eliminating the dependence of the approximations on the y-coordinate. Hence approximations for
the five unknown field quantities are sought in the form

uðx; z; tÞ ¼
Xn

j¼1

Ujðx; tÞGu
j ðzÞ ¼

Xm

i¼1

Xn

j¼1

UjiðtÞGu
i ðxÞG

u
j ðzÞ,

vðx; z; tÞ ¼
Xn

j¼1

V jðx; tÞGv
j ðzÞ ¼

Xm

i¼1

Xn

j¼1

VjiðtÞGv
i ðxÞG

v
j ðzÞ,

wðx; z; tÞ ¼
Xn

j¼1

W jðx; tÞGw
j ðzÞ ¼

Xm

i¼1

Xn

j¼1

W jiðtÞGw
i ðxÞG

w
j ðzÞ,

fðx; z; tÞ ¼
Xn

j¼1

Fjðx; tÞG
f
j ðzÞ ¼

Xm

i¼1

Xn

j¼1

FjiðtÞG
f
i ðxÞG

f
j ðzÞ,

cðx; z; tÞ ¼
Xn

j¼1

Cjðx; tÞG
c
j ðzÞ ¼

Xm

i¼1

Xn

j¼1

CjiðtÞG
c
i ðxÞG

c
j ðzÞ. (20)

In the thickness direction, one-dimensional Lagrangian interpolation polynomials are used for GjðzÞ for
each of the five variables. For the in-plane approximations (i.e., that in the x-direction), different types of
approximations can be used for the one-dimensional functions GjðxÞ. Power and Fourier series are those most
commonly selected. For a laminate with N layers through the parallelepiped thickness (typically taken equal to
or greater than the number of different material laminae in the parallelepiped), ðN þ 1Þ is the number of layer
interfaces through the parallelepiped thickness, and Uji, V ji, W ji, Fji, and Cji are constants associated with jth
layer of the discretized laminate corresponding to the ith term of the in-plane approximation function for each
of the five variables [25].

Substituting these approximations, Eq. (20), into the weak form in Eqs. (16)–(18), integrating with respect
to the thickness coordinate z, collecting the coefficients of the variations of the displacements, and placing the
results in matrix form yields the result

½Muu� ½0� ½0� ½0� ½0�

½0� ½Mvv� ½0� ½0� ½0�

½0� ½0� ½Mww� ½0� ½0�

½0� ½0� ½0� ½0� ½0�

½0� ½0� ½0� ½0� ½0�

2
666666664

3
777777775

f €ug

f€vg

f €wg

f0g

f0g

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ

½Kuu� ½Kuv� ½Kuw� ½Kuf� ½Kuc�

½Kvu� ½Kvv� ½Kvw� ½Kvf� ½Kvc�

½Kwu� ½Kwv� ½Kww� ½Kwf� ½Kwc�

½Kfu� ½Kfv� ½Kfw� ½Kff� ½Kfc�

½Kcu� ½Kcv� ½Kcw� ½Kcf� ½Kcc�

2
666666664

3
777777775

fug

fvg

fwg

ffg

fcg

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

f f u
g

f f v
g

f f w
g

f f f
g

f f c
g

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
. ð21Þ

The elements of each of these matrices have a very specific form as a result of the pre-integration of the
thickness dependence. The matrices are in fact composed of smaller sub-matrices that consist of the fully
integrated thickness approximation functions multiplied by the various in-plane functions. The explicit form
of each of these sub-matrices contained in the stiffness matrix ½K � and the inertial mass matrix ½M� are given in
Appendix B before integrating with respect to thickness coordinate and before the insertion of the specific
discrete-layer approximations.
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The dynamic analysis of the laminates is developed assuming harmonic motion. Therefore, the solutions for
the primary unknowns have the form

uiðx; z; tÞ ¼ uiðx; zÞe
iot, (22)

fðx; z; tÞ ¼ fðx; zÞeiot, (23)

cðx; z; tÞ ¼ cðx; zÞeiot, (24)

where o is the natural frequency.
Taking second derivative with respect to time of Eqs. (22)–(24) gives

