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Abstract

This paper analyzes a square crack in a transversely isotropic bi-material solid by using dual boundary element method. The square

crack is inclined to the interface of the bi-material. The fundamental solution for the bi-material solid occupying an infinite region is

incorporated into the dual boundary integral equations. The square crack can have an arbitrary angle with respect to the plane of

isotropy of the bi-material occupying either finite or infinite regions. The stress intensity factor (SIF) values of the modes I, II, and III

associated with the square crack are calculated from the crack opening displacements. Numerical results show that the properties of the

anisotropic bi-material have evident influences on the values of the three SIFs. The values of the three SIFs are further examined by

taking into account the effect of the external boundary of the internally cracked bi-material.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Solid bi-materials can be anisotropic and inhomoge-
neous and can contain flaws or cracks in their internal
regions. Such bi-materials are used for important structural
components but can also be responsible for failures. The
theoretical capability to accurately predict and calculate
the responses of such bi-materials under external loading is
important in engineering design and education. Therefore,
over the last few decades, a large number of researchers
have devoted their time and effort to develop and enhance
the theoretical capability for the prediction and evaluation
of anisotropic bi-materials under external loads.

Sih et al. [1] published one of their classical results on
cracks in rectilinearly anisotropic materials. They found
that an elastic singularity of the order

ffiffi
r
p

is always present
at the crack front in a body with rectilinear anisotropy and
the magnitude of the local stresses may be described in
terms of stress intensity factors (SIFs). Some approaches to
analyze cracks in anisotropic materials can be also found in
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Sih and Chen [2]. For three-dimensional cracks in
anisotropic materials, Hoenig [3] derived the SIFs in terms
of compact line integral expressions for an elliptical crack
in an infinite anisotropic material, where the crack surface
is not parallel to the plane of material isotropy. Pan and
Yuan [4] analyzed a square-shaped crack in an anisotropic
material by utilizing the dual boundary element method
(DBEM) and presented the SIF results. On the other hand,
for a rectangular crack terminating at the interface of an
isotropic bi-material, Qin and Noda [5] evaluated the SIF
values by using the hypersingular integral equation.
However, the studies of the SIF values for the rectangular
crack in anisotropic solids are still very limited, in
particular for rectangular cracks in transversely isotopic
bi-materials.
Yue et al. [6,7] investigated the fracture mechanics of

elliptical and penny-shaped cracks in transversely isotropic
bi-materials by using the multi-region methods and
traction singular elements of the boundary element method
(BEM). The fundamental solution of two joined transver-
sely isotropic solids given in Yue [8] was incorporated into
the traditional BEM. The traction singular element models
the singularity only along one direction towards the crack
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Fig. 1. A square crack (ABCD: 2c� 2c) in a transversely isotropic

bi-material occupying a finite cube (2H�W�W).
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front. Hence, this type of singular elements cannot handle
the rectangular crack effectively.

The DBEM can be used as a general and computation-
ally efficient way to model crack problems in elastic solids
[9, 10]. Some investigators incorporated the fundamental
solutions for a transversely isotropic solid [11] into the
DBEM for the analysis of crack problems [4, 12].
Evidently, when the BEM associated with Pan and Chou’s
solution is used for the analysis of crack problems in
composite materials or bi-materials, the interface between
two different materials has to be discretized.

In this paper, we develop a single-domain DBEM for
three-dimensional linear elastic fracture mechanics in a
transversely isotropic bi-material occupying either a finite
space or an infinite space. The fundamental solutions for
two joined transversely isotropic solids [8] are incorporated
into the single-domain DBEM formulation. The displace-
ment and/or traction are used as unknown variables on the
non-crack boundary. The crack opening displacements
(CODs) are treated as unknown quantities on the crack
surface. No double nodes are required along the crack
surface. Different types of elements are employed to
discretize the non-crack boundary and crack surface. The
rigid-body motion method and the Kutt’s numerical
quadrature are used to calculate the strongly singular
integral and the hypersingular integral, respectively.
Special interpolation functions of the CODs are adopted
to capture the specific characteristics of the CODs near a
crack-front. The CODs obtained by the DBEM are then
used to calculate the SIF values.

The proposed DBEM is applied to examine a square
crack in a transversely isotropic bi-material solid (Fig. 1).
The SIF values obtained with the present method are in
very good agreement with existing numerical results. Two
types of transversely isotropic materials are considered,
resulting in four cases for the combinations of bi-material.
The square crack can be oriented at different angles
with respect to the plane of isotropy (i.e., the plane of
bi-material interface). Numerical results illustrate the
influence of the material anisotropy and the four material
combinations on the SIF values. Furthermore, the square
crack in a transversely isotropic bi-material occupying an
infinite space is analyzed. The effect of the external
boundary is therefore examined by comparing the results
of the SIF values for the square in a finite cube with those
in the infinite space.

2. DBEM for cracks in transversely isotropic bi-materials

2.1. Fundamental solutions for transversely isotropic

bi-materials

Yue [8] presented the closed-form fundamental solution
for the elastic field of two joined transversely isotropic
solids subject to concentrated point body forces. The two
solids occupy an infinite space. The interface is planar,
perfectly bonded and parallel to the isotropic planes of the
two transversely isotropic materials. The classical theory of
Fourier integral transform was employed to solve the
partial differential equations governing the response of
the two joined transversely isotropic solids subject to the
concentrated body-forces. The fundamental solution of
displacements and stresses is presented in the forms of the
elementary harmonic functions. Details of the solution can
be found in Yue [8].

