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Abstract

Three-dimensional time-harmonic response of a poroelastic half space subjected to an arbitrary buried loading is investigated. The

analysis starts with the field equations in cylindrical coordinates based on Biot’s general theory of poroelasticity. General solutions for

the displacements are first derived using the Fourier expansions and Hankel integral transform with respect to the circumferential and

radial coordinates, respectively. The transformed-domain solutions are obtained in explicit form. The physical-domain displacements

and stress components are then obtained numerically by inverse integral transform. Comparisons illustrating the accuracy of the

developed approach are made with existing solutions for an elastic half space, which is reduced directly from the general solution

developed in the paper. Numerical results are presented for the displacements of a saturated soil subjected to a horizontal internal

excitation.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic response of an elastic half space is of great interest in civil engineering because of its fundamental
importance in dynamic soil–structure interaction, earthquake engineering, and foundation vibration. The original
formulation of the problem was presented by Lamb [1], who studied the dynamic response of an elastic half space subjected
to concentrated loads acting at the surface or inside the half-space (surface- and internal-source problems, respectively).
Since then, the classical Lamb’s problem has been extended to many different and complicated situations. Newlands [2]
extended the Lamb’s problem to include dissipation due to internal friction. Pekeris [3,4] gave exact closed-form solutions
of displacements produced by surface and buried point pulses. Pak [5] derived the dynamic response of an elastic half space
due to an arbitrary, time-harmonic, finite, and buried source using the method of potentials. While Rajapakse and Wang
[6,7] investigated two-dimensional (2D) and three-dimensional (3D) elastodynamic Green’s functions of a transversely
isotropic medium under harmonic buried excitation, Wang and Achenbach [8] solved the Lamb’s problem in anisotropic
elastic half space.

Soils can be modeled as two-phase materials consisting of a solid skeleton with voids filled with water and thus should be
more realistically regarded as poroelastic materials. The first theory of wave propagation in a fluid-saturated porous
medium was established by Biot [9,10] based on his earlier work on quasistatic poroelasticity [11]. Biot [12,13] also
extended his analysis to include cases in which the soil skeleton is an anisotropic elastic material or a viscoelastic material.
Current development in this field can be found, for example, in [14–17].
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Many researchers have studied the dynamic response of poroelastic media based on the Biot’s poroelasticity theory.
Manolis and Beskos [18,19] presented an integral formulation of dynamic poroelasticity in the Laplace transformed
domain. Their fundamental solutions are associated with wave propagation problems in unbounded poroelastic
media. Simon et al. [20] studied the one-dimensional transient response of saturated porous elastic solids for the special
situation where the solid and fluid materials are dynamically compatible. Paul [21,22] considered the poroelastic
counterpart of the classical Lamb’s problem for an impulsive line load (2D plane strain problem) applied at the surface
by assuming nondissipative behavior. Halpern and Christiano [23] analyzed the response of poroelastic half space
due to steady-state harmonic surface tractions and presented a methodology for the solution of mixed boundary-value
problems. A similar problem was treated later on by Philippacopoulos [24], who obtained an analytical solution of
the problem using four displacement potentials and the Fourier–Bessel integral representation. Senjuntichai and
Rajapakse [25] presented a detailed study on the dynamic Green’s functions of a poroelastic half space subjected to various
buried loads, and recently, extended their work to the vertical vibration of a circular plate in multilayered poroelastic
medium [26].

The above solutions [21–25] to the dynamic response in poroelastic media are restricted to the axisymmetric or plane
strain cases, which involve only two spatial dimensions, and are mostly concerned with surface loading. In contrast, only a
few investigations have been reported in the literature for the corresponding asymmetric buried source case. Recently,
Philippacopoulos [27] and Jin [28] obtained the 3D dynamic response of a poroelastic half space for the simplest loading
case, i.e., a buried point source. The approaches used by these authors, however, require prior knowledge of the
corresponding Green’s function for the full space. Zhou et al. [29] presented the transient solution of saturated soil to a
concentrated impulsive loading by neglecting the inertia coupling between the solid skeleton and fluid and assuming
incompressible constitutes. It is well known that 3D solutions corresponding to time-harmonic loading applied at a finite
depth below the semi-infinite saturated soil have wide applications in geomechanics and earthquake engineering. General
solutions for the 3D Green’s functions of poroelastic half space to an arbitrary buried source, however, have not been
reported in the literature.

The present paper is concerned with this problem. The procedure developed is of sufficient generality to cover a variety
of axisymmetric and asymmetric problems. The analysis starts with the general field equations in cylindrical coordinates
following Biot’s theory. In particular, the compressibility of the soil skeleton and pore water has been taken into account.
General solutions for the displacements and stress components of the saturated medium are obtained by using Fourier
expansion and Hankel integral transform with respect to the circumferential and radial coordinates, respectively. These
general solutions, with consideration of the boundary conditions, are then used to solve the 3D Lamb’s problem of
saturated soils corresponding to arbitrary loads applied at a finite depth below the surface. Explicit expressions for
displacements are presented in terms of simple integrations, which can be reduced directly to the corresponding elastic
solutions. As numerical examples, the displacement components in the vertical and radial directions in a semi-infinite
saturated soil subjected to a horizontal internal excitation are presented.

2. Governing equations

Consider the model shown in Fig. 1. The semi-infinite saturated soil is subjected to an arbitrary time-harmonic
buried load located at a horizontal plane z ¼ z0 and over the area P, and its constitutive behavior follows Biot’s two-phase
linear theory. Assuming that the motion under consideration is time harmonic with a factor eiot, the governing differen-
tial equations for the saturated soil in the cylindrical coordinate system (r,y,z), in terms of displacements, are given as
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Fig. 1. Semi-infinite saturated soil under the action of arbitrary buried source.
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follows [13,23,25]:

Gðr2ur �
1

r2
ur �

2

r2
quy

qy
Þ þ ðlþ a2M þ GÞ

qe

qr
þ aM

q�
qr
¼ �ro2ur � rwo

2wr, (1a)

Gðr2uy �
1

r2
uy þ

2

r2
qur
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qe

rqy
þ aM

q�
rqy
¼ �ro2uy � rwo

2wy, (1b)
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qe
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q�
qz
¼ �ðro2uz þ rwo

