
Vertical Vibration of a Flexible Plate with Rigid Core
on Saturated Ground
S. L. Chen1; L. Z. Chen2; and E. Pan3

Abstract: In this paper, the vertical vibration of a flexible plate with rigid core resting on a semi-infinite saturated soil is studied
analytically. The behavior of the soil is assumed to follow Biot’s poroelastodynamic theory with compressible soil skeleton and pore
water, and the response of the time-harmonic excited plate is governed by the classical thin-plate theory. By virtue of the Hankel transform
technique, the fundamental solutions of the skeleton displacements, stresses, and pore pressure are derived, and a set of dual integral
equations associated with the relaxed boundary and completely drained condition at the soil-foundation contact interface are also
developed. These governing integral equations are further reduced to the standard Fredholm integral equations of the second kind and
solved by numerical procedures. Comparison with existing solutions for a rigid permeable plate on saturated soil confirms the accuracy
of the present solution. Selected numerical results are presented to show the influence of the permeability, the size of the rigid core, and
the plate flexibility on the dynamic interaction between the elastic plate with rigid core and the underlying saturated soil.

DOI: 10.1061/�ASCE�0733-9399�2007�133:3�326�

CE Database subject headings: Saturated soils; Vibration; Plates.
Introduction

Dynamic response of a foundation on the soil is of fundamental
importance in the field of soil-structure interaction, geomechan-
ics, and foundation vibration. Since Reissner’s pioneer work on
the forced vertical translation of a rigid circular plate attached to
an elastic half-space �Reissner 1936�, the dynamic mixed bound-
ary value problem has been a subject of extensive study. For
example, Bycroft �1956�, Awojobi and Grootenhuis �1965�,
Robertson �1966�, and Luco and Westmann �1971� investigated
various vibration responses of a rigid footing on an elastic half-
space. Pak and Gobert �1991� studied vertical vibrations of an
arbitrarily embedded rigid plate. The vibration of a flexible plate
was also considered by a number of researchers. Lin �1978� pre-
sented an integral equation approach for the case of a flexible
circular plate with a rigid perimeter. Iguchi and Luco �1982�
treated the vibration problem of a flexible circular plate with a
rigid core on a layered viscoelastic medium. Although Rajapakse
�1989� presented a solution to the dynamic response of an elastic
annular thin plate resting on a viscoelastic half-space, Mukherjee
�2001� recently solved the forced vertical vibration problem of a
flexible elliptic plate on an elastic half-space.
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Soils in general are two-phase materials consisting of a solid
skeleton with voids filled with water and thus should be more
realistically regarded as poroelastic materials. The theory of wave
propagation in a fluid-saturated porous medium was established
by Biot �1956a,b, 1962� and has since been widely used in many
engineering applications. Current development in this field can be
found in Detournay and Cheng �1993�, Cheng et al. �1998�, and
Chen et al. �2005�. Based on Biot’s poroelastic theory, various
problems related to the foundation vibration on homogeneous po-
roelastic half-spaces have been solved in the last two decades.
The first noteworthy publications were by Halpern and Christiano
�1986a,b�, who analyzed the time-harmonic responses of rigid
permeable and impermeable plates in smooth contact with a satu-
rated poroelastic half-space. Consequently, Kassir and Xu �1988�
and Kassir et al. �1989� examined the vibration of rigid rec-
tangular strip and circular foundations on a poroelastic half-space.
Philippacopoulos �1989� investigated a similar problem by con-
sidering the supporting medium as a partially saturated poroelas-
tic half-space. A conceptually similar approach was followed by
Jin and Liu �1999� for the vertical vibration of a circular plate on
a poroelastic half-space. Zeng and Rajapakse �1999� extended the
problem to include the influence of the embedded depth on the
vibration of a vertically loaded rigid plate. On the other hand,
Bougachia et al. �1993� and Senjuntichai and Rajapakse �1996�
obtained the dynamic solutions for a rigid footing on a multilay-
ered poroelastic medium using the finite element method and the
dynamic Green’s function approach, respectively. Senjuntichai
and Sapsathiarn �2003� even solved the forced vertical vibration
of a circular plate embedded in a multilayered poroelastic me-
dium. It is worth mentioning that, although many problems in-
volving foundation vibrations on poroelastic media have been
studied, the dynamic responses of a circular plate with a rigid
core supported by the saturated soil have not yet been reported in
the literature. Such solutions are important in geomechanics in
general and are necessary in evaluating the influences of the foun-
dation flexibility on the dynamic response in particular.
The objective of this paper is therefore to present an analytical