2.2. Square crack in a finite cube of transversely isotropic

bi-material

As shown in Fig. 1, the finite cube is bounded by the six
planes passing through the eight points M1, N1, P1, Q1, M2,
N2, P2, and Q2. Material 1 occupies the cubic space
confined by the six planes passing through the eight points
M1, N1, P1, Q1, M, N, P, and Q. Material 2 occupies the
cubic space confined by the six planes passing through the
eight points M2, N2, P2, Q2, M, N, P, and Q. The bonded
interface of the materials 1 and 2 is the plane surface
MNPQ. Materials 1 and 2 are modeled as two transversely
isotropic elastic solids with different elastic constant values.
Their planes of isotropy are parallel to the interface of the
bi-material.
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A global Cartesian coordinate system oxyz is set up for
the DBEM examination. The global system has its
horizontal plane oxy on the interface of the bi-material
and its vertical axis z perpendicular to the interface. The
origin o is the projection of the center of the square crack
ABCD along the z-axis onto the horizontal plane oxy. The
y-axis is parallel to the square crack. The x-axis has an
inclination angle y with the square crack. A local Cartesian
coordinate system o0x0y0z0 is also set up for the inclined
square crack and has its origin o0 at the crack center. The
z0-axis is perpendicular to the square crack. The x0-axis is
on the crack plane and parallel with the lines AD and BC
of the square crack. The y0-axis is also on the crack plane
and parallel with the lines AB and CD and the y-axis.

2.3. Dual boundary integral equations for transversely

isotropic bi-materials

To incorporate Yue’s fundamental solutions into the
boundary integral equation formulation, we utilize the
DBEM. However, in the present DBEM, the displacements
and/or tractions are used as unknown variables on the non-
crack boundary while the COD are chosen as the
unknowns on the crack surface. This approach can avoid
the use of double nodes [13, 14].

For this crack problem (Fig. 1), the non-crack boundary
S consists of the following six surfaces: the top sur-
face P2Q2M2N2, the bottom surface P1Q1M1N1, the
vertical surfaces M2N2N1M1, P2Q2Q1P1, M2Q2Q1M1, and
N2P2P1N1. The crack surfaces G (i.e., the square area
ABCD) consist of the surfaces G+ (z0 ¼ 0+) and G�

(z0 ¼ 0�) in the local coordinate system o0x0y0z0. Accord-
ingly, in the numerical formulation, the traction equili-
brium tj xGþð Þ ¼ �tj xG�ð Þ is assumed on the crack surfaces.
The crack opening and sliding displacements are expressed
as Duj xGþð Þ ¼ uj xGþð Þ � uj xG�ð Þ, where j ¼ 1, 2 or 3.

When the body forces are absent, the displacement BIE
using Yue’s fundamental solution can be expressed as
follows:

Cij yS

� �
uj yS

� �
þ

Z
S

tnij yS;xS

� �
uj xSð ÞdS xSð Þ

þ

Z
Gþ

tnij yS;xGþ
� �

Duj xGþð ÞdG xGþð Þ

¼

Z
S

un

ij yS; xS

� �
tj xSð ÞdS xSð Þ, ð1Þ

where
�
 i ¼ 1, 2 or 3;

�
 yS and xS denote the source and field points, respec-

tively;

�
 uj(yS) and tj(yS) are the displacements and tractions on

the non-crack boundary S, respectively;

�
 Duj xGþð Þ is the COD on the crack surface;� � � �

�
 un

ij yS; xS and tnij yS;xS are the fundamental displace-
ments and tractions of Yue’s solution, respectively; and
�
 Cij(yS) is a coefficient matrix dependent on the local
boundary geometry at the source point (yS). The Cij(yS)
can be evaluated using the following equation:

Cij yS

� �
¼ lim

�!0

Z
S�

tnij yS;xS

� �
dS xSð Þ, (2)

where Se is an infinitesimal spherical surface with center at
yS and radius of e enclosed in the solids.
Assume that yGþ is a smooth point on the crack surface

G+. The traction BIE can be expressed as

ti yGþ
� �

þ nj yGþ
� � Z

S

Tn

ijk yGþ ; xS

� �
uk xSð ÞdS xSð Þ

þ nj yGþ
� � Z

Gþ
Tn

ijk yGþ ;xGþ
� �

Duk xGþð ÞdG xGþð Þ

¼ nj yGþ
� � Z

S

Un

ijk yGþ ; xS

� �
tk xSð ÞdS xSð Þ, ð3Þ

where
�
 nj yGþ
� �

is the unit outward normal of the positive side of
the crack surface at yGþ ;� � � �

�
 U�ijk yGþ ; xS and T�ijk yGþ ; xS are the new kernel

functions of Yue’s fundamental solution.

It is noted that the traction BIE (3) is valid if the
following conditions are held [15]:
�
 the local geometry at the source point is smooth,

�
 the displacement derivative field is Hölder continuous,

and

�
 the traction field is Hölder continuous.

If the crack surface possesses discontinuous tangential
planes either at certain points or along certain lines, the
numerical execution of the traction BIE needs to be carried
out carefully. The most general strategy to satisfy the three
conditions on the crack surface involves the use of
discontinuous elements where the source points are moved
to the interior of the discontinuous elements.
A numerical scheme is further presented below for

calculating the new kernel functions Un
ijk and Tn

ijk by using
the displacements un

ij and the tractions tnij. For a transver-
sely isotropic elastic solid, the constitutive relation between
the stresses sij and the strains emn can be expressed as

sij ¼ Cijmn�mn, (4)

where Cijmn is the fourth-order stiffness tensor of the
transversely isotropic elastic solid and its elements are
given in Eq. (A1) of Appendix A.
In Eq. (3), the kernel functions Un

ijk and Tn
ijk can be

written as

Un

ijk ¼
1

2
Cijmn un

mk; n þ un

nk; m

� �
, (5a)

Tn

ijk ¼
1

2
Cijmn tnmk; n þ tnnk; m

� �
. (5b)
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Fig. 2. Two types of singular elements.
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In Eqs. 5(a,b), the derivatives of Yue’s tractions and
displacements can be replaced by the numerical difference
of the corresponding ones. In other words, for Un

ijk, we
employ the following formulae:

qun
ik

qx1
�

1

2d
un

ik x1 þ d; x2; x3ð Þ � un

ik x1 � d; x2; x3ð Þ
� �

, (6a)

qun
ik

qx2
�

1

2d
un

ik x1;x2 þ d; x3ð Þ � un

ik x1;x2 � d; x3ð Þ
� �

, (6b)

qun
ik

qx3
�

1

2d
un

ik x1;x2;x3 þ dð Þ � un

ik x1;x2;x3 � dð Þ
� �

. (6c)

The derivatives of the traction, Tn
ijk, can also be

expressed similarly in terms of the numerical difference of
tnik.