2wzÞ, (1c)

aM
qe

qr
þM

q�
qr
¼ �rwo

2ur � Wo2wr þ ibowr, (1d)

aM
qe

rqy
þM

q�
rqy
¼ �rwo

2uy � Wo2uy þ ibouy, (1e)

aM
qe

qz
þM

q�
qz
¼ �rwo

2uz � Wo2wz þ ibowz, (1f)

in which ur, uy, and uz are radial, circumferential, and vertical displacements of the solid matrix, respectively; wr, wy, and wz

are the average fluid displacements relative to the solid matrix in the r, y, and z directions, respectively; e and e are the
matrix dilation and the fluid dilation relative to the solid, respectively, which are expressed as

e ¼
qur

qr
þ

ur

r
þ

quy

rqy
þ

quz

qz
; � ¼

qwr

qr
þ

wr

r
þ

qwy

rqy
þ

qwz

qz
:

l and G are Lame’s constants of the solid matrix; a and M are, respectively, the Biot’s compressibility parameters of
skeletal frame and water; rw is the mass density of water and r the mass density of bulk material (r ¼ nrw+(1–n)rs,
n ¼ porosity and rs ¼ mass density of grains); W is a density-like parameter that depends on rw and geometry of the pores;
b is a parameter accounting for the internal friction due to the relative motion between the solid matrix and the pore water,
and is equal to the ratio between the fluid viscosity and the intrinsic permeability of the medium; o is the circular frequency
of motion and r2 denotes the Laplacian operator which is given by

r2 ¼
q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qy2
þ

q2

qz2
.

For convenience, the time factor eiot has been suppressed in Eqs. (1a)–(1f) and also in the sequel.
The constitutive relations for the z-direction traction components and pore pressure in the saturated soil can be

expressed as

sz ¼ 2G
quz

qz
þ le, (2a)

tzr ¼ G
qur

qz
þ

quz

qr

� �
, (2b)

tzy ¼ G
quz

rqy
þ

quy

qz

� �
, (2c)

sf ¼ �aMe�M�, (2d)

in which sz is the effective normal stress component in the vertical z-direction; tzr, tzy are shear stresses and sf denotes the
excess pore pressure.

3. Solutions of governing equations

Using Fourier expansion with respect to the circumferential coordinate y, the displacement and stress fields appearing in
Eqs. (1) and (2) become [30]

urðr; y; zÞ ¼
X1
m¼0

½urm;1ðr; zÞ cosmy� urm;2ðr; zÞ sinmy�, (3a)
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uyðr; y; zÞ ¼
X1
m¼0

½uym;1ðr; zÞ sin myþ uym;2ðr; zÞ cos my�, (3b)

uzðr; y; zÞ ¼
X1
m¼0

½uzm;1ðr; zÞ cos my� uzm;2ðr; zÞ sin my�, (3c)

wrðr; y; zÞ ¼
X1
m¼0

½wrm;1ðr; zÞ cos my� wrm;2ðr; zÞ sin my�, (3d)

wyðr; y; zÞ ¼
X1
m¼0

½wym;1ðr; zÞ sin myþ wym;2ðr; zÞ cos my�, (3e)

wzðr; y; zÞ ¼
X1
m¼0

½wzm;1ðr; zÞ cos my� wzm;2ðr; zÞ sin my�, (3f)

szðr; y; zÞ ¼
X1
m¼0

½szm;1ðr; zÞ cos my� szm;2ðr; zÞ sin my�, (3g)

tzrðr; y; zÞ ¼
X1
m¼0

½tzrm;1ðr; zÞ cos my� tzrm;2ðr; zÞ sin my�, (3h)

tzyðr; y; zÞ ¼
X1
m¼0

½tzym;1ðr; zÞ sin myþ tzym;2ðr; zÞ cos my�, (3i)

sf ¼
X1
m¼0

½sfm;1 cos my� sfm;2 sin my�, (3j)

e ¼
X1
m¼0

½em;1 cos m y� em;2 sin my�, (3k)

� ¼
X1
m¼0

½�m;1 cos my� �m;2 sin my�, (3l)

where for k ¼ 1, 2,

em;k ¼
qurm;k

qr
þ

urm;k

r
þ

m

r
uym;k þ

quzm;k

qz

and

�m;k ¼
qwrm;k

qr
þ

wrm;k

r
þ

m

r
wym;k þ

qwzm;k

qz
.

Substituting Eq. (3) into Eqs. (1) and (2) and further defining the operator

r2
m ¼

q2

qr2
þ

1

r

q
qr
�

m2

r2
þ

q2

qz2
;

one obtains the following equations for k ¼ 1, 2 and m ¼ 0, 1, 2, y:

Gðr2
m �

1

r2
Þurm;k �

2Gm

r2
uym;k þ ðlþ a2M þ GÞ

qem;k

qr
þ aM

q�m;k

qr
¼ �ro2urm;k � rwo

2wrm;k, (4a)

�
2Gm

r2
urm;k þ Gðr2

m �
1

r2
Þuym;k � ðlþ a2M þ GÞ

mem;k

r
�

aMm

r
�m;k ¼ �ro2uym;k � rwo

2wym;k, (4b)

Gr2
muzm;k þ ðlþ a2M þ GÞ

qem;k

qz
þ aM

q�m;k

qz
¼ �ro2uzm;k � rwo

2wzm;k, (4c)
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aM
qem;k

qr
þM

q�m;k

qr
¼ �rwo

2urm;k � Wo2wrm;k þ ibowrm;k, (4d)

�aM
mem;k

r
�Mm

�m;k

r
¼ �rwo

2uym;k � Wo2wym;k þ ibowym;k, (4e)

aM
qem;k

qz
þM

q�m;k

qz
¼ �rwo

2uzm;k � Wo2wzm;k þ ibowzm;k. (4f)

szm ¼ 2G
quzm;k

qz
þ lem;k, (5a)

tzrm;k ¼ G
qurm;k

qz
þ

quzm;k

qr

� �
, (5b)

tzym;k ¼ G �
muzm;k

r
þ

quym;k

qz

� �
, (5c)

sfm;k ¼ �aMem;k �M�m;k. (5d)