€uiðx; z; tÞ ¼ �o2uiðx; zÞe
iot, (25)

€fðx; z; tÞ ¼ �o2fðx; zÞeiot, (26)

€cðx; z; tÞ ¼ �o2cðx; zÞeiot. (27)

Replacing Eqs. (25)–(27) into Eq. (21), and simplifying the dynamic problem becomes the following e-value
problem:

½Kuu� ½Kuv� ½Kuw� ½Kuf� ½Kuc�

½Kvu� ½Kvv� ½Kvw� ½Kvf� ½Kvc�

½Kwu� ½Kwv� ½Kww� ½Kwf� ½Kwc�

½Kfu� ½Kfv� ½Kfw� ½Kff� ½Kfc�

½Kcu� ½Kcv� ½Kcw� ½Kcf� ½Kcc�

2
666666664

3
777777775

fug

fvg

fwg

ffg

fcg

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

� o2

½Muu� ½0� ½0� ½0� ½0�

½0� ½Mvv� ½0� ½0� ½0�

½0� ½0� ½Mww� ½0� ½0�

½0� ½0� ½0� ½0� ½0�

½0� ½0� ½0� ½0� ½0�

2
666666664

3
777777775

fug

fvg

fwg

f0g

f0g

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

f0g

f0g

f0g

f0g

f0g

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
. ð28Þ

The natural frequencies and the corresponding shape functions can be found by solving this eigenvalue
problem with no external forces since free vibration analysis is assumed. The electric and magnetic potentials
are eliminated from this equation by following a standard matrix condensation procedure, allowing solution
by using direct eigensolvers. First, we consider the following partition of the matrix equation (28):

½KUU � ½KUF�

½KFU � ½KFF�

" #
fUg

fFg

( )
� o2

½MUU � ½0�

½0� ½0�

" #
fUg

f0g

( )
¼
f0g

f0g

( )
(29)

expanding Eq. (29) gives the matrix equations

½KUU �fUg þ ½KUF�fFg � o2½MUU �fUg ¼ f0g, (30)

½KFU �fUg þ ½KFF�fFg ¼ f0g. (31)

Solving for F from Eq. (31) and substituting back in Eq. (29) results in the following general eigenvalue
problem:

ð½K̄ � � o2½M�ÞfUg ¼ f0g, (32)
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where U represents the modes shapes, o is the natural frequency, and the condensed stiffness matrix ½K̄ � is
calculated as

½K̄ � ¼ ð½KUU � � ½KUF�½KFF��1½KFU �Þ. (33)

3. Numerical examples

Three examples are considered in this section to study the free vibration behavior of linear magneto-electro-
elastic laminates. First, a single-layer linear elastic piezoelectric plate, with known exact solution [8] is
examined in order to validate the approximate model presented here. Then, a two-layer cantilever composite
plate with the bottom layer made of the linear elastic graphite-epoxy, and the top layer made of the linear
elastic piezoelectric PZT-5A is studied and results are compared to those presented by Vel et al. [21]. Finally, a
two-layer cantilever magneto-electro-elastic plate with the bottom layer made of the linear magnetostrictive
material CoFe2O4 and the top layer of the linear piezoelectric BaTiO3 is analyzed.

3.1. Single-layer simply supported piezoelectric plate

The first example considered is a single-layer homogeneous plate made of the piezoelectric PZT-4 with
material properties shown in Table 1. A plate with dimensions Lx ¼ 0:04m and total thickness H ¼ 0:01m is
modelled. The edge boundary conditions are consistent with those of simple support. Hence, the transverse
displacement w is specified to be zero, with zero normal traction also specified along the edge length and along
the top and bottom surfaces of the laminate. In terms of the electric and magnetic field variables, they are zero
along the edges, as well as along the top and bottom surfaces of the laminate.