In order to obtain Tn
ijk and Un

ijk at the source point y(x1,
x2, x3) and the field point x, it is necessary to compute the
fundamental solutions at six points in the neighborhood of
y(x1, x2, x3). Clearly, the choice of the interval d in Eq. (6)
is the key factor for the accuracy of this approximation.
As shown independently by us in Section 3, the best value
of the interval for the two jointed transversely isotropic
solids is

d ¼ r� 10�6, (7)

where r is the distance between the field and source point.
This is in consistence with Tonon et al. [16] where they
verified expression (7) for the general anisotropic materials.

When the above DBEM is utilized to solve the crack
problem in an infinite extent, the displacement BIE (1) is
not needed. Therefore, the traction BIE (3) is reduced to
that associated with the displacement discontinuous
method (DDM; e.g., [17,18]):

ti yGþ
� �

þ nj yGþ
� � Z

S

Tn

ijk yGþ ;xGþ
� �

Duk xGþð ÞdG xGþð Þ ¼ 0.

(8)

It is remarked that, if needed, the actual crack surface
displacements can be retrieved using expression (1) to
collocate on one side of the crack surfaces, say on G� to
obtain u�j [19]. The opposite crack surface uþj can therefore
be easily obtained by using the relations uþj ¼ Duj þ u�j .

Eqs. (1) and (3) do not contain the integrations on the bi-
material interface because Yue’s fundamental solutions
strictly satisfy the interface conditions of two joined
transversely isotropic solids. Eqs. (1) and (3) can be
discretized to obtain a set of linear system of equations
for the solution of the unknown displacements, tractions
and the CODs.

2.4. Numerical methods of dual boundary integral equations

In the present DBEM, the eight-node isoparametric
elements are used to discretize the non- crack boundary.
The shape functions of the eight-node isoparametric
elements were presented in Lachat and Watson [20].
Because the kernel functions need to be evaluated
repeatedly, significant saving in CPU time can be realized
by coding the arithmetic efficiently. In the computer code
of the present DBEM, the adaptive integration scheme in
Gao and Davies [21] is employed.
To discretize the crack surface, the three types of nine-

node elements proposed by Pan and Yuan [4] are adopted.
The isoparametric elements and two types of the discontin-
uous elements, as shown in Fig. 2, are used. The
coordinates at any point in an element are then related to
its element nodal coordinates as follows:

xi ¼
X9
l¼1

flx
l
i ; i ¼ 1; 2; 3, (9)

where fl(l ¼ 1�9) are the shape functions of the boundary
elements. Detailed expressions for fl(l ¼ 1�9) can be
found in [4].
For the positions on the crack surface and far away from

the crack front, the nine-node isoparametric element is
used to discretize the surface. The CODs are approximated
by their nodal values, and can be expressed as

Dui ¼
X9
l¼1

fl Dul
i ; i ¼ 1; 2; 3, (10)

where fl(l ¼ 1�9) are the shape functions and Dul
i the

CODs at nodal point l.
In order to capture the specific characteristics of the

CODs near a crack front, two kinds of discontinuous
quadrilateral elements (types I and II) are employed. The
CODs of the element type I, as shown in Fig. 2a, are
approximated by their nodal values as

Dui ¼
X9
l¼1

ffiffiffiffiffiffiffiffiffiffiffi
1þ Z

p
fl Dul

i ; i ¼ 1; 2; 3, (11)

where fl(l ¼ 1�9) are the shape functions and Dul
i the

nodal CODs at nodal point l. The coefficient
ffiffiffiffiffiffiffiffiffiffiffi
1þ Z
p

is
introduced in Eq. (11) to capture the crack behavior at the
crack front. This type of elements is positioned at the
smooth crack front.
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The CODs of the element type II, as shown in Fig. 2b,
are approximated as

Dui ¼
X9
l¼1

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffiffiffiffiffiffiffiffiffiffiffi
1þ Z

p
fl Dul

i ; i ¼ 1; 2; 3, (12)

where fl(l ¼ 1�9) are the shape functions and Dul
i the

nodal CODs at nodal point l. This type of elements is
positioned at the non-smooth crack front. Similarly, the
coefficient

ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p ffiffiffiffiffiffiffiffiffiffiffi

1þ Z
p

in Eq. (12) is used to capture the
crack behavior at the crack front.

2.5. The numerical method for strongly singular and

hypersingular integrals

In the displacement BIE (1), the weakly singular
integrals o(r�1) can be solved by the coordinate transform
[20]. These methods were also used for the analysis of
three-dimensional (3D) crack problems in multilayered
solids [22]. In Eq. (1), the second term on the left-hand side
of Eq. (1) has a strong singularity o(r�2). These strongly
singular integrals and the coefficients Cij(yS) can be
calculated by the rigid-body motion method employed in
the conventional displacement BIE [4].

The traction BIE (3) has the following integral with a
high singularity o(r�3):Z
G

T�ijk yGþ ;xGþ
� �

Duk xGþð ÞdG xGþð Þ. (13)

The expression (13) can further be re-written as

Z 1

�1

Z 1

�1

T�ijk y xc; Zcð Þ;x x; Zð Þ½ �fl x; Zð Þg x; Zð ÞJ x; Zð ÞdxdZ,

(14)

where
�
 (xc,Zc) and (x,Z) are the local coordinates of the source
point y and the field point x, respectively;

�
 J is the Jacobian transformation;

�
 For the nine-node isoparametric element, g(x,Z) ¼ 1;ffiffiffiffiffiffiffiffiffiffiffip

�
 For the element type I, g x; Zð Þ ¼ 1þ Z; andffiffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffiffip

�
 For the element type II, g x; Zð Þ ¼ 1þ x 1þ Z.