¯
¯
¯

solution to the vertical vibration of a flexible plate with rigid core
on saturated ground. We start with the general field equations in
cylindrical coordinates under the framework of Biot’s poroelasto-
dynamic theory, with the compressibility of both the soil skeleton
and the pore water being taken into account. General solutions for
the displacement and stress components of the saturated soil are
obtained by using Hankel integral transform technique. These
general solutions, in combination with the boundary conditions,
then lead to a set of dual integral equations which correspond to
the mixed boundary value problem for the vibration of the flex-
ible plate. The dual integral equations can be further reduced to a
Fredholm integral equation of the second kind and be finally
solved using the standard numerical procedures. The dynamic im-
pedance functions are finally derived. As numerical examples, the
influences of the permeability, the size of the rigid core, and the
plate flexibility on the dynamic impedance function are presented
and analyzed.

Governing Equations

Consider a massless flexible circular plate of radius r0 with a rigid
core of radius rb resting on the surface of a semi-infinite saturated
soil, with the cylindrical coordinates being used �Fig. 1�. The
flexible rigidity of the plate is denoted by D and Poisson’s ratio
by � f. A harmonic vertical force Pei�t with a circular frequency
� is applied at the center of the massless plate.

Assuming that the constitutive behavior of the soil follows
Biot’s two-phase linear theory, then due to the axis-symmetry of
the problem, the governing differential equations for the saturated
soil in the cylindrical coordinates �r ,� ,z�, in terms of displace-
ments, can be written as �Biot 1962; Halpern and Christiano
1986a,b; Senjuntichai and Rajapakse 1996�

G��2ur −
1

r2ur� + �� + �2M + G�
�e

�r
+ �M

��

�r
= �ür + �wv̈r

�1a�

G�2uz + �� + �2M + G�
�e

�z
+ �M

��

�z
= �üz + �wv̈z �1b�

�M
�e

�r
+ M

��

�r
= �wür + mv̈r + bv̇r �1c�

�M
�e

�z
+ M

��

�z
= �wüz + mv̈z + bv̇z �1d�

where ur and uz=radial and vertical displacements of the solid
matrix, respectively; vr and vz=average fluid displacements rela-
tive to the solid matrix in the r and z directions, respectively;
e and �=matrix dilation and the fluid dilation relative to the solid,
respectively, which are expressed as e=�ur /�r+ur /r+�uz /�z,
�=�vr /�r+vr /r+�vz /�z; �, G=Lame’s constants of the solid ma-
trix; �, M =Biot’s compressibility parameters of the soil skeleton
and water, respectively; �w=mass density of the water; �=mass
density of the bulk material ��=n�w+ �1−n��s, n=porosity and
�s=mass density of grains�; m=density-like parameter that de-
pends on �w and the geometry of the pores; b=parameter account-
ing for the internal friction due to the relative motion between the
solid matrix and pore water, and is equal to the ratio between the

fluid viscosity and the intrinsic permeability of the medium; and

JOUR
�2 denotes the �symmetric� Laplacian operator which is given by
�2=�2 /�r2+ �1/r�� /�r+�2 /�z2.

The constitutive relations for the z-direction traction compo-
nents and pore pressure in the saturated soil can be expressed as

�z = 2G
�uz

�z
+ �e �2a�

	zr = G� �ur

�z
+

�uz

�r
� �2b�

� f = − �Me − M� �2c�

where �z=effective normal stress component in the vertical
�z� direction; 	zr=shear stress; and � f denotes the excess pore
pressure.