The in-plane approximation functions for each of the five field variables are given in the form

Gu
j ðxÞ ¼ cos px, (34)

Gv
j ðxÞ ¼ cos px, (35)

Gw
j ðxÞ ¼ sin px, (36)

Gf
j ðxÞ ¼ sin px, (37)

GC
j ðxÞ ¼ sin px, (38)

where p ¼ np=Lx. Here, the index j is a single integer that represents the axial mode number denoted by p in
each of the terms. In this example, only one term is required to match the exact solution corresponding to the
first axial mode (i.e., n ¼ 1) as published by Heyliger and Brooks [8].

The natural frequencies are normalized as

on ¼ onðL
2
x=HÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=C11Þ

p
, (39)

where Lx is the span length of the plate, H is the thickness, r and C11 are the mass density and the
corresponding element of the elastic stiffness matrix (see Table 1), and on is the nth frequency found in the
analysis.

The first 5 natural frequencies obtained using the present approach are shown in Table 2 and are in excellent
agreement with the exact frequencies reported by Heyliger and Brooks [8], and with finite elements results
obtained using ABAQUS 6.1 [26]. A convergence analysis using different number of layers for the discrete
layer approximation was also performed and is shown in Table 3. The corresponding mode shapes are shown
in Fig. 2 for the first four vibration modes.

It can be determined from Table 3 that when 16 layers are used in the discrete layer solution, the calculated
frequencies can be within an error of only 0.5%, and within 0.2% when the laminate is discretized into 128
layers. Using 16 layers results in a system of equations with 68 degrees of freedom, and using 128 layers the
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Table 2

Normalized natural frequencies for the simply supported PZT-4 one-layer plate

Mode Present solution Heyliger and Brooks ABAQUS

discrete layer exact solution finite elements

1 2.265 2.261 2.265

2 10.087 10.082 10.087

3 24.089 24.086 24.089

4 41.675 41.700 41.679

5 49.524 49.616 49.522

Fig. 2. First 4 mode shapes for the simply supported PZT-4 one-layer plate (side views): (a) Mode 1, (b) Mode 2, (c) Mode 3, and (d)

Mode 4.

Table 3

Convergence analysis for the simply supported PZT-4 one-layer plate

Frequency 4 Layers 8 Layers 16 Layers 32 Layers 64 Layers 128 Layers

1 2.286 2.271 2.266 2.265 2.265 2.265

2 10.090 10.088 10.087 10.087 10.087 10.087

3 24.721 24.246 24.128 24.099 24.091 24.089

4 44.910 42.549 41.893 41.727 41.685 41.675

5 51.952 50.072 49.656 49.555 49.531 49.524
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number of degrees of freedom is 516. Although not shown here, a convergence analysis using finite elements
was also performed and showed that 1024 (4420 dof) elements are required to obtain an error within 0.5%
when using 4-node elements, or 64 elements (932 dof) when 8-node elements are used. In order to obtain an
error smaller than 0.2% 4096 (17 028 dof) 4-node elements are required, or 256 (3396 dof) 8-node elements. It
is clear then, that a significant reduction in the computational requirements is achieved when the present
discrete model is employed, without losing accuracy in the calculated frequencies.

3.2. Two-layer PZT-5A/graphite-epoxy cantilever plate

This example is considered here in order to give a second validation to the present model by comparing the
natural frequencies to those published by Vel et al. [21] using an analytical solution.

The problem considered in this example is a cantilever two-layer laminated plate with the top layer made of
the piezoelectric material PZT-5A, and the bottom layer made of graphite-epoxy with the fibers oriented in the
direction of the span of the laminate. The plate has dimensions Lx ¼ 0:1m, total thickness H ¼ 0:025m, and
the two dissimilar layers have equal thickness. The support of the plate is at the left edge with mechanical
displacements specified to zero. The right edge, top, and bottom surfaces are traction free. The edges and top
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surface of the PZT-5A are grounded to zero electric and magnetic potential, as well as the interface between
the two different materials. The corresponding material properties can be found in Table 1.

