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ABSTRACT The state-space method is employed to evaluate the modal parameters of function-
ally graded, magneto-electro-elastic, and multilayered plates. Based on the assumption that the
properties of the functionally graded material are exponential, the state equation of structural vi-
bration which takes the displacement and stress of the structure as state variables is derived. The
natural frequencies and modal shapes are calculated based on the general solutions of the state
equation and boundary conditions given in this paper. The influence of the functionally graded
exponential factor on the elastic displacement, electric, and magnetic fields of the structure are
discussed by assuming a sandwich plate model with different stacking sequences.
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I. INTRODUCTION
The magneto-electro-elastic and multilayered plate is becoming an important component in recent

smart structures. The structure made of magneto-electro-elastic materials has the ability of converting
one type of energy into another (among magnetic, electric, and mechanical fields). Owing to the three-
phase coupling, the mechanical behavior of the magneto-electro-elastic plate is more complicated than
that of a purely elastic, single-phase piezoelectric, or piezomagnetic plate[1,2]. However, the magneto-
electro-dependent mechanical behavior could be very beneficial to the design of sensors and actuators.
Therefore, it is necessary to investigate carefully the static and dynamic characteristics of the magneto-
electro-elastic multilayered plates[3−−6], so that they can be applied correctly in design. Furthermore,
the novel functionally graded material (FGM) magneto-electro-elastic structures are also important in
the field of solid mechanics[7], and thus the magneto-electro-elastic multilayered structures with FGM
are proposed to promote further development on the theories and applications of magneto-electro-elastic
structures.

In order to study the static and dynamic characteristics of multilayered plates, many methods,
including the state-space method[5,8], pseudo-Stroh formalism method[4,6], and finite element method[9],
have been proposed in the literature. Because the state-space method has the advantage that the order of
the global matrix does not depend on the number of layers, thus simplifying the formulation and solution

⋆ Project supported by the National Natural Science Foundation of China (No. 50575172).



· 2 · ACTA MECHANICA SOLIDA SINICA 2006

procedure substantially, this method has been employed to analyze the purely elastic, piezoelectric or
magneto-electro-elastic multilayered structure[5,8]. In this paper, the state-space method is extended
to solve the modal parameters of the magneto-electro-elastic and multilayered plate where the material
properties in each layer vary exponentially in the thickness direction. The influence of the exponential
factor on the elastic displacement, electric and magnetic fields are also discussed.

II. FORMULATION
Consider an orthotropic, magneto-electro-elastic, N -layered rectangular plate with horizontal di-

mensions Lx and Ly, and a total thickness H (in the vertical z-direction). A Cartesian coordinate
system is attached to the plate and its origin is placed at one of four corners on the bottom surface, with
the plate in the positive z-axis region. The layer j is bonded by the upper interface zj and the lower
interface zj−1 with thickness hj = zj−zj−1. In order to simplify the problem, the following assumptions
are made: 1) The general out-of-plane displacements and stresses (to be defined later) are continuous
along the interface. 2) The traction, the vertical components of the electric displacement and magnetic
induction on the top and bottom surfaces of the plate satisfy the given boundary conditions. 3) The
four edges of the plate are simply supported.

For a linear, orthotropic, and magneto-electro-elastic solid considered in this article, the coupled
constitutive relation can be expressed as[6]

σi = cikγk − ekiEk − qkiHk

Di = eikγk + εikEk + dikHk

Bi = qikγk + dikEk + µikHk

(1)

where σi, Di, and Bi are the stress, electric displacement, and magnetic induction, respectively; γk, Ek,
and Hk are the strain, electric field, and magnetic field, respectively; cik, eik, and qik are the elastic,
dielectric, and magnetic permeability coefficients, respectively; εik, dik, and µik are the piezoelectric,
piezomagnetic, and magneto-electric coefficients respectively.

For a functionally graded material with exponential variation in the z-direction, the material coef-
ficients in Eq.(1) can be described by

cik (z) = c0ike
ξz, eik (z) = e0ike

ξz, εik (z) = ε0ike
ξz

qik (z) = q0ike
ξz, µik (z) = µ0

ike
ξz, dik (z) = d0

ike
ξz (2)

where ξ is the exponential factor characterizing the degree of the material gradient in the z-direction,
and the superscript ‘0’ is attached to indicate the z-independent factors in the material coefficients.

The generalized relation between the strains and displacements can be given as

γij = 0.5 (ui,j + uj,i) , Ei = −ϕ,i, Hi = −ψ,i (3)

where ui (u1 = u, u2 = v, u3 = w) is the elastic displacement, and ϕ and ψ are the electric and magnetic
potentials.