Performing (q/qr) Eq. (4a) +(1/r) Eq. (4a) +(m/r) Eq. (4b) +(q/qz) Eq. (4c), and (q/qr) Eq. (4d) +(1/r) Eq. (4d) +(m/r)
Eq. (4e) +(q/qz) Eq. (4f), we finally obtain

ðlþ 2G þ a2MÞr2
mem;k þ aMr2

m�m;k ¼ �ro2em;k � rwo
2�m;k, (6)

aMr2
mem;k þMr2

m�m;k ¼ �rwo
2em;k þ ðibo� Wo2Þ�m;k. (7)

The mth Hankel transform with respect to r is defined as

~f
m
ðpÞ ¼ Hm½f � ¼

Z 1
0

rf ðrÞJmðrpÞdr, (8a)

f ðrÞ ¼

Z 1
0

p ~f
m
ðpÞJmðrpÞdp, (8b)

where p is the parameter for the Hankel transform and Jm denotes the Bessel function of the first kind of order m.
Application of the mth order Hankel transform to Eqs. (6) and (7) then results in

ðlc þ 2GÞ
d2

dz2
~em
m;k þ ½ro

2 � ðlc þ 2GÞp2�~em
m;k ¼ �aM

d2

dz2
~�m

m;k þ ðaMp2 � rwo
2Þ~�m

m;k, (9)

aM
d2

dz2
~em
m;k þ ðrwo

2 � aMp2Þ~em
m;k ¼ �M

d2

dz2
~�m

m;k þ ðMp2 þ ibo� Wo2Þ~�m
m;k, (10)

where lc ¼ lþ a2M. Eqs. (9) and (10) can be solved directly and the results can be expressed as

~em
m;k ¼ �p2

1A1m;ke
�cz � p2

1A2m;ke
cz � p2

2B1m;ke
�dz � p2

2B2m;ke
dz, (11)

~�m
m;k ¼ �p2

1d1ðA1m;ke
�cz þ A2m;ke

czÞ � p2
2d2ðB1m;ke

�dz þ B2m;ke
dzÞ, (12)

in which c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p2

1

q
, d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p2

2

q
, p1, p2 are the complex wave numbers associated with the dilatational waves of the

first and second kind, respectively, given by p2
1 ¼ ðb1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4b2

q
Þ=2 and p2

2 ¼ ðb1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4b2

q
Þ=2, b1 ¼ ½ðlc þ 2GÞðWo2 �

iboÞ � 2aMrwo
2 þMro2�=ðlþ 2GÞM; b2 ¼ ½ðWo

2 � iboÞro2 � r2wo
4�=ðlþ 2GÞM ; and c and d are so selected that

Re[c]X0, Re[d]X0; d1 ¼ ½ðlc þ 2GÞp2
1 � ro2�=ðrwo

2 � aMp2
1Þ; d2 ¼ ½ðlc þ 2GÞp2

2 � ro2�=ðrwo
2 � aMp2

2Þ; A1m,k, A2m,k,

B1m,k, and B2m,k are arbitrary functions of p and z.
Substitution of Eqs. (11) and (12) back into Eqs. (4c) and (4f) thus yields the following solutions for the vertical

displacements:

~um
zm;k ¼ �cðA1m;ke

�cz � A2m;ke
czÞ � dðB1m;ke

�dz � B2m;ke
dzÞ þ p2ðR1m;ke

�jz þ R2m;ke
jzÞ, (13)

~wm
zm;k ¼ �cd1ðA1m;ke

�cz � A2m;ke
czÞ � dd2ðB1m;ke

�dz � B2m;ke
dzÞ þ p2d3ðR1m;ke

�jz þ R2m;ke
jzÞ, (14)
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in which j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � s2

p
, s2 ¼ ½ro2ðibo� Wo2Þ þ r2wo

4�=Gðibo� Wo2Þ, s is the complex wave number associated with the
rotational wave and is again selected such that Re[s]X0; d3 ¼ rwo

2=ðibo� Wo2Þ; R1m,k, R2m,k are also arbitrary functions
of p and z.

Adding Eq. (4a) to (4b) and Eq. (4d) to (4e), and then applying the (m+1)th Hankel transform to the resulting equations
gives

G
d2

dz2
Hmþ1½urm;k þ uym;k�
� �

þ ðro2 � Gp2ÞHmþ1½urm;k þ uym;k� ¼ �rwo
2Hmþ1½wrm;k þ wym;k� þ ðlc þ GÞp~em

m;k þ aMp~�m
m;k,

(15)

Hmþ1½wrm;k þ wym;k� ¼
1

ibo� Wo2
rwo

2Hmþ1½urm;k þ uym;k� � aMp~em
m;k �Mp~�m

m;k

n o
. (16)

Similarly, subtraction of Eq. (4b) from (4a) and Eq. (4e) from (4d), followed by the application of the (m�1)th Hankel
transform, gives

G
d2

dz2
Hm�1½urm;k � uym;k�
� �

þ ðro2 � Gp2ÞHm�1½urm;k � uym;k� ¼ �rwo
2Hm�1½wrm;k � wym;k� � ðlc þ GÞp~em

m;k � aMp~�m
m;k,

(17)

Hm�1½wrm;k � wym;k� ¼
1

ibo� Wo2
rwo

2Hm�1½urm;k � uym;k� þ aMp~em
m;k þMp~�m

m;k

n o
. (18)

The solutions of Eqs (15)–(18) can easily be found to be

Hmþ1½urm;k þ uym;k� ¼ �pðA1m;ke
�cz þ A2m;ke

czÞ � pðB1m;ke
�dz þ B2m;ke

dzÞ þ 2pjðT1m;ke
�jz þ T2m;ke

jzÞ, (19)

Hmþ1½wrm;k þ wym;k� ¼ �pd1ðA1m;ke
�cz þ A2m;ke

czÞ � pd2ðB1m;ke
�dz þ B2m;ke

dzÞ þ 2pjd3ðT1m;ke
�jz þ T2m;ke

jzÞ, (20)