For this example, the approximation functions are different to those used in the previous example. In this
case, in order to satisfy the boundary conditions, the in-plane functions for u, w, f, and c are selected as power
series in x given as

Gu
j ðxÞ ¼ xn, (40)

Gv
j ðxÞ ¼ xn, (41)

Gw
j ðxÞ ¼ xn, (42)

Gf
j ðxÞ ¼ xnðx� LxÞ, (43)

GC
j ðxÞ ¼ xnðx� LxÞ. (44)

The natural frequencies were calculated using the discrete layer approach, the commercial finite elements
software ABAQUS, and a finite element program developed by the authors. The first 10 normalized natural
frequencies obtained using the mentioned methods and those presented by Vel et al. [21] are listed in Table 4.
The natural frequencies are normalized using Eq. (39) with r ¼ 7750 kg=m3, and C11 ¼ 99:201GPa. Excellent
agreement is obtained for the natural frequencies among the discrete layer, ABAQUS, and FE results.
However, they are different from the analytical values presented by Vel et al. [21]. The first six modal shapes
are illustrated in Fig. 3, and they coincide to those published by Vel et al. [21].

Since the analytical results were validated by Vel et al. [21] using ABAQUS, and because good agreement is
found between modal shapes, it is possible that the discrepancies in the natural frequencies are due to
differences between material properties used in this work and the values used by Vel et al. [21].

Convergence analyses were also completed for this example using 4, 8, 16, 32, and 64 layers in the
discretization of the plate thickness, and 4, 6, 8, 10, and 12 terms in the approximation functions. The
convergence analysis is shown in Table 5 for the first natural frequency, and the maximum error relative
to converged values for the first five frequencies as a function of number of layers and terms is presented in
Table 6. For the first frequency, when 16 layers and 6 terms are employed with 408 degrees of freedom, an
error of 0.40% is obtained. Finite element analyses using 256 4-node elements (1188 dof) or 64 8-node
elements (932 dof) result in the same error for the first natural frequency. When 16 layers and 8 terms (544 dof)
are used in our discrete layer approach, a maximum error of 0.23% is obtained in the calculation of the first 5
frequencies. The same accuracy is obtained with finite element analyses when 1024 (4420 dof) 4-node elements
are used, or when 64 (932 dof) 8-node elements are employed. This is consistent with the general behavior of
the Ritz method versus finite element models.
Table 4

Normalized natural frequencies for the two-layer PZT-5A/graphite-epoxy cantilever plate

Frequency Discrete layer ABAQUS Finite elements Vel et al. [21]

1 1.190 1.189 1.190 1.114

2 4.840 4.837 4.841 4.316

3 8.590 8.587 8.590 8.015

4 10.623 10.618 10.625 9.737

5 16.369 16.360 16.373 15.160

6 19.857 19.852 19.856 18.930

7 22.888 22.874 22.894 21.390

8 28.235 28.219 28.235 26.670

9 29.767 29.746 29.765 28.530

10 32.842 32.814 32.826 29.380
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Fig. 3. First 6 mode shapes for the two-layer PZT-5A/graphite-epoxy cantilever plate (side views): (a) Mode 1, (b) Mode 2, (c) Mode 3, (d)

Mode 4, (e) Mode 5, and (f) Mode 6.

Table 5

Convergence analysis for the first natural frequency of the two-layer PZT-5A/graphite-epoxy cantilever plate

Layers Terms

4 6 8 10 12

4 1.2117 1.2045 1.2023 1.2016 1.2014

8 1.2047 1.1973 1.1945 1.1936 1.1932

16 1.2028 1.1949 1.1922 1.1912 1.1907

32 1.2023 1.1944 1.1916 1.1906 1.1903

64 1.2022 1.1915 1.1908 1.1904 1.1899

Table 6

Maximum error in the calculation of the first 5 natural frequencies for the two-layer PZT-5A/graphite-epoxy cantilever plate