Solutions of the Governing Equations

The motion under consideration is assumed to be time-harmonic
proportional to ei�t. With the introduction of the following dimen-
sionless variables r̄=r /r0, z̄=z /r0, ūr=ur /r0, ūz=uz /r0, v̄r=vr /r0,

vz=vz /r0, �̄w=�w /�, m̄=m /�, �̄=� /G, M̄ =M /G, �̄z=�z /G,
	zr=	zr /G, �̄ f =� f /G, a0= ��� /G��r0, t̄= ��G /���t /r0�, and

b=r0b /��G, Eqs. �1a�–�1d� and �2a�–�2c� are reduced to

�2ūr −
1

r̄2 ūr + ��̄ + �2M̄ + 1�
�e

�r̄
+ �M̄

��

�r̄
= − a0

2ūr − �̄wa0
2v̄r

�3a�

�2ūz + ��̄ + �2M̄ + 1�
�e

�z̄
+ �M̄

��

�z̄
= − a0

2ūz − �̄wa0
2v̄z �3b�

�M̄
�e

�r̄
+ M̄

��

�r̄
= − �̄wa0

2ūr − m̄a0
2v̄r + ib̄a0v̄r �3c�

�M̄
�e

¯
+ M̄

��

¯
= − �̄wa0

2ūz − m̄a0
2v̄z + ib̄a0v̄z �3d�

Fig. 1. Excited circular plate with a rigid core bearing on saturated
soils
�z �z
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�̄z = 2
�ūz

�z̄
+ �̄e �4a�

	̄zr =
�ūr

�z̄
+

�ūz

�r̄
�4b�

�̄ f = − �M̄e − M̄� �4c�

where the time factor ei�t or eia0t̄ has been suppressed in all ex-
pressions and also in the sequel for convenience.

Performing � /�r̄ �Eq. �3a��+1/ r̄ �Eq. �3a��+� /�z̄ �Eq. �3b��,
and � /�r̄ �Eq. �3c��+1/ r̄ �Eq. �3c��+� /�z̄ �Eq. �3d��, we obtain

��̄ + �2M̄ + 2��2e + �M̄�2� = − a0
2e − �̄wa0

2� �5�

�M̄�2e + M̄�2� = − �̄ a2e + �iba − m̄a2�� �6�
w 0 0 0

0 1
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For the problem considered, it is convenient to introduce the

th Hankel transform with respect to r defined as �Sneddon 1970�

f̃
�p� = H
�f� =�
0

�

rf�r�J
�rp�dr �7a�

f�r� =�
0

�

pf̃
�p�J
�rp�dp �7b�

where p=parameter for the Hankel transform; and J
 denotes the
first-kind Bessel function of order 
.

Application of the zero-order Hankel transform to Eqs. �5� and
�6� then results in

d4ẽ0

dz̄4 + �1
d2ẽ0

dz̄2 + �2ẽ0 = 0 �8�
where
�1 =
− 2M̄��̄ + 2�p2 + �m̄a0

2 − ib̄a0���̄ + �2M̄ + 2� − 2�M̄�̄wa0
2 + M̄a0

2

M̄��̄ + 2�

�2 =
M̄��̄ + 2�p4 − p2��m̄a0

2 − ib̄a0���̄ + �2M̄ + 2� − 2�M̄�̄wa0
2 + M̄a0

2� + ��m̄a0
2 − ib̄a0�a0

2 − �̄wa0
4�

M̄��̄ + 2�
The general solution of Eq. �8� can be written as

ẽ0 = − p1
2A1e−cz̄ − p2

2A2e−dz̄ �9�

in which c=�p2− p1
2 and d=�p2− p2

2, p1, p2=complex wave num-
bers associated with the dilatational waves of the first and second
kind, respectively, given by

p1
2 =

1 + �1
2 − 42

2
, p2

2 =
1 − �1

2 − 42

2

1 =
��̄ + �2M̄ + 2��m̄a0

2 − ib̄a0� − 2�M̄�̄wa0
2 + M̄a0

2

��̄ + 2�M̄

2 =
�m̄a0

2 − ib̄a0�a0
2 − �̄w

2 a0
4

��̄ + 2�M̄

and A1 and A2 are arbitrary functions of p. It is noted that the
wave numbers c and d are selected in such a way that Re�c��0,
Re�d��0.