As Pan and Yuan [4], the numerical quadrature in Kutt’s
[23,24] is adopted to carry out the hypersingular integrals
in Eq. (14). Introducing the polar coordinate transforma-
tion

x ¼ xc
þ r cos W,

Z ¼ Zc þ r sin W. ð15Þ

Eq. (14) can thus be re-written as

X
m

Z W2

W1

Z R Wð Þ

0

Tn

ijk y xc; Zcð Þ; x r;Wð Þ½ �fl r;Wð Þg r; Wð ÞJ r; Wð ÞrdrdW,

(16)
where the summation over m is for all the triangles on the
element as discussed below.
�
 If the collocation point is one of the corner points of the
element, the element is then divided into two triangles,
and the summation on m in expression (16) is from 1–2.

�
 If the collocation point is a point on the side of the

square, the element needs to be divided into three
triangles, and the summation on m in expression (16) is
from 1–3.

�
 If the collocation point is an internal point, the element

needs to be divided into four triangles, and the
summation on m in expression (16) is from 1–4.

Now, it can be observed that the integrand is of
the singularity o(r�2). The numerical quadrature in Kutt
[23, 24] can be utilized to evaluate the inner finite-part
integral with respect to r. On the other hand, the outer
integral with respect to W is regular and can be calculated
by the regular Gaussian quadrature.
For a given Gaussian point Wj, the inner integral in Eq.

(16) can be approximated by N-point equi-space quad-
rature [23,24] as follows:

Z R

0

f rð Þ

r2
dr �

1

R

XN

i¼1

wi þ ci lnRð Þf
i� 1

N
R

	 

, (17)

where wi are the weights and ci the coefficients given by
[23, 24], and the integrand is given by

f rð Þ ¼ T�ijk y xc; Zcð Þ; x r;Wj

� �� �
�fl r;Wj

� �
g r;Wj

� �
J r;Wj

� �
r3. ð18Þ

It is pointed out that when deriving the N-point equi-
space quadrature (18), it has been assumed that the
integrand f rð Þ 2 C0 0;R½ � and f rð Þ 2 C2 in the neighbor-
hood of r ¼ 0.
If the crack surface is flat, continuous elements can be

used to discretize the interior crack surface, with discontin-
uous elements for the crack front only. However, if the
crack surface is curved, then discontinuous elements are
needed for the whole crack surface in order to satisfy the
continuity requirement for f(r). In the following numerical
examples, Kutt’s 20-point equispace quadrature is used in
the finite-part integral with respect to r, and 20 Gaussian
points for the regular outer integral with respect to Wj.

2.6. Calculation of SIFs

According to Kassir and Sih [25], there is an asymptotic
relation between the CODs near the crack front and the
SIF values for cracked transversely isotropic solid. Using
the leading terms of those relations, the SIF values can be
evaluated from the three components of the CODs at a
point close to the crack front.
Ariza and Dominguez [12] presented the formulae for

calculating the SIF values of a transversely isotropic solid.
Pan and Yuan [4] used an extrapolation technique of the
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CODs for calculating the SIF values. This technique also
requires an asymptotically analytical expression of the
crack-front CODs in terms of SIF values. It can use
the CODs at any point to calculate the SIF values. The
following formula proposed by Pan and Yuan [4] is
adopted to calculate the SIF values.

Let (x1, x2, x3) be a local Cartesian coordinate system
attached to the crack front. The x1-axis is normal to the
crack surface. The x3-axis is tangential to the crack front.
The x2-axis is thus formed by the intersection of the plane
normal to the crack front and the plane tangential to the
crack plane. The CODs can be defined as

Dui x1; x2; x3ð Þ ¼ uþi x1; x2; x3ð Þ � u�i x1;x2;x3ð Þ,

i ¼ 1; 2; 3 ð19Þ

where the superscripts + and � correspond to the crack
surfaces whose normal directions are n ¼+1 and n ¼ �1
for the local coordinate system attached to the crack front,
respectively.

It is further assumed that the crack front is smooth. The
leading singular term in the asymptotic expansions of the
stress and displacement fields near the crack front are
amenable to the generalized plane strain analysis. There-
fore, the relation of the CODs at a distance r behind the
crack front and the SIFs can be expressed as [26]

Du ¼ 2

ffiffiffiffiffi
2r

p

r
L�1k, (20)

where Du ¼ Du1;Du2;Du3ð Þ
T, and k ¼ K I;K II;K IIIð Þ

T are
the SIFs for modes I, II and III; L is one of the Barnett-
Lothe tensors [26] depending only on the anisotropic
properties of the solids in the local crack-front coordinates.

On the crack-front element, equating the CODs from the
numerical calculation to the analytical expression (20), one
B
C

D

AM N

PQ

M2
N2

P2Q2

M1

Q1
P1

N1

B

C

Fig. 3. Boundary element mesh
then obtains a set of algebraic equations. From these
equations, the values of the SIF KI, KII, and KIII can be
obtained.

3. Numerical verifications

In the following, a square crack (the side length 2c) in an
infinite extent is studied for the verification of the accuracy
of the proposed method. For this crack problem, only BIE
(3) or (8) is needed. The crack surface is parallel to the plane
of the isotropy in a transversely isotropic solid. The upper
and lower surfaces of the crack are subject to a uniform
tension p0. One hundred (10� 10) nine-node elements are
used to discretize the crack surface. Among these elements,
there are 64 nine-node isoparametric elements, 32 discon-
tinuous elements of type I, and four discontinuous elements
of type II. Fig. 3 shows the discretization of the crack
surface (ABCD), where the eight corner points (M1 to Q2)
of the cube are extended to infinity.
For the square crack in a transversely isotropic solid of

infinite extent, the SIF values are the same as those for the
isotropic case, i.e., independent of material properties.
Weaver [18] obtained the SIF values of the rectangular
crack in an isotropic solid of infinite extent by the
discontinuous displacement method. The maximum value
occurs at the middle of the square side and decrease to zero
at the corner. The maximum normalized SIF value
(KI=p0

ffiffiffiffiffi
pc
p

) predicted from the present DBEM is 0.7605.
This value is compared well with the value of 0.74 in
Weaver [18], the value of 0.76 in Murakami [27] for
isotropic solids and the value of 0.7626 in Pan and Yuan [4].
In order to obtain the best value d in expression (7), five

values of d are used. They are 10�4r, 10�5r, 10�6r, 10�7r
and 10�8r, respectively. For the five values of d, the
maximum normalized SIF values (KI=p0

ffiffiffiffiffi
pc
p

) at the middle
D
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N2M2

NM

x'

y'