Layers Terms

4 6 8 10 12

4 23.7482 4.0053 1.8572 1.7966 1.7887

8 22.3941 2.8357 0.6844 0.6138 0.6025

16 21.9979 2.3819 0.2347 0.1556 0.1383

32 21.8932 2.2493 0.1326 0.0412 0.0031

64 21.8663 2.2463 0.1198 0.0272 0.0030
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3.3. Two-layer BaTiO3/CoFe2O4 cantilever plate

As a final example, a direct application of the presented discrete layer approach to the free vibration of a
magneto-electro-elastic laminated plate is studied. In this case a two-layer cantilever plate with the top layer
made of the piezoelectric material BaTiO3 and bottom layer made of the magnetostrictive material CoFe2O4 is
considered (the material properties are again shown in Table 1). The span length is Lx ¼ 0:1m, the total
thickness is H ¼ 0:025m, and both layers have again the same thickness. The boundary conditions are: along
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the left edge of the laminate the mechanical displacements u, v, and w are set to zero, and the right edge, top,
and bottom surfaces are traction free. Both edges of the plate, as well as the top and bottom surfaces, are
grounded to zero electric and magnetic potential. The approximation functions for this example are the same
as those used in the previous example and they are shown in Eqs. (40)–(44).

The natural frequencies are normalized according to Eq. (39) with r ¼ 5800 kg=m3, and C11 ¼ 286:0GPa.
The first 10 natural frequencies calculated using the discrete layer approach are listed in Table 7 along with
results using the finite element method, excellent agreement is obtained. The first 6 modal shapes are presented
in Fig. 4, with a significant change in the laminate thickness observed for modes 3 and 5.

In Table 8, the convergence analysis for the first frequency is shown. Using 16 layers, 8 terms, and
544 degrees of freedom in our approximation resulted in an error of 0.38% for the first natural frequency. In
order to obtain a smaller error using finite elements, 1024 (4420 dof) 4-node elements or 64 (932 dof) 8-node
elements are required. The maximum error found in the calculation of first 5 frequencies for different number
of layers and terms in our discrete layer approximation are listed in Table 9. Once again the computational
advantages of the present approach are clear. The discrete layer approach results in 1584 degrees of freedom
with a maximum error of 0.09%, while the finite element approach requires 4420 or 3396 degrees of freedom
when 4-node or 8-node elements are used.
Fig. 4. First 6 mode shapes for the two-layer BaTiO3/CoFe2O4 cantilever plate (side views): (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode

4, (e) Mode 5, and (f) Mode 6.

Table 7

Normalized natural frequencies for the two-layer BaTiO3/CoFe2O4 cantilever plate

Frequency Discrete layer Finite elements

1 0.729 0.729

2 3.581 3.581

3 4.817 4.816

4 8.161 8.157

5 12.959 12.956

6 14.155 14.152

7 17.952 17.946

8 21.213 21.212

9 22.451 22.447

10 24.011 24.003
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Table 8

Convergence analysis for the first natural frequency of the two-layer BaTiO3/CoFe2O4 cantilever plate

Layers Terms

4 6 8 10 12

4 0.7511 0.7432 0.7408 0.7401 0.7398

8 0.7441 0.7357 0.7331 0.7321 0.7316

16 0.7423 0.7337 0.7309 0.7295 0.7294

32 0.7419 0.7333 0.7304 0.7293 0.7288

64 0.7417 0.7331 0.7302 0.7291 0.7286

Table 9

Maximum error in the calculation of the first 5 natural frequencies for the two-layer BaTiO3/CoFe2O4 cantilever plate