Hm�1½urm;k � uym;k� ¼ pðA1m;ke
�cz þ A2m;ke

czÞ þ pðB1m;ke
�dz þ B2m;ke

dzÞ þ 2pj½ðT1m;k � R1m;kÞe
�jz þ ðT2m;k þ R2m;kÞe

jz�,

(21)

Hm�1½wrm;k � wym;k� ¼ pd1ðA1m;ke
�cz þ A2m;ke

czÞ þ pd2ðB1m;ke
�dz þ B2m;ke

dzÞ þ 2pjd3½ðT1m;k � R1m;kÞe
�jz þ ðT2m;k þ R2m;kÞe

jz�,

(22)

in which T1m,k and T2m,k are arbitrary functions of p and z.
Next, the expressions for stresses of the solid matrix and pore water can be obtained straightforwardly by combining

Eqs. (5a)–(5d) with Eqs. (11)–(13), (19), and (21) as follows:

~sm
zm;k ¼ k1ðA1m;ke�cz þ A2m;keczÞ þ k2ðB1m;ke

�dz þ B2m;ke
dzÞ � 2Gp2jðR1m;ke

�jz � R2m;ke
jzÞ, (23)

Hmþ1½tzrm;k þ tzym;k� ¼ 2pcGðA1m;ke
�cz � A2m;ke

czÞ þ 2pdGðB1m;ke
�dz � B2m;ke

dzÞ þ pG½�ðp2R1m;k þ 2j2T1m;kÞe
�jz

þ ð2j2T2m;k � p2R2m;kÞe
jz�, ð24Þ

Hm�1½tzrm;k � tzym;k� ¼ �2pcGðA1m;ke
�cz � A2m;ke

czÞ � 2pdGðB1m;ke
�dz � B2m;ke

dzÞ þ pG½ðp2R1m;k þ 2j2R1m;k � 2j2T1m;kÞe
�jz

þðp2R2m;k þ 2j2R2m;k þ 2j2T2m;kÞe
jz�, ð25Þ

~sm
fm;k ¼ a1ðA1m;ke

�cz þ A2m;ke
czÞ þ a2ðB1m;ke

�dz þ B2m;ke
dzÞ, (26)

in which k1 ¼ ðlþ 2GÞc2 � lp2, k2 ¼ ðlþ 2GÞd2
� lp2; a1 ¼ ðaþ d1ÞMp2

1 and a2 ¼ ðaþ d2ÞMp2
2.

In summary, the Fourier components of the displacements and stresses for the solid matrix and the pore water pressure
have been obtained in the Hankel transform domain. The eight unknown functions A1m,k, A2m,k, B1m,k, B2m,k, R1m,k, R2m,k,
T1m,k, and T2m,k can be determined from the boundary conditions at the free surface of the half space and the continuity
conditions at a fictitious horizontal plane passing through the source level.

4. Boundary conditions

Let us consider the boundary-value problem of a semi-infinite saturated soil subjected to an internal source. As shown in
Fig. 1, the surface of the saturated soil is assumed to be a drainage boundary and a time-harmonic, arbitrary distributed
buried load Fðr; y; zÞ ¼ f rðr; y; z

0Þdðz� z0Þer þ f yðr; y; z
0Þdðz� z0Þey þ f zðr; y; z

0Þdðz� z0Þez is applied at a horizontal plane
z ¼ z0. Following the Pekeris approach which is also employed by Pak [5] and Senjuntichai and Rajapakse [25], the half
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space is treated as a two-domain problem across a fictitious plane at z ¼ z0. The upper region bounded by 0pzpz0 is
defined as domain 1 whilst the lower region bounded by zpz0p1 as domain 2. In what follows, the superscripts (1) and (2)
are used to denote quantities associated with these two domains. It is evident that the four arbitrary functions
A
ð2Þ
2m;k; B

ð2Þ
2m;k; R

ð2Þ
2m;k andT

ð2Þ
2m;k corresponding to domain 2 must vanish to guarantee the regularity of solution at infinity.

The boundary conditions at the surface z ¼ 0 and the interface conditions at the fictitious plane z ¼ z0 can be written
as follows:

sð1Þzm;kðr; 0Þ ¼ 0, (27a)

tð1Þzrm;kðr; 0Þ ¼ 0, (27b)

tð1Þzym;kðr; 0Þ ¼ 0, (27c)

sð1Þfm;kðr; 0Þ ¼ 0, (27d)

u
ð1Þ
zm;kðr; z

0Þ � u
ð2Þ
zm;kðr; z

0Þ ¼ 0, (27e)

u
ð1Þ
rm;kðr; z

0Þ þ u
ð1Þ
ym;kðr; z

0Þ

h i
� u

ð2Þ
rm;kðr; z

0Þ þ u
ð2Þ
ym;kðr; z

0Þ

h i
¼ 0, (27f)

u
ð1Þ
rm;kðr; z

0Þ � u
ð1Þ
ym;kðr; z

0Þ

h i
� u

ð2Þ
rm;kðr; z

0Þ � u
ð2Þ
ym;kðr; z

0Þ

h i
¼ 0, (27g)

sð1Þfm;kðr; z
0Þ � sð2Þfm;kðr; z

0Þ ¼ 0, (27h)

sð1Þzm;kðr; z
0Þ � sð2Þzm;kðr; z

0Þ ¼ f zm;kðr; z
0Þ, (27i)

tð1Þzrm;kðr; z
0Þ þ tð1Þzym;kðr; z

0Þ

h i
� tð2Þzrm;kðr; z

0Þ þ tð2Þzym;kðr; z
0Þ

h i
¼ f rm;kðr; z

0Þ þ f ym;kðr; z
0Þ, (27j)

tð1Þzrm;kðr; z
0Þ � tð1Þzym;kðr; z

0Þ

h i
� tð2Þzrm;kðr; z

0Þ � tð2Þzym;kðr; z
0Þ

h i
¼ f rm;kðr; z

0Þ � f ym;kðr; z
0Þ, (27k)

w
ð1Þ
zm;kðr; z

0Þ � w
ð2Þ
zm;kðr; z

0Þ ¼ 0, (27l)

in which f rm;kðr; z
0Þ, f ym;kðr; z

0Þ and f zm;kðr; z
0Þ are the Fourier coefficients of the loading distributions f rðr; y; z