Substituting Eq. �9� into the zero-order Hankel transform of
Eq. �5� or �6�, we find that

�̃0 = − p1
2�1A1e−cz̄ − p2

2�2A2e−dz̄ �10�

where

�1 =
��̄ + �2M̄ + 2�p1

2 − a0
2

�̄wa2 − �M̄p2
�2 =
�� + �2M̄ + 2�p2

2 − a0
2

�̄wa0
2 − �M̄p2

2

Applying further the Hankel transforms to Eqs. �3a�–�3d� and
substituting Eqs. �9� and �10� into the result, we obtain the fol-
lowing general solutions for the displacements:

ũ̄z
0�p, z̄� = − cA1e−cz̄ − dA2e−dz̄ + p2A3e−jz̄ �11�

ṽ̄z
0�p, z̄� = − c�1A1e−cz̄ − d�2A2e−dz̄ + p2�3A3e−jz̄ �12�

ũ̄r
1�p, z̄� = − pA1e−cz̄ − pA2e−dz̄ + pjA3e−jz̄ �13�

ṽ̄r
1�p, z̄� = − p�1A1e−cz̄ − p�2A2e−dz̄ + pj�3A3e−jz̄ �14�

where j=�p2−s2

s2 =
a0

2�ib̄a0 − m̄a0
2� + �̄w

2 a0
4

ib̄a0 − m̄a0
2

s=complex wave number associated with the rotational
wave and is again selected in such a way so that Re�j��0;

�3= �̄wa0
2 / �ib̄a0− m̄a0

2�; and A3=another arbitrary function of p.
Now making use of Eqs. �4a�–�4c�, the expressions for

the stresses of the solid matrix and pore water are obtained as
follows:

�̃̄z
0 = k1A1e−cz̄ + k2A2e−dz̄ − 2p2jA3e−jz̄ �15�

	̃̄1 = 2pcA1e−cz̄ + 2pdA2e−dz̄ − p�p2 + j2�A3e−jz̄ �16�
zr



�̃̄ f
0 = a1A1e−cz̄ + a2A2e−dz̄ �17�

where k1= ��̄+2�c2− �̄p2; k2= ��̄+2�d2− �̄p2; a1= ��+�1�M̄p1
2;

and a2= ��+�2�M̄p2
2.

Eqs. �11�–�17� are the Hankel-domain solutions for the dis-
placements and stresses of the solid matrix as well as the pore
water pressure. The three unknown functions A1, A2, and A3 ap-
pearing in these equations can be determined from the mixed
boundary condition at the ground surface, which is discussed in
the following.

Mixed Boundary Value Problem

Let us assume that the flexible plate is in frictionless contact with
the underlying soil half-space and that the ground surface is fully
permeable, either within or exterior to the contact area. The rel-
evant boundary conditions at z̄=0 can thus be expressed as

	̄zr�r̄,0� = 0 �0 � r̄ � �� �18a�

�̄z�r̄,0� = 0 �1 � r̄ � �� �18b�

�̄ f�r̄,0� = 0 �0 � r̄ � �� �18c�

ūz�r̄,0� = �̄v − H�r̄ − r̄b�w̄�r̄� �0 � r̄ � 1� �18d�

where w̄=w /r0, �̄v=�v /r0 with �v denoting the vertical displace-
ment of the rigid portion of the plate and w the plate deflection
relative to its rigid core, respectively; r̄b=rb /r0; and H�r̄− r̄b� is
the Heaviside function.