Layers Terms

4 6 8 10 12

4 16.6287 3.8082 1.8683 1.8251 1.8198

8 15.9857 2.5843 0.6691 0.5649 0.5534

16 15.8178 2.2053 0.3842 0.1906 0.1736

32 15.7755 2.1042 0.313 0.1589 0.0901

64 15.7649 2.0785 0.2951 0.1395 0.0703
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The through-thickness variations of the in-plane displacement u, out-of-plane displacement w, electric
potential f, and magnetic potential c at x ¼ L=4 and 3L=4 are shown in Fig. 5 for the first 4 natural modes.
The electric potential displays a nonlinear variation in the piezoelectric media, while its variation is linear in
the magnetostrictive media. The opposite behavior is observed for the magnetic potential, that is, nonlinear in
the magnetostrictive media, and linear in the piezoelectric media. The through-thickness behavior of the
vertical displacement w is effectively constant for modes 1, 2, and 4, indicating that those modes are primary
bending modes. For mode 3, the through-thickness variation of the in-plane displacement is constant,
indicating that this mode is a predominant axial vibration mode.

The influence of the piezoelectric and piezomagnetic coefficients on the natural frequencies of the canti-
lever plate was also studied. Each of these coefficients was allowed to vary from zero to four times
its actual value, and the natural frequencies were calculated while keeping the other coefficients unchanged.
Results of this analysis are shown in Figs. 6 and 7. In these figures, o=o0 represents the ratio of the
calculated frequency to the frequency obtained using the actual coefficients for the corresponding vibration
mode, e=e0 represents the ratio of the used value of the corresponding piezoelectric coefficient to its
actual value, and q=q0 represents the ratio of the used value of the corresponding piezomagnetic coefficient
to its actual value. Not surprisingly, the magnitude of the natural frequencies increases as the piezoelectric
and piezomagnetic coefficients become higher, indicating a stiffening effect caused by the coupling
among elastic, electric and magnetic fields. The piezoelectric and piezomagnetic coefficients have a similar
level of influence on the natural frequencies of the plate, with e31 and q31 having the highest impact for
the first three vibration modes. The natural frequency corresponding to the fourth vibration mode is more
affected by the e15 and q15 coefficients which represent the coupling between electric and magnetic fields with
the shear strain. In this mode shape, as well as in mode 2, there is an important contribution of shear
deformation to the vibration behavior of the plate. This can be observed in the modal shapes shown in Fig. 4.
It is not surprising to see the presence of a shearing vibration mode since the laminate is considered a thick
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Fig. 5. Through-thickness variation of main fields for the first 4 vibration modes of the two-layer BaTiO3/CoFe2O4 cantilever plate: (a) in-

plane displacement u, (b) vertical displacement w, (c) electric potential f, and (d) magnetic potential c. The variation of the fields at

x ¼ Lx=4 is represented by solid lines, and dotted lines represent their variation at x ¼ 3Lx=4. Open circles, stars, open squares, and open

diamonds indicate modes 1, 2, 3, and 4, respectively.
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plate with aspect ratio Lx=H ¼ 4, and this behavior is expected to change when thin laminates with higher
aspect ratio are studied.

4. Conclusions

A discrete layer model has been presented for the solution of the free vibration of two-dimensional linear
magneto-electro-elastic laminated plates. Approximations for the three mechanical displacements, electric
potential, and magnetic potential are expressed as functions of the global coordinates with separate
dependence on the in-plane coordinate x, and the out-of-plane coordinate z. The present model was validated
with excellent agreement by comparing the natural frequencies of a simply supported homogeneous PZT-4
plate with the exact solution results [8]. We also validated this model by comparing the frequencies of a two-
layer PZT-5A/graphite-epoxy plate with a recent analytical solution [21], with results obtained using the
commercial finite element software ABAQUS, and with results obtained from a finite element program
developed by the authors. Finally, the present approach was used to study the free vibration behavior of a
two-layer magneto-electro-elastic plate made of the piezoelectric material BaTiO3 and the magnetostrictive
material CoFe2O4.