1

1
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o' z'
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of the cracked finite cube.
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of the square side are equal to 0.7250, 0.7503, 0.7605,
0.7748, and 0.6661, respectively. These results may verify
that the d value in Eq. (7) is suitable for the present analysis.

4. Applications

The present DBEM is used to calculate the SIF values of
the square crack in the transversely isotropic bi-material
(Fig. 1). The bi-material occupies either finite cube or
infinite space.

4.1. Material properties

As shown in Fig. 1, the oxy plane is the isotropic plane of
the two joined transversely isotropic materials 1 and 2 and
the z-axis is the normal axis of material isotropy. Each of
the materials 1 and 2 has the elastic constants Ex, mx, vxy,
Ez, mz, and vxz. The Ex, mx, and vxy are the Young’s
modulus, shear modulus, and Poisson’s ratio in the oxy

plane of isotropy, respectively. The Ez, mz, and vxz are the
corresponding quantities in the transverse direction z,
respectively. The five elastic constants cik (i ¼ 1, 2, 3, 4, 5;
k ¼ 1, 2) in Eq. (A1) have the following relations with the
elastic constants Ex, mx, vxy, Ez, mz, and vxz:

Ex ¼ 4c5k

c1kc3k � c5kc3k � c22k

� �
c1kc3k � c22k

� � , (21a)

mx ¼ c5k, (21b)

nxy ¼
1
4
Ex

c1kc3k � 2c3kc5k � c22k

� �
c5k= c1kc3k � c5kc3k � c22k

� � , (21c)

Ez ¼
c1kc3k � c5kc3k � c22k

� �
c1k � c5kð Þ

, (21d)

mz ¼ c4k, (21e)

nxz ¼
1

2
Ezc2k= c1kc3k � c5kc3k � c22k

� �
, (21f)

where k ¼ 1 for 0+pzoN and 2 for �Nozp0�.
Table 1

Elastic constants of the two transversely isotropic solids

Material types c1 c2 c3 c4 c5 Ex/Ez

Rhenium (GPa) 61.2 20.6 68.3 16.2 17.1 0.8032

Cadmium (GPa) 11.6 4.14 5.1 1.95 3.685 2.7764

Table 2

Material combination cases of two joined transversely isotropic solids

Case no. zX0+ zp0�

1 Rhenium Rheniu

2 Cadmium Cadmi

3 Rhenium Cadmi

4 Cadmium Rheniu
In the present study, two transversely isotropic materials
(i.e., rhenium and cadmium, Lin and Keer, [28]) are
selected for the numerical evaluation. Elastic constants of
these two materials are listed in Table 1. Accordingly, there
are four different cases of the material combinations for the
bi-material (Table 2).

4.2. A square crack in a transversely isotropic bi-material of

finite cubic space

4.2.1. General conditions

Fig. 1 shows the square crack in a transversely isotropic
bi-material occupying a finite cubic space. The finite cube
with a square crack is subject to a uniform tension p0 at the
top and bottom faces along the z-axis direction.
The cube has a height 2H and width W. In particular,

W ¼ 4c and H. The side length of the inclined square crack
ABCD is 2c. The origin of the global coordinate system oxyz

is located at the center of the bi-material interface of the
cube. The origin o0 and the crack center are located at the
same point (0, 0, h) in the global coordinate system. Without
loss of generality, the square crack is always located in the
material 1 (zX0+) for the cases under consideration.
For this crack problem, both BIEs (1) and (3) are

needed. The boundary element mesh of the cracked finite
cube is shown in Fig. 3. The non-crack boundaries
M1N1P1Q1, M2N2P2Q2, M1N1M2N2, N1P1P2N2, P1Q1Q2P2,
Q1M1M2Q2 are discretized into a mesh system with
250 eight-node isoparametric elements and 752 nodes. The
square crack is discretized as the same as that in the Section 3
for the square crack in an infinite space.
In order to plot the values of the SIFs along the crack

front lines (Figs. 4–9), a line coordinate L is used to
measure the crack front lines from AB, BC, CD to DA
(Fig. 1). The line coordinate L starts at the corner point A
of the square crack (i.e., L/c ¼ 0). It increases along the
lines AB, BC, CD to DA. Correspondingly, L/c increases
from 0–2, from 2–4, from 4–6, and from 6–8, respectively.

4.2.2. General results

Theoretically, it can be derived that the inclined square
crack in the cubic material has the SIF KI(x

0,y0,z0) for the
mode I, the SIF KII(x

0,y0,z0) for the mode II, and the SIF
KIII(x

0,y0,z0) for the mode III, where z0 ¼ 0.
Due to symmetry in loading, material property and

geometry, the following results are valid:

K Iðx
0;�c; 0Þ ¼ KI ðx

0; c; 0Þ, (22a)
Note

m A homogeneous transversely isotropic solid

um A homogeneous transversely isotropic solid

um Two joined transversely isotropic solids

m Two joined transversely isotropic solids
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Fig. 4. SIF values of the inclined square crack along the crack front lines from AB, BC to CD in a cubic rhenium (case 1).
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K IIðx
0;�c; 0Þ ¼ K IIðx

0; c; 0Þ ¼ 0, (22b)

K IIIðx
0;�c; 0Þ ¼ K IIIðx

0; c; 0Þ, (22c)