If the body force, electric charge density, and magnetic charge density are ignored, the equations of
motion are written as

σij,j = ρ
∂2ui

∂t2
, Dj,j = 0, Bj,j = 0 (4)

with ρ as the density of the material and t is time. The variables in Eqs.(1) and (4) may be divided
into two groups: One group is the out-of-plane and the other the in-plane. The former is actually the
minimum set of variables (so-called state variables) required to describe the movement of the media
exactly. The state variables in a vector form can be expressed as

η =
{

u v Dz Bz σz τzx τzy ϕ ψ w
}T

(5)

where the subscripts x, y, and z correspond to 1, 2, and 3 in Eqs.(1)∼(4). For a simply supported
and layered plate, the boundary conditions of the state vector along the four edges of the plate can be
written as follows:

η = 0 at x = 0 and x = Lx, y = 0 and y = Ly (6)
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By considering these boundary conditions and also assuming a harmonic vibration of the plate, the
general solution of the state vector can be expressed as

η (x, y, z, t) =

∞
∑

m=1

∞
∑

n=1































































ũmn (z) cos(px) sin(qy)
ṽmn (z) sin(px) cos(qy)

D̃zmn (z) sin(px) sin(qy)

B̃zmn (z) sin(px) sin(qy)
σ̃zmn (z) sin(px) sin(qy)
τ̃zxmn (z) cos(px) sin(qy)
τ̃zymn (z) sin(px) cos(qy)
ϕ̃mn (z) sin(px) sin(qy)

ψ̃mn (z) sin(px) sin(qy)
w̃mn (z) sin(px) sin(qy)































































eiωt (7)

where ω is the angular frequency; i =
√
−1; p and q are the wave numbers along the x- and y-axes,

respectively, i.e.

p = mπ/Lx, q = nπ/Ly (8)

where m and n are two positive integers. Combining Eqs.(1), (3), (4) and (7) yields the following state
equation

dη̃mn (z)

dz
= Ã (z) η̃mn (z) (9)

where η̃mn (z) =
{

ũmn ṽmn D̃zmn B̃zmn σ̃zmn τ̃zxmn τ̃zymn ϕ̃mn ψ̃mn w̃mn

}T

, Ã (z) =

[

0 Ã1 (z)

Ã2 (z) 0

]

.

All elements of the sub-matrix Ã1 (z) can be found in Ref.[5], except for −ρω2 which replaces 0 as
element in the fifth row and the fifth column. And the sub-matrix Ã2 (z) is written as

Ã2 (z) =













α11p
2 + c66q

2 − ρω2 (α12 + c66) pq −ν21p −ν31p −ν11p
(α21 + c66) pq α22q

2 + c66p
2
− ρω2

−ν22q −ν32q −ν12q
ν21p ν22q ζ22 ζ32 ζ12
ν31p ν32q ζ23 ζ33 ζ13
ν11p ν12q ξ21 ζ31 ζ11













(10)

where αij = cij − ci3ν1j − e3iν2j − q3iν3j (i = 1, 2; j = 1, 2), νij = ζi1cj3 + ζi2e3j + ζi3q3j (i = 1, 2, 3;

j = 1, 2), ζij = υji/detκ (i = 1, 2, 3; j = 1, 2, 3) with κ =





c33 e33 q33
e33 −ε33 −d33

q33 −d33 −µ33



 and υij as the

corresponding algebraic cofactors of κ .
By solving Eq.(9), the state vector at an arbitrary z-level of a given layer can be expressed as

η̃mn (z) = P (z)η̃mn (0) (11)

where P (z) is the propagator matrix which can be obtained by dividing the layer into many small
sub-layers or employing the series expansion method for solving the state equations. From Eq.(11), the
relation of the state vectors at the upper and lower interfaces of the j-th layer can be obtained using

η̃mn (zj) = P j (hj)η̃mn (zj−1) (12)

The propagating relation (12) can be used repeatedly so that we can propagate the physical quantities
from the bottom surface z = 0 to the top surface z = H of the layered plate. Consequently, we have

η̃mn (H) = T η̃mn (0) (13)

where T is the multiplication of all the propagator matrices, i.e.

T = P N (hN )P N−1 (hN−1) · · ·P 2 (h2)P 1 (h1) (14)
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Separating the variables of Eq.(13) into the general displacements and stresses can lead to a new
equation

[

S̃mn (H)

F̃ mn (H)

]

=

[

T 11 T 12

T 21 T 22

] [

S̃mn (0)

F̃ mn (0)

]

(15)

If we assume that the traction, the electric displacement, and the magnetic induction in z-direction are
zero on the top and bottom surfaces (free vibration), the dispersion relation then corresponds to the
simple condition so that the determination of the sub-matrix T 21 vanishes. That is,

det (T 21) = 0 (16)

If the wave numbers along x and y axes are given, the natural frequencies of the layered FGM plate
can be calculated. The general modal shapes can also be obtained conveniently by substituting the
natural frequencies into Eq.(15).

III. NUMERICAL ANALYSES
We now apply our solution to study the natural fre-

quencies and modal shapes in a three layered, function-
ally graded, and magneto-electro-elastic plate which is
composed of the piezoelectricmaterialBaTiO3 andmag-
netostrictive material CoFe2O4. We assume that the
length and width of the plate are both equal to 1 m and
the thickness of each layer is equal to 0.1 m with a total
thickness of 0.3 m.