For the specimen geometries and material properties used in the present work, we conclude the following:
1.
 The discrete-layer model can be used to solve the free-vibration problem of magneto-electro-elastic
laminated plates with excellent accuracy when a sufficient number of layers and terms are employed in the
approximations. Using 128 layers and one approximation term for the simply supported PZT-4, and 32
layers and 12 terms for cantilever plates resulted in 3–4 digits of accuracy.
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Fig. 6. Influence of piezoelectric coefficients on the natural frequencies of the two-layer BaTiO3/CoFe2O4 cantilever plate: (a) Mode 1, (b)

Mode 2, (c) Mode 3, and (d) Mode 4. Solid lines, stars, and open circles represent e15, e31, and e33, respectively.
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2.
 Satisfactory levels of accuracy can be obtained using the present approach using a fairly small number of
layers and terms for the approximation functions. Less than 1.0% error was achieved with 68 layers and 1
approximation term for the simply supported plate, and 8 layers and 8 approximation terms for the
cantilever laminates.
3.
 For the same level of accuracy, the present approach results in a smaller number of degrees of freedom
when compared to finite element analyses, with the consequent reduction in computational time. For the
simply supported laminate the number of degrees of freedom using the discrete layer approach was about
14 times smaller than that required by the finite element method to obtain a maximum error smaller than
0.5%, and about 2 times smaller for the case of cantilever plates.
4.
 It was observed during the analysis of the magneto-electro-elastic cantilever plate, that the through-
thickness behavior of the electric potential is nonlinear within the piezoelectric layer, while it is linear within
the magnetostrictive layer. The opposite behavior was observed for the magnetic potential. Subsequent
simplified models could exploit this behavior.
5.
 Consistent with earlier observations, higher piezoelectric or piezomagnetic coefficients resulted in higher
natural frequencies. Therefore, there is a general stiffening effect due to the coupled elastic, electric, and
magnetic fields.
6.
 The piezoelectric coefficients and piezomagnetic coefficients exhibit a similar level of influence on the
natural frequencies of the magneto-electro-elastic plate studied here. Maximum increments in the
corresponding frequency were between 10.0% and 13.0% for mode 1, 4.0% to 10.0% for mode 2, about
14.0% for mode 3, and between 12.0% and 20.0% for mode 4. It was also observed that for the first three
vibration modes the piezoelectric coefficient with highest impact on the frequencies is e31, while q31 has the
highest impact among the different piezomagnetic coefficients. However, for mode 4 the e15 and q15

coefficients showed a higher influence on the natural vibration frequencies of the laminate indicating a
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Fig. 7. Influence of piezomagnetic coefficients on the natural frequencies of the two-layer BaTiO3/CoFe2O4 cantilever plate: (a) Mode 1,

(b) Mode 2, (c) Mode 3, and (d) Mode 4. Solid lines, stars, and open circles represent q15, q31, and q33, respectively.
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primary shearing vibration mode. Modal shapes with a predominant shear deformation are expected to be
present for thick plates as those considered here, and this behavior would change as the aspect ratio of the
plate is increased.

Appendix A

Elastic stiffness tensor:

½C� ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666666664

3
7777777775
.

Dielectric permittivity constants:

½�� ¼

�11 0 0

0 �22 0

0 0 �33

2
64

3
75.
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Magnetic permittivity constants:

½m� ¼

m11 0 0

0 m22 0

0 0 m33

2
64

3
75.

Piezoelectric coefficients:

½e� ¼

0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

2
64

3
75.

Piezomagnetic coefficients:

½q� ¼

0 0 0 0 q15 0

0 0 0 q24 0 0

q31 q32 q33 0 0 0

2
64

3
75.

Magnetoelectric coefficients:

½d� ¼

d11 0 0

0 d22 0

0 0 d33

2
64

3
75.

Appendix B

Muu
ij ¼

Z
V

½rGu
i G

u
j �dV , (45)

Mvv
ij ¼

Z
V

½rGv
i G

v
j �dV , (46)

Mww
ij ¼

Z
V

½rGw
i G

w
j �dV , (47)

Kuu
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Z
V
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qGu
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j
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i
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j
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j
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ij ¼

Z
V

C13
qGu

i

qx

qGw
j

qz
þ C55

qGu
i

qz
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j
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