0Þ, f yðr; y; z
0Þ

and f zðr; y; z
0Þ, respectively, and satisfy the relations

f rðr; y; z
0Þ ¼

X1
m¼0

½f rm;1ðr; z
0Þ cos my� f rm;2ðr; z

0Þ sin my�, (28a)

f yðr; y; z
0Þ ¼

X1
m¼0

½f ym;1ðr; z
0Þ sin m yþ f ym;2ðr; z

0Þ cos m y�; (28b)

f zðr; y; z
0Þ ¼

X1
m¼0

½f zm;1ðr; z
0Þ cos m y� f zm;2ðr; z

0Þ sin m y�. (28c)

On application of appropriate Hankel transforms to Eqs. (27a)–(27l) and after substitution of Eqs. (13), (14), (19), (21),
and (23)–(26), one can rearrange the boundary conditions as

AX ¼ B, (29)

in which

XT ¼ A
ð1Þ
1m;ke

�cz0 ;Að1Þ2m;ke
cz0 ;Bð1Þ1m;ke

�dz0 ;Bð1Þ2m;ke
dz0 ;Rð1Þ1m;ke

�jz0 ;Rð1Þ2m;ke
jz0 ;

n
T
ð1Þ
1m;ke

�jz0 ;T ð1Þ2m;ke
jz0 ;Að2Þ1m;ke

�cz0 ;Bð2Þ1m;ke
�dz0 ;Rð2Þ1m;ke

�jz0 ;T ð2Þ1m;ke
�jz0
o

and

B ¼ 0; 0; 0; 0; 0; 0; 0; 0; ~f
m

zm;kðp; z
0Þ; ~f ðrþyÞm;kðp; z

0Þ; ~f ðr�yÞm;kðp; z
0Þ; 0

n o
,
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with

~f ðrþyÞm;kðp; z
0Þ ¼

1

Gp
Hmþ1½f rm;kðr; z

0Þ þ f ym;kðr; z
0Þ� þHm�1½f rm;kðr; z

0Þ � f ym;kðr; z
0Þ�

� �
; ~f ðr�yÞm;kðp; z

0Þ ¼

1

2Gp
Hmþ1½f rm;kðr; z

0Þ þ f ym;kðr; z
0Þ� �Hm�1½f rm;kðr; z

0Þ � f ym;kðr; z
0Þ�

� �
,

and

A ¼

k1e
cz0 k1e

�cz0 k2e
dz0 k2e

�dz0 2Gp2jejz0 2Gp2je�jz0 0 0 0 0 0 0

a1e
cz0 a1e

�cz0 a2e
dz0 a2e�dz0 0 0 0 0 0 0 0 0

0 0 0 0 ejz0 e�jz0 �2ejz0 2e�jz0 0 0 0 0

2cecz0 �2ce�cz0 2dedz0 2de�dz0 �ðp2 þ j2Þejz0 �ðp2 þ j2Þe�jz0 0 0 0 0 0 0

�c c �d d p2 p2 0 0 c d �p2 0

0 0 0 0 �2j 2j 4j 4j 0 0 2j �4j

1 1 1 1 �j �j 0 0 �1 �1 j 0

a1 a1 a2 a2 0 0 0 0 �a1 �a2 0 0

k1 k1 k2 k2 �2Gp2j 2Gp2j 0 0 �k1 �k2 2Gp2j 0

0 0 0 0 2j2 2j2 �4j2 4j2 0 0 �2j2 4j2

2c �2c 2d �2d �ðp2 þ j2Þ �ðp2 þ j2Þ 0 0 �2c �2d p2 þ j2 0

�cd1 cd1 �dd2 dd2 p2d3 p2d3 0 0 cd1 dd2 �p2d3 0

2
6666666666666666666666664

3
7777777777777777777777775

.

After lengthy but rather straightforward algebra, the solution of Eq. (29) can be shown explicitly as (via inverse of the
above 12� 12 nonsymmetric matrix)

A
ð1Þ
1m;k ¼

a2p
2df 2e

�cz0 � 8p4cdjGa1a2e
�dz0 þ 4Gcdjp2a2ða1 � a2Þð2p2 � s2Þe�jz0

2s2ða1 � a2Þcdf
~f ðr�yÞm;k

þ
a2f 2e

�cz0 � 8p2djGa1a2e
�dz0 þ 4Gp2a2ða1 � a2Þð2p2 � s2Þe�jz0

2Gs2ða1 � a2Þf
~f
m

zm;k, ð30aÞ

A
ð1Þ
2m;k ¼

a2p
2e�cz0

2s2cða1 � a2Þ
~f ðr�yÞm;k þ

a2e
�cz0

2Gs2ða1 � a2Þ
~f
m

zm;k, (30b)

B
ð1Þ
1m;k ¼

�8p4jGda1a2e
�cz0 þ a1f 1p

2e�dz0 � 4Gp2dja1ða1 � a2Þð2p2 � s2Þe�jz0

2s2ða1 � a2Þdf
~f ðr�yÞm;k

þ
�8p2jGca1a2e

�cz0 þ a1f 1e
�dz0 � 4Gp2a1ða1 � a2Þð2p2 � s2Þe�jz0

2Gs2ða1 � a2Þf
~f
m

zm;k, ð30cÞ

B
ð1Þ
2m;k ¼

�p2a1e
�dz0

2s2dða1 � a2Þ
~f ðr�yÞm;k �

a1e
�dz0

2Gs2ða1 � a2Þ
~f
m

zm;k, (30d)

R
ð1Þ
1m;k ¼

�4a2p2Gð2p2 � s2Þe�cz0 þ 4a1p2Gð2p2 � s2Þe�dz0 � f 3e
�jz0

2s2f
~f ðr�yÞm;k

þ
�4ca2jGð2p2 � s2Þe�cz0 þ 4da1jGð2p2 � s2Þe�dz0 � f 3e

�jz0

2Gjs2f
~f
m

zm;k, ð30eÞ

R
ð1Þ
2m;k ¼

e�jz0

2s2
~f ðr�yÞm;k þ

e�jz0

2Gjs2
~f
m

zm;k, (30f)