In order to verify the solution given in this paper,
we use the same structure as the one given by Pan and
Heyliger[6]. The property coefficients of the material
with superscript 0 are identical to those in Tables 4
and 5 in Refs.[4,6]. To consider the effect of FGMs, we Fig. 1 Variation of FGM proportional coefficients.

assume that the middle layer is homogeneous, and the top and bottom layers are functionally graded
with a symmetric exponential variation shown in Fig.1 in which five different exponential factors,
ξ = −10,−5, 0, 5, 10, are given.

Two different stacking sequences are also considered. The first one is B/F/B and the second is
F/B/F. Here B represents BaTiO3 and F represents CoFe2O4

[4,6]. The m and n in Eq.(8) are equal to
1.

Table 1. Dimensionless natural frequencies of FGM plates

stacking ξ

sequence
Mode

−10 −5 0 5 10

B/F/B

1 0.7519 0.8440 0.9516 1.0747 1.2118
2 1.6041 1.7035 1.8292 1.9887 2.1912
3 2.8132 2.9822 3.1882 3.4410 3.7493
4 4.0781 4.2849 4.4866 4.6928 4.9159
5 4.8268 5.0877 5.3621 5.6716 6.041

F/B/F

1 0.8219 0.9212 1.0360 1.1662 1.3104
2 1.6307 1.7516 1.9031 2.0931 2.3313
3 2.8504 3.0521 3.2931 3.5814 3.9233
4 4.1270 4.3370 4.5464 4.7667 5.0119
5 4.9226 5.2786 5.6535 6.0655 6.5373

Table 1 lists the dimensionless natural frequencies of the first five modes for these two stacking
sequences. The frequencies are normalized by Ω = ωLx/

√

cmax/ρmax with cmax as the maximum of
all elastic coefficients in the whole plate and ρmax as the maximum density. Comparing the results
in Table 1 with the results given by Pan and Heyliger[6], it can be seen that the present formulation
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predict the same nature frequencies for non-FGM (i.e., with exponential coefficient ξ = 0) as in Pan
and Heyliger[6]. It also can be seen from Table 1 that the natural frequencies increase with increasing
exponential factor ξ.

Modal shapes on the third mode for the B/F/B plate are shown in Fig.2. Because of the symmetry,
the elastic displacement modal shapes in the x- and y-directions are the same (i.e., u = v); thus only
the elastic displacement modal shapes in the x-direction are presented. Besides the modal shapes for
u, the elastic displacement modal shapes in the z-direction and the modal shapes for the electric and
magnetic potentials are also presented in Fig.2.

In Figs.2-4, the elastic displacement modal shapes are normalized by the maximum value in the whole
thickness region of the three components, and the electric and magnetic potential modal shapes are
normalized by their corresponding maximum value if the potentials are not equal to zero. In Figs.2(a)-
(d), it is observed that for these symmetric modal shapes, the horizontal elastic displacement (u = v)
and electric potential are relatively more sensitive to the exponential factor ξ than the other components.
The enhanced effect of the exponential factor on the electric field (Fig.2(c)) is possibly due to the fact
that the top and bottom layers in Figs.2 are the piezoelectric materials, and actually a similar trend
can be observed (Fig.3(d)) for the magnetic field in the F/B/F stacking sequence to be discussed below.

Figures 3(a)-(d) show the modal shapes on the third mode for the corresponding F/B/F stacking
sequence. The modal shapes are symmetric, as those for the B/F/B stacking sequence (Fig.2). However,
while the elastic displacement modal shapes in F/B/F are nearly identical to those in B/F/B (Figs.2(a),
(b) vs. Figs.3(a), (b), the features of the electric and magnetic modal shapes are switched (great influence
of the exponential factor on the electric potential in Fig.2(c) for B/F/B and on the magnetic potential
in Fig.3(d) for F/B/F).

Figures 4(a)-(b) show the anti-symmetric modal shapes in the B/F/B plate, which correspond to the
fourth mode. It is observed that only the horizontal elastic displacement modal shapes vary slightly with

Fig. 2. Modal shapes on the 3rd mode of B/F/B.
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Fig. 3. Modal shapes on the 3rd mode of F/B/F.

Fig. 4. Modal shapes on the 4th mode of B/F/B.

the exponential factors; the other three physical quantities includingw are identically zero. Furthermore,
this mode is a purely elastic one, just as that in Pan and Heyliger[6].

IV. CONCLUSIONS
The state-space method is proposed to calculate the modal parameters of the FGM magneto-electro-

elastic multilayered plates. In terms of formulation and calculation, the method proposed is concise and
simple. The modal parameters are obtained and discussed for the B/F/B and F/B/F plates made of
functionally graded, magneto-electro-elastic, and multilayered materials, with simply supported edges.
For the special case where the functional exponential factor ξ = 0, the numerical results presented
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in this paper agree with those in Pan and Heyliger[6]. In addition, our numerical results show that
the influence of the exponential factor on the modal parameters can be different on different modes:
The modal parameters corresponding to the magneto-electric coupling mode are more sensitive to the
exponential factor as compared to those corresponding to the pure elastic mode. On the coupling mode,
the sensitivity of the electric and magnetic fields to the exponential factors varies with varying stacking
sequences.
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