Making use of the boundary conditions �18a�–�18c�, the three
unknown functions A1, A2, and A3 in Eqs. �15�–�17� can be easily
determined. Subsequent substitution of the result into Eq. �11�
leads to the following expression:

ūz�r̄,0� 	 �
0

�

pũ̄z
0�p,0�J0�pr̄�dp =�

0

�

pf�p��̃̄z
0�p,0�J0�pr̄�dp

�19�

in which

f�p� =
s2�a1d − a2c�

a1k2�2p2 − s2� − a2k1�2p2 − s2� − 4p2j�a1d − a2c�

Substituting Eq. �19� into Eq. �18d� yields

�
0

�

p−1�1 + h�p��B�p�J0�pr̄�dp = −
�̄v

1 − �
+ H�r̄ − r̄b�

w̄�r̄�
1 − �

�20�

where B�p�= p�̃̄z
0�p ,0�; h�p�=−pf�p� / �1−��−1; and � is Pois-

son’s ratio of soil. It is important to note that limp→� pf�p�
=−�1−��, i.e., limp→� h�p�=0.

The relative deflection of the flexible port of the plate, w̄�r̄�
in Eq. �20�, must satisfy the following differential equation
�Szilard 1974�:

� d

dr̄2 +
1

r̄

d

dr̄
�2

w̄�r̄� = − ��̄z�r̄,0�, r̄b � r̄ � 1 �21�

where the dimensionless flexural rigidity � is defined as
3
�=Gr0 /D.

JOUR
Introducing the integral representation

w̄�r̄� = − ��
0

�

p�̃̄z
0�p,0�w̃�r̄,p�dp �22�

Eq. �21� then becomes

� d

dr̄2 +
1

r̄

d

dr̄
�2

w̃�r̄,p� = J0�pr̄� �23�

The solution for w̃�r̄ , p� can be obtained as

w̃�r̄,p� = A0 + B0r̄2 + C0 ln r̄ + D0r̄2 ln r̄ +
J0�pr̄�

p4 �24�

where A0, B0, C0, and D0 can be determined from the plate bound-
ary conditions, i.e.,

�w̄�r̄=r̄b
= 
dw̄

dr̄
�

r̄=r̄b

= 0, 
d3w̄

dr̄3 +
1

r̄

d2w̄

dr̄2 �
r̄=1

= 0

�25�


d2w̄

dr̄2 +
v f

r̄

dw̄

dr̄
�

r̄=1

= 0

Therefore, the final expression for w̃�r̄ , p� is

w̃�r̄,p� =
1

p4 �J0�pr̄� − J0�pr̄b�� +
r̄2 − r̄b

2

2r̄b

J1�pr̄b�
p3

+ e0�ln
r̄

r̄b

−
r̄2 − r̄b

2

2r̄b
2 � · ��1 + v f�
 J1�pr̄b�

r̄bp3 −
J1�p�

p3 �
+

J2�p�
p2 −

J1�p�
2p

 − 
r̄2 ln
r̄

r̄b

−
r̄2 − r̄b

2

2

− 2e0�1 + v f��ln
r̄

r̄b

−
r̄2 − r̄b

2

2r̄b
2 �ln r̄b� J1�p�

4p
�26�

where

e0 =
r̄b

2

1 + r̄b
2 + v f�1 − r̄b

2�

Substituting Eq. �22� into Eq. �20�, and with the aid of the
relation

�̄z�r̄,0� =�
0

�

p�̃̄z
0�p,0�J0�pr̄�dp �27�

we finally obtain

�
0

�

p−1B�p�J0�pr̄�dp

= −
�̄v

�1 − ��
−�

0

�

p−1h�p�B�p�J0�pr̄�dp

−�
0

�
�

�1 − ��
H�r̄ − r̄b�B�p�w̃�r̄,p�dp �0 � r̄ � 1�

�28a�

��

B�p�J0�pr̄�dp = 0 �r̄ � 1� �28b�

0
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Eqs. �28a� and �28b� constitute a set of dual integral equations
where the mixed boundary value problem is formulated in terms
of the transformed unknown stresses under the circular plate.
These equations can be treated by employing the following inte-
gral representation