T
ð1Þ
1m;k ¼

1

2
R
ð1Þ
1m;k þ

e�jz0

8j2
~f ðrþyÞm;k, (30g)

T
ð1Þ
2m;k ¼ �

1

2
R
ð1Þ
2m;k þ

e�jz0

8j2
~f ðrþyÞm;k, (30h)
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A
ð2Þ
1m;k ¼ A

ð1Þ
1m;k � A

ð1Þ
2m;ke

2cz0 þ
p2ðd2 � d3Þ
cs2ðd1 � d2Þ

ecz0 ~f ðr�yÞm;k, (30i)

B
ð2Þ
1m;k ¼ B

ð1Þ
1m;k � B

ð1Þ
2m;ke

2dz0 �
p2ðd1 � d3Þ
ds2ðd1 � d2Þ

edz0 ~f ðr�yÞm;k, (30j)

R
ð2Þ
1m;k ¼ R

ð1Þ
1m;k þ R

ð1Þ
2m;ke

2jz0 �
1

s2
ejz0 ~f ðr�yÞm;k, (30k)

T
ð2Þ
1m;k ¼ T

ð1Þ
1m;k � T

ð1Þ
2m;ke

2jz0 þ
1

4j2
ejz0 ~f ðrþyÞm;k �

1

2s2
ejz0 ~f ðr�yÞm;k, (30l)

where

f ¼ Gða1 � a2Þðp
2 þ j2Þ2 � 4p2jGðda1 � ca2Þ, (31a)

f 1 ¼ Gða1 � a2Þðp
2 þ j2Þ2 þ 4p2jGðda1 þ ca2Þ, (31b)

f 2 ¼ �Gða1 � a2Þðp
2 þ j2Þ2 þ 4p2jGðda1 � ca2Þ, (31c)

f 3 ¼ Gða1 � a2Þðp
2 þ j2Þ2 þ 4p2jGðda1 � ca2Þ. (31d)

Once the twelve unknown functions are obtained, the complete solution for the displacements, stresses, and pore water
pressure corresponding to an arbitrary buried source can be obtained by substituting the arbitrary functions A

ð1Þ
1m;k to T

ð2Þ
1m;k

into Eqs. (13), (14), and (19)–(26), then taking the respective inverse Hankel transforms, and finally summing them up with
respect to m. In the following, we demonstrate this procedure for the solid displacements. The general expressions for the
displacements in each domain (i ¼ 1,2) are

uðiÞr ðr; y; zÞ ¼
1

2

X1
m¼0

X2
k¼1

Z 1
0

�pðA
ðiÞ
1m;ke

�cz þ A
ðiÞ
2m;ke

czÞ � pðB
ðiÞ
1m;ke

�dz þ B
ðiÞ
2m;ke

dzÞ

h
þ 2pjðT

ðiÞ
1m;ke

�jz þ T
ðiÞ
2m;ke

jzÞ

i�

�pJmþ1ðprÞdp

�
cos myþ

k � 1

2
p

	 

þ

1

2

X1
m¼0

X2
k¼0

Z 1
0

pðA
ðiÞ
1m;ke

�cz þ A
ðiÞ
2m;ke

czÞ

h�
þ pðB

ðiÞ
1m;ke

�dzþ

B
ðiÞ
2m;kedzÞ þ 2pjfðT

ðiÞ
1m;k � R

ðiÞ
1m;kÞe

�jz þ ðT
ðiÞ
2m;k þ R

ðiÞ
2m;kÞe

jzg

i
pJm�1ðprÞdp

�
cos myþ

k � 1

2
p

	 

, ð32Þ

u
ðiÞ
y ðr; y; zÞ ¼

1

2

X1
m¼0

X2
k¼1

Z 1
0

�pðA
ðiÞ
1m;ke

�cz þ A
ðiÞ
2m;ke

czÞ � pðB
ðiÞ
1m;ke

�dz þ B
ðiÞ
2m;ke

dzÞ

h
þ

�
2pjðT

ðiÞ
1m;ke

�jz þ T
ðiÞ
2m;ke

jzÞ

i

pJmþ1ðprÞdp

�
cos my�

k � 1

2
p

	 

�

1

2

X1
m¼0

X2
k¼1

Z 1
0

pðA
ðiÞ
1m;ke

�cz þ A
ðiÞ
2m;ke

czÞ

h�
þ pðB

ðiÞ
1m;ke

�dzþ

B
ðiÞ
2m;ke

dzÞ þ 2pjfðT
ðiÞ
1m;k � R

ðiÞ
1m;kÞe

�jz þ ðT
ðiÞ
2m;k þ R

ðiÞ
2m;kÞe

jzg

i
pJm�1ðprÞdp

�
cos my�

k � 1

2
p

	 

, ð33Þ

uðiÞz ðr; y; zÞ ¼
X1
m¼0

X2
k¼1

Z 1
0

�cðA
ðiÞ
1m;ke

�cz � A
ðiÞ
2m;ke

czÞ � dðB
ðiÞ
1m;ke

�dz � B
ðiÞ
2m;ke

dzÞ

h�

þp2ðR
ðiÞ
1m;ke

�jz þ R
ðiÞ
2m;ke

jzÞ

i
pJmðprÞdp

�
cos myþ

k � 1

2
p

	 