K IIIðc; y
0; 0Þ ¼ K IIIð�c; y0; 0Þ ¼ 0. (22d)

It is, therefore, that the results along the crack front line
DA (i.e., 6oL/co8) are not plotted in the Figs. 4–9.
Besides, if y ¼ 01, the following results are valid:

K Iðx
0; y0; 0Þa0, (23a)

K IIðx
0; y0; 0Þ ¼ 0, (23b)

K IIIðx
0; y0; 0Þ ¼ 0. (23c)
Moreover, if y ¼ 901, the following results are valid:

K Iðx
0; y0; 0Þ ¼ 0, (24a)

K IIðx
0; y0; 0Þ ¼ 0, (24b)

K IIIðx
0; y0; 0Þ ¼ 0. (24c)

In addition, the numerical calculations give the
values of KII(x

0,�c,0) and KII(x
0,c,0) at the 42 integral

points along the crack front lines BC and DA. For
all calculated results presented in Figs. 4–9, K IIðx

0;�c;
0Þ=p0

ffiffiffiffiffi
pc
p

have their values between �0.00928 and
0.00929 and have the average value 8.95� 10�5.
This average value is almost equal to the theoretical
value 0.
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Fig. 5. SIF values of the inclined square crack with y ¼ 301 along the crack front lines from AB, BC to CD in the cubic rhenium (case 1) or the cubic

bi-material case 3.
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Similarly, the numerical calculations give the values of
KIII(�c,y0,0) and KIII(c,y

0,0) at the 42 integral points along
the crack front lines AB and CD. For all calculated results
presented in Figs. 4–9, K IIIð�c; y0; 0Þ=p0

ffiffiffiffiffi
pc
p

have their
values between �0.00561 and 0.00561 and have the average
value �3.52� 10�7. This average value is almost equal to
the theoretical value 0.

4.2.3. A square crack with different y in homogeneous

material

In this section, both the materials 1 and 2 in Fig. 1 are
assumed to be rhenium (case 1 in Table 2). The crack
problem is degenerated to an inclined square crack in a
homogenous transversely isotropic solid of cubic extent.
This degenerated crack problem can also be used to further
verify the accuracy of the present DBEM.
If y ¼ 01 and h ¼ 0, the crack surface becomes parallel

to the top and bottom surfaces of the cube. The maximum
SIF value (K I=p0

ffiffiffiffiffi
pc
p

) along the square side in the finite
cube is calculated to be 0.8180. This value is well
comparable to the value 0.8183 given in [4].
Fig. 4 shows the numerical results for K I=p0

ffiffiffiffiffi
pc
p

,
K II=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

associated with the crack
along the line coordinate L/c at y ¼ 0, 301, 451 or 601.
From Fig. 4, the following can be observed:
�
 At any given crack front point (x0,y0,0), KI=p0

ffiffiffiffiffi
pc
p

decrease as y increases from 0, 301, 451 to 601 (Fig. 4a).
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Fig. 6. SIF values of the inclined square crack with y ¼ 301 along the crack front lines from AB, BC to CD in the cubic cadmium (case 2) or the cubic

bi-material case 4.
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�
 At any given crack front point (7c,y0,0),K II=p0

ffiffiffiffiffi
pc
p

increases as y increases from 301–451 while it decreases
as y increases from 45–601 (Fig. 4b). ffiffiffiffiffip

�
 At any given crack front point (x0,�c,0), K III=p0 pc

increases as y increases from 301–451 while it decreases
as y increases from 45–601.ffiffiffiffiffip

�
 For any given y, K I=p0 pc monotonically increases as

L/c increases from 0–1, reach its peak at the center point
L/c ¼ 1, and monotonically decreases as L/c increases
from 1–2 along the crack front line AB. Similar results
are also found along the crack front lines BC or CD.ffiffiffiffiffip

�
 For any given y, K II=p0 pc monotonically increases

as L/c increases from 0–1, reach its peak at the center
point L/c ¼ 1, and monotonically decreases as L/c
increases from 1–2 along the crack front line AD.
Similar results are also found along the crack front line
CD. ffiffiffiffiffip

�
 For any given y, K III=p0 pc monotonically increases as

L/c increases from 2–3, reach its peak at the center point
L/c ¼ 3, and monotonically decreases as L/c increases
from 3–4 along the crack front line BC. ffiffiffiffiffip

�
 For y ¼ 301, the peak values of K I=p0 pc are 0.6252,

0.6093 and 0.6202 at L/c ¼ 1, 3 and 5, respectively. The
differences in K I=p0

ffiffiffiffiffi
pc
p

along the crack front lines
AB, BC and CD can be due to the rhenium anisotropy
Ex/Ez ¼ 0.8032.
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4.2.4. A square crack with y ¼ 301 in bi-material

In this section, the four cases of the bi-material

combination in Table 2 are examined for the square crack
inclined at y ¼ 301. The calculated values of the K I=p0

ffiffiffiffiffi
pc
p

,
K II=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

along the crack front lines AB,
BC, and CD are plotted against the line coordinate L/c in
Figs. 5 and 6. The depth h of the inclined square crack is
assumed to be c for the homogeneous material cases 1 and
2 and to be 0.8c, 0.9c, c, 1.1c, and 1.2c, respectively, for the
bi-material cases 3 and 4. Some of the calculated values are
selected in Table 3 for future comparison.