. ð34Þ
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At the ground surface z ¼ 0, the displacement components are reduced to

urðr; y; 0Þ ¼
1

2

X1
m¼0

Z 1
0

p
G

f

�
½2p3a2je

�cz0 � 2p3a1je
�dz0 þ pjða1 � a2Þð2p2 � s2Þe�jz0 �ð ~f ðr�yÞm;1 cos my

� ~f ðr�yÞm;2 sin myÞ½Jmþ1ðprÞ � Jm�1ðprÞ� þ
1

f
½2a2pcje�cz0 � 2pa1dje�dz0 þ pða1 � a2Þ

� ð2p2 � s2Þe�jz0 �ð ~f
m

zm;1 cos my� ~f
m

zm;2 sin myÞ½Jmþ1ðprÞ � Jm�1ðprÞ� þ
p

2j
e�jz0

�ð ~f ðrþyÞm;1 cos my� ~f ðrþyÞm;2 sin myÞ½Jmþ1ðprÞ þ Jm�1ðprÞ�

�
dp, ð35Þ

uyðr; y; 0Þ ¼
1

2

X1
m¼0

Z 1
0

p
G

f

�
½2p3a2je

�cz0 � 2p3a1je
�dz0 þ pjða1 � a2Þð2p2 � s2Þe�jz0 �ð ~f ðr�yÞm;1 sinmy

þ ~f ðr�yÞm;2 cos myÞ½Jmþ1ðprÞ þ Jm�1ðprÞ� þ
1

f
½2a2pcje�cz0 � 2pa1dje�dz0 þ pða1 � a2Þ

� ð2p2 � s2Þe�jz0 �ð ~f
m

zm;1 sin myþ ~f
m

zm;2 cos myÞ½Jmþ1ðprÞ þ Jm�1ðprÞ� þ
p

2j
e�jz0

�ð ~f ðrþyÞm;1 sin myþ ~f ðrþyÞm;2 cos myÞ½Jmþ1ðprÞ � Jm�1ðprÞ�

�
dp, ð36Þ

uzðr; y; 0Þ ¼
X1
m¼0

Z 1
0

p
G

f

�
½�ð2p2 � s2Þa2p

2e�cz0 þ ð2p2 � s2Þa1p
2e�dz0 � 2p2jðda1 � ca2Þ

� e�jz0 �ð ~f ðr�yÞm;1 cos my� ~f ðr�yÞm;2 sin myÞ þ
1

f
½�a2cð2p2 � s2Þe�cz0 þ a1dð2p2 � s2Þe�dz0

�2ða1d � a2cÞp
2e�jz0 �ð ~f

m

zm;1 cos my� ~f
m

zm;2 sin myÞ
�

JmðprÞdp. ð37Þ

The solutions for the displacements given by Eqs. (32)–(37) involve the integral of a rapidly oscillatory function over a
semi-infinite interval. Due to the complexity of the integrands, these integrals will be evaluated numerically. It is important
to note that f occurring in denominators of the integrands has complex roots as a result of considering the dissipative
nature of the soil, i.e., the internal friction due to the relative motion between the solid matrix and the pore water. Thus, no
singularities are encountered in the real axis p and the numerical integration can be directly performed along this axis. We
further remark that the semi-infinite integrals for the inverse Hankel transforms are truncated at some large values and
numerically evaluated using Mathematica [31]. It is found that such a treatment generally gives satisfactory results.

5. Comparison with existing solutions for purely elastic soil

Solution of the classical Lamb’s problem involving an elastic half space subjected to a uniform horizontal buried loading
of radius a at z ¼ z0 with resultant load of unit is considered in this section. The objective is to verify the foregoing solutions
for the purely elastic case and compare the corresponding numerical results with those in [5].

The dynamic response of an elastic half space can be treated as a limiting case of a dry soil in the absence of pore water.

This can be accomplished by taking rw ¼ b ¼ W ¼ 0. It then follows that b1 ¼ ro2
�
ðlþ 2GÞ, b2 ¼ 0, p1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ro2=ðlþ 2GÞ
p

; ðRe½p1�X0Þ, P2 ¼ 0, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2=G

p
; ðRe½s�X0Þ, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � ro2=ðlþ 2GÞ

p
, d ¼ p, j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � ro2=G

p
,

a1 ¼ 0, and f ¼ �a2½Gðp
2 þ j2Þ2 � 4p2jGc�, in which p1 and s are the wave numbers of the corresponding elastic P and S

waves, respectively.
Furthermore, for the horizontal load patch case, the loading coefficients defined in Eq. (29) can be expressed by the

relations

~f ðr�yÞm;kðr; z
0Þ ¼

�
J1ðpaÞ
pGap2

; m ¼ 1; k ¼ 1

0; all else cases

(
, (38a)

~f ðrþyÞm;kðr; z
0Þ ¼

2J1ðpaÞ
pGap2

; m ¼ 1; k ¼ 1

0; all else cases

(
, (38b)
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~f zm;kðr; z
0Þ ¼ 0; k ¼ 1; 2; m ¼ 0; 1; 2; . . . . (38c)

Substitution of Eq. (38) into Eqs. (35)–(37) reduces the displacement components at the ground surface to

uz ¼
cos y
2pGa

Z 1
0

J1ðpaÞ½�pð2p2 � s2Þe�cz0 þ 2pjce�jz0 �

½ðp2 þ j2Þ2 � 4p2jc�
½J2ðprÞ þ J0ðprÞ�dp, (39a)

ur ¼
cos y
2pGa

Z 1
0

J1ðpaÞ½2p2je�cz0 � jð2p2 � s2Þe�jz0 �

½ðp2 þ j2Þ2 � 4p2jc�
½J2ðprÞ � J0ðprÞ�dp

þ
cos y
2pGa

Z 1
0

J1ðpaÞe�jz0

j
½J2ðprÞ þ J0ðprÞ�dp, ð39bÞ

uy ¼
sin y
2pGa

Z 1
0

J1ðpaÞ½2p2je�cz0 � jð2p2 � s2Þe�jz0 �

½ðp2 þ j2Þ2 � 4p2jc�
½J2ðprÞ þ J0ðprÞ�dp

þ
sin y
2pGa

Z 1
0

J1ðpaÞe�jz0

j
½J2ðprÞ � J0ðprÞ�dp. ð39cÞ

This result, after appropriate manipulation, is exactly the same expression for the surface displacements of an elastic half
space derived by Pak [5]. It should, however, be mentioned that in the elastic case, the denominator of the integrand in the
integrals given by Eq. (39) has poles along the real axis. Hence, the path of integration needs to be deformed around the
respective singularities.

Alternatively, the case of a dry soil subjected to horizontal patch load of radius a and unit intensity can be numerically
solved from Eqs. (32)–(34), provided that the corresponding parameters of a saturated soil are selected to approach an
elastic case. For convenience, in the numerical study, the radius a is selected to normalize all length parameters including
the coordinate frame and the mass density of bulk material r to normalize all mass-like parameters, while the stresses and
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Fig. 2. Radial displacement ur under unit buried horizontal load on a circular region. (a) z0/a ¼ 0 and (b) z0/a ¼ 20.
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pore pressure are normalized with respect to the shear modulus of the solid skeleton. To check our solutions for the
reduced purely elastic case, we let the dimensionless parameters be M̄ ¼M=G ¼ 0:01, W̄ ¼ W=r ¼ 0:01, a ¼ 0:01,
b̄ ¼ ab=

ffiffiffiffiffiffiffi
rG
p

¼ 0:01, r̄w ¼ rw=r ¼ 0:01, a0 ¼
ffiffiffiffiffiffiffiffiffi
r=G

p
oa ¼ 0:5. Fig. 2 presents the normalized horizontal displacement in

the x-direction along the z-axis (i.e., r ¼ y ¼ 0) for a surface source z̄0 ¼ z0=a ¼ 0 (Fig. 2(a)) and a buried source z̄0 ¼

z0=a ¼ 20 (Fig. 2(b)), which is compared with the numerical result by Pak [5]. As can be seen from Fig. 2, the two solutions
are in excellent agreement.

6. Numerical results for saturated soils

In this section, numerical results for the dynamic response of a semi-infinite saturated soil due to buried sources are presented.
For illustrative purpose, a uniformly distributed horizontal load of radius a with unit resultant (i.e., pa2q ¼ 1, where q is the
horizontal load density) was considered. The following dimensionless material parameters were adopted in the numerical
analysis: l̄ ¼ l=G ¼ 1:5, M̄ ¼M=G ¼ 12:2, W̄ ¼ W=r ¼ 1:1, a ¼ 0:97, b̄ ¼ ab=

ffiffiffiffiffiffiffi
rG
p

¼ 2:3, r̄w ¼ rw=r ¼ 0:53, with the depth
of the source z̄0 ¼ z0=a ranging from 1 to 10. The dimensionless exciting frequency is again assumed to be a0 ¼ 0.5.

Combining Eqs. (32)–(34) and (38), the displacements ur, uy and uz of the soil frame due to the buried horizontal load can be
evaluated. Since both the vertical and angular displacements along the z-axis are equal to zero, only the radial displacement ur

responses for the applied loading located at depth z0/a ¼ 1, 2, 5 and 10 are depicted (Fig. 3). The results are presented in terms
of the normalized radial displacement in the r direction 4pGaurð0; 0; z=aÞ against the depth z/a, and presented in complex
notation, with the real and imaginary parts corresponding to the in-phase and the 901 out-of-phase components, respectively.
It is found that the general trend in the variation of the radial displacements with depth is quite similar for different loading
levels. In all cases, the responses show distinct oscillations with decreasing magnitudes for increasing field depth z/a. As for the
case of the ideal elastic half space, the real parts of the displacements exhibit sharp peaks which correspond exactly to the
loading levels (Fig. 3(a)), whilst the imaginary parts vary smoothly at these levels. This is reasonable since the real part
represents the response of the saturated soil at the instant the load reaches its maximum value, whilst the imaginary part
corresponds to the response of the saturated soil at the instant of vanishing loading [5].
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Fig. 3. Radial displacement ur under unit buried horizontal load on a circular region. (a) Real part and (b) imaginary part.

S.L. Chen et al. / Soil Dynamics and Earthquake Engineering 27 (2007) 448–462 459



Aut
ho

r's
   

pe
rs

on
al

   
co

py

To investigate the influence of pore water on the dynamic soil response, Fig. 4 presents the comparison of the radial
displacement ur between the saturated soil and the corresponding ideal elastic case. Note that the parameters used in the
numerical calculation are the same as those in Fig. 3, except that the nondimensional frequency for the elastic case has been

modified to be a00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr̄2w=m̄Þ

q
a0 for the sake of comparison [32]. It is interesting to find that the effect of pore water is

negligible. This is not surprising because for a small value of b̄ ¼ 2:3, the pore pressure dissipates quickly and the saturated
soil will thus behave closely to the reduced elastic case.

Figs. 5 and 6 show, respectively, the variation of the amplitude of the normalized radial and vertical displacements along
the surface (y ¼ z ¼ 0). The amplitude of the circumferential displacement along the surface is in fact identical to zero
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because of symmetry. It is observed from Figs. 5 and 6 that the amplitude of the vertical displacement is much smaller than
that of the corresponding radial displacement, in particular near the z-axis. This feature is consistent with the nature of the
horizontal buried loading. Moreover, at the fixed surface location r close to the z-axis, the amplitude of ur decreases rapidly
with increasing loading depth whilst the influence of the loading level on uz is less pronounced. It is also noted that the
amplitude of the radial displacement decreases monotonously with increasing distance r. However, oscillatory variation
behavior is observed for the surface vertical displacements. Generally, the amplitude of uz increases with r until a maximum
value is reached at certain horizontal distance; after that it then decreases monotonously to zero. The peak location of the
vertical displacement advances in r with increasing loading depth z0/a.

7. Conclusions

A semi-analytical solution for the 3D Green function of a poroelastic half space subjected to an arbitrary buried loading
is presented in this paper. The mathematical approach is based on integral transform techniques. Solutions for the skeleton
displacements, stresses, and pore pressure are derived in terms of integral representations. It is shown that, in the absence
of saturating pore fluid, our results reduce to the well-known solutions of the Lamb’s problem for the purely elastic half
space.

The dynamic response of a semi-infinite saturated soil due to a uniform circular horizontal loading located at different
depths below the surface are also computed numerically. It is found that the general trends of variations of the radial
displacements along the z-axis are quite similar for different loading levels. The real parts of the displacements increase
sharply at the corresponding loading levels, whilst the imaginary parts vary smoothly at these levels. For highly permeable
soils, presence of pore water has negligible influence on the displacement response. The numerical results also show that the
amplitudes of the vertical displacements along the surface are smaller than that of the corresponding radial displacements,
and are less influenced by the loading levels as compared to the radial components. In addition, the radial displacements
decrease rapidly with increasing loading depth whilst the surface vertical displacements show oscillatory variations. The
buried loading Green’s functions developed in this paper can be used to solve a variety of 3D boundary-value problems of
dynamic poroelasticity.
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