As shown in Table 2, for case 1, the material 1 where the
crack is located is rhenium and is the same as material 2.
For case 3, material 1 where the crack is located is rhenium
and is stiffer than material 2 (cadmium). Figs. 5a–c show
the calculated results for the values of K I=p0

ffiffiffiffiffi
pc
p

,
K II=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

along the line coordinate
L/c, respectively. From Fig. 6, the following can be observed:
�
 For h ¼ c, the differences in the SIF values between the
cases 1 and 3 are mainly due to the different property for
the material 2. For each given L/c, the values of
K I=p0

ffiffiffiffiffi
pc
p

, K II=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

for the case 1
are greater than those for the case 3, respectively. This
result has shown that a softer material 2 can cause a
reduction in the SIF values in the bi-materials.
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Fig. 8. SIF values of the inclined square crack with y ¼ 451 along the crack front lines from AB, BC to CD in the cubic cadmium (case 2) or the cubic
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�
 For each given L/c, the values of K I=p0

ffiffiffiffiffi
pc
p

, K II=p0

ffiffiffiffiffi
pc
p

,
and K III=p0

ffiffiffiffiffi
pc
p

associated with the case 3 gradually
increase as the depth h decreases from 1.2c–0.8c.ffiffiffiffiffip

�
 In particular, when 0.4oL/co1.6, K I=p0 pc for case 3

at h ¼ 0.8c can be greater than the corresponding value
for case 1 at h ¼ c. Similarly, when 0oL/co2,
K II=p0

ffiffiffiffiffi
pc
p

for case 3 at h ¼ 0.8c or h ¼ 0.9c can be
greater than the corresponding value for case 1 at h ¼ c.
When 2oL/co4, K III=p0

ffiffiffiffiffi
pc
p

for case 3 at h ¼ 0.8c or
h ¼ 0.9c can be greater than the corresponding value for
case 1 at h ¼ c. These results are due to the presence of
softer material 2.
Similarly, as shown in Table 2, for case 2, material 1
where the crack is located is cadmium and is the same as

material 2. For case 4, material 1 where the crack is
located is cadmium and is softer than material 2 (rhenium).
Figs. 6a–c show the calculated results for the values of
K I=p0

ffiffiffiffiffi
pc
p

, KII=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

along the line
coordinate L/c, respectively. From Fig. 6, the following can
be observed:
�
 For h ¼ c, the differences in the SIF values between
cases 2 and 4 are mainly due to the different property for
material 2. The differences are shown in Fig. 6.
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Fig. 9. SIF values of the inclined square crack with y ¼ 451 along the crack front lines from AB, BC to CD in the bi-material cases 3 or 4 occupying a

cubic or infinite space.

Table 3

Selected SIF values of the square crack in a cubic bi-material along x0/c ¼ �1 at y ¼ 301 and h ¼ c

y0/c KI=p0
ffiffiffiffiffi
pc
p

KII=p0
ffiffiffiffiffi
pc
p

Case 1 Case 2 Case3 Case 4 Case 1 Case 2 Case 3 Case 4

�0.9 0.3770 0.3600 0.2960 0.3507 0.2387 0.2413 0.2149 0.2119

�0.7 0.5067 0.4846 0.4218 0.4604 0.3124 0.3163 0.2942 0.2716

�0.5 0.5661 0.5437 0.4934 0.5063 0.3443 0.3655 0.3331 0.3134

�0.3 0.6001 0.5785 0.5388 0.5316 0.3628 0.4031 0.3560 0.3470

�0.1 0.6165 0.5954 0.5615 0.5436 0.3720 0.4342 0.3672 0.3765

0.0 0.6201 0.6004 0.5657 0.5480 0.3728 0.4405 0.3683 0.3827

Z.Q. Yue et al. / Engineering Analysis with Boundary Elements 31 (2007) 50–6562
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�

Tab

Sel

y0/c

�0

�0

�0

�0

�0

0.0
As shown in Fig. 6a, as L/c increases from 0–6,
K I=p0

ffiffiffiffiffi
pc
p

associated with case 4 becomes less and less
changeable as the depth h decreases. For 0oL/co2,
K I=p0

ffiffiffiffiffi
pc
p

associated with case 4 clearly shows that
the depth h decreases from 1.2c–0.8c. Besides, when
0oL/co2, the K I=p0

ffiffiffiffiffi
pc
p

associated with case 4 for
0.8cphp1.2c is less than that associated with case 2.
But, when 2oL/co6, K I=p0

ffiffiffiffiffi
pc
p

associated with case 4
for 0.8cphp1.2c becomes greater than that associated
with case 2 for h ¼ c. ffiffiffiffiffip

�
 As shown in Fig. 6b, K II=p0 pc associated with case 4

decreases as the depth h decreases from 1.2c–0.8c and is
less than that associated with case 2 for h ¼ c, where
0oL/co2 or 4oL/co6. ffiffiffiffiffip

�
 As shown in Fig. 6c, K III=p0 pc associated with case 4

decreases as the depth h decreases from 1.2c–0.8c and is
less than that associated with case 2 for h ¼ c, where
2oL/co4.

Based on the above analysis, it can be concluded that for
the crack in a stiffer material 1, the softer material 2 tends
to increase the magnitude of the SIFs along the crack front.
For the crack in a softer material 1, the stiffer material 2
tends to reduce the magnitude of the SIFs along the crack
front. However, KI along the crack front lines BC and CD
can have different variation patterns with respect to the
relative stiffness of the materials 1 and 2.

4.2.5. A square crack with y ¼ 451 in bi-material

In this section, the four cases of the bi-material
combination in Table 2 are examined for the square crack
inclined at y ¼ 451. The calculated values of the K I=p0

ffiffiffiffiffi
pc
p

,
K II=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

along the crack front lines AB,
BC, and CD are plotted against the line coordinate L/c in
Figs. 7 and 8. The depth h of the inclined square crack is
assumed to be c for the homogeneous material cases 1 and
2 and to be 0.8c, 0.9c, c, 1.1c, and 1.2c, respectively, for the
bi-material cases 3 and 4. Some of the calculated values are
selected in Table 4 for future comparison.

Similar observations as those discussed in Section 4.2.4
for y ¼ 301 can be found from Figs. 7 and 8 for y ¼ 451.
Furthermore, the effect of the inclination angle y of the
square crack on its SIF values in the bi-material cube can
le 4

ected SIF values of the square crack in a cubic bi-material along x0/c ¼ �1

KI=p0
ffiffiffiffiffi
pc
p

Case 1 Case 2 Case3 Case 4

.9 0.2547 0.2304 0.1366 0.2495

.7 0.3423 0.3100 0.2191 0.3206

.5 0.3825 0.3484 0.2728 0.3478

.3 0.4055 0.3715 0.3072 0.3628

.1 0.4164 0.3828 0.3239 0.3700

0.4187 0.3862 0.3268 0.3729
be found by comparing the results in Figs. 5 and 6 with
those corresponding results in Figs. 7 and 8. Basically,
K I=p0

ffiffiffiffiffi
pc
p

for y ¼ 451 becomes smaller than that for
y ¼ 301. K II=p0

ffiffiffiffiffi
pc
p

and K III=p0

ffiffiffiffiffi
pc
p

for y ¼ 451 become
much larger than those for y ¼ 301.

4.3. A square crack in a transversely isotropic bi-material of

infinite space

In this section, a square crack in a transversely isotropic
bi-material of infinite space is examined. The objective of
this examination is to study the effect of the external non-
crack boundary on the SIF values. The effect is found by
comparing the SIF values for the square crack in the finite
cubic bi-material with those in the bi-material occupying
an infinite space.
The square crack is shown in Fig. 1, where the external

boundaries points M1, N1, P1, Q1, M, N, P, Q, M2, N2, P2,
and Q2 are extended to infinite. y ¼ 451 and h ¼ c. The
square crack surfaces G+ (z0 ¼ 0+) and G� (z0 ¼ 0�) are
subject to a uniform tension p0 along the z-axis. The bi-
materials are the cases 3 and 4 in Table 2. The crack surface
mesh in Fig. 3 is further used.
Figs. 9a–c show the calculated results of K I=p0

ffiffiffiffiffi
pc
p

,
K II=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

with respect to the line
coordinate L/c along the crack front lines AB, BC, and
CD in either the cubic bi-materials or the infinite bi-
materials. From Fig. 9, the following can be observed:
�

at
The variation patterns of the KI=p0

ffiffiffiffiffi
pc
p

, K II=p0

ffiffiffiffiffi
pc
p

,
and K III=p0

ffiffiffiffiffi
pc
p

with respect to the line coordinate
L/c are similar for both the cubic and the infinite
bi-materials, which indicate that the external non-
crack boundary does not have effect on the variation
patterns.

�
 However, for each L/c, the calculated values of

KI=p0

ffiffiffiffiffi
pc
p

, K II=p0

ffiffiffiffiffi
pc
p

, and K III=p0

ffiffiffiffiffi
pc
p

for the crack
in the infinite bi-material are slightly less than those in
the finite cubic bi-materials.

�
 In particular, for 0oL/co2 or on the crack front

line AB (x0/c ¼ �1),K I=p0

ffiffiffiffiffi
pc
p

has its maximum value
as follows: (a) 0.3268 for the cubic bi-material case 3;
(b) 0.2988 for the infinite bi-material case 3; (c) 0.3729
y ¼ 451 and h ¼ c

KII=p0
ffiffiffiffiffi
pc
p

Case 1 Case 2 Case 3 Case 4

0.2777 0.2812 0.3661 0.1928

0.3649 0.3679 0.4902 0.2470

0.4036 0.4149 0.5470 0.2783

0.4266 0.4472 0.5804 0.3014

0.4385 0.4687 0.5976 0.3185

0.4412 0.4744 0.6007 0.3233
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for the cubic bi-material case 4; and (d) 0.3379 for the
infinite bi-material case 4.

�
 In particular, for 0oL/co2 or on the crack front line

AB (x0/c ¼ �1),K II=p0

ffiffiffiffiffi
pc
p

has its maximum value as
follows: (a) 0.6007 for the cubic bi-material case 3;
(b) 0.5730 for the infinite bi-material case 3; (c) 0.3233
for the cubic bi-material case 4; and (d) 0.2893 for the
infinite bi-material case 4.

The findings in the above can indicate that the larger
the external boundary of the cracked bi-material, the
higher the constraint of the external boundary of the
crack bi-material on the opening and sliding of the square
crack.
5. Summary and conclusions

In the above, a new DBEM has been proposed and
examined. This method incorporates the fundamental
solutions for two joined transversely isotropic solids into
the existing DBEM. A square crack in a transversely
isotropic bi-material of either finite or infinite extent is
investigated in detail. Two transversely isotropic materials
are considered. Four cases of the transversely isotropic bi-
materials are used for the calculation of the SIF values
associated with the square crack along the four crack front
lines. The numerical results have shown that the material
anisotropy and the bi-material properties have clear effects
on the SIF values. The SIF values along the crack front
lines in a bi-material can be different with those in a
homogeneous material. Such difference can become sub-
stantial when the crack front is adjacent the interface of the
bi-material. The SIFs for a square crack in an infinite bi-
material are also calculated and compared to those in the
corresponding bi-materials with finite cubic space. The
external boundary of the cracked bi-material cube can have
some effects on the magnitude of the SIFs but has
negligible effect on the variation patterns of the SIFs
along the crack front lines.
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Appendix A

For a transversely isotropic bi-material solid with the
z-axis being the axis of material symmetry, x-y plane is the
plane of isotropy, as shown in Fig. 1. The constitutive
relation between the stresses sij and the strains eij can be
expressed in terms of the following matrix as

sxx

syy

szz

syz

sxz

sxy

2
666666666664

3
777777777775

¼

c1k c1k � 2c5k c2k 0 0 0

c1k � 2c5k c1k c2k 0 0 0

c2k c2k c3k 0 0 0

0 0 0 2c4k 0 0

0 0 0 0 2c4k 0

0 0 0 0 0 2c5k

2
666666666664

3
777777777775

�

�xx

�yy

�zz

�yz

�xz

�xy

2
666666666664

3
777777777775

, ðA1Þ

where c1k, c2k, c3k, c4k, and c5k are the five elastic constants
for the kth transversely isotropic solid of the bi-material
system, where k ¼ 1 for 0+pzoN or 2 for �Nozp0�.
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