B�p� = −
2

�

�̄v

1 − �
p�

0

1

��x�cos pxdx �29�

so that the determination of the normal contact stress is reduced
to the evaluation of ��x�. It can be shown that the representation
�29� for B�p� satisfies Eq. �28b� identically. Further, substitution
of Eq. �29� in Eq. �28a� leads to the Fredholm integral equation

��x� +�
0

1

K�x,y���y�dy = 1 �30�

where the kernel

K�x,y� =�
0

� 2

�
h�p�cos�px�cos�py�dp +

2�

�1 − ����0

�

p cos�py�

�� d

dx
�

0

� r̄H�r̄ − r̄b�w̃�r̄,p�
�x2 − r̄2

dr̄dp �31�

can be further reduced to �see the Appendix�

K�x,y� =
2

�
�

0

�

h�p�cos px cos pydp, 0 � x � r̄b or 0 � y � r̄b

�32a�

K�x,y� =
2

�
�

0

�

h�p�cos px cos pydp +
�

��1 − ��

���x2 + y2�ln
r̄b

��x2 − y2�

x�y2 − r̄b
2 + y�x2 − r̄b

2

+ 2xy ln
�y2 − r̄b

2 + �x2 − r̄b
2

��x2 − y2�
+

xy

r̄b
2
�x2 − r̄b

2�y2 − r̄b
2

− e0�1 + v f� · 
ln
x + �x2 − r̄b

2

r̄b
2 −

x�y2 − r̄b
2

r̄b
2 �

�
ln
y + �y2 − r̄b

2

r̄b
2 −

y�x2 − r̄b
2

r̄b
2 �

r̄b � x � 1 and r̄b � y � 1 �32b�

In addition, the force equilibrium for the massless circular plate
requires

P = −�
0

r0

�z�r,0�2�rdr = − 2�Gr0
2�̃̄z

0�0,0� �33�

In view of Eq. �29� and by considering the typical complex
stiffness representation, the force-displacement relationship for
the flexible plate can be obtained as

P =
4Gr0�v

1 − �
�

0

1

��x�dx =
4Gr0�v

1 − �
�Kvv�a0� + ia0Cvv�a0��

�34�

where 4Gr0 / �1−�� corresponds to the static vertical impe-

dance for a rigid plate with radius r0 on an elastic half-space
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characterized by shear modulus G and Poisson’s ratio �;
Kvv=�0

1Re���x��dx and Cvv= �1/a0��0
1Im���x��dx can be inter-

preted, respectively, as the vertical dynamic stiffness and damping
coefficients. The function ��x� is solved from the Fredholm inte-
gral equation �30� using standard numerical techniques.

To find the contact stress, we substitute B�p�= p�̃̄z
0�p ,0�

into Eq. �29� and then carry out the inverse Hankel transform
of the result. In so doing, the contact stresses between the plate
and the underlying saturated soil can be expressed in terms of
��x� as

�̄z�r̄,0� =
P

2�Gr0
2

1

r̄

d

dr̄
�

r̄

1 x

�x2 − r̄2
��x�dx

�
0

1

��x�dx

�35�

Similarly, the bending moment of the outer flexible plate, Mr,
can be obtained by substituting Eq. �22� into the relationship

Mr = D
d2w

dr2 +
v f

r

dw

dr
�

�Szilard 1974�. The resulting expression is

M̄r�r̄� =
Mr

Gr0
2 =

P

2�Gr0
2

�
0

1

��x��
0

�

p
d2w̄

dr̄2 +
v f

r̄

dw̄

dr̄
�cos�px�dpdx

�
0

1

��x�dx

�36�
r̄b � r̄ � 1

We remark that the present solution contains the vertical vi-
bration of a rigid or flexible plate as two special cases. For a
completely rigid plate, �=0, Eqs. �32a� and �32b� are then sim-
plified to

K�x,y� =�
0

�

h�p�cos px cos pydp, 0 � x � 1 and 0 � y � 1

�37�

This kernel function is identical to the one derived in Chen
�2000�. On the other hand, if the plate is fully flexible, r̄b in
Eq. �26� then approaches zero, which gives us

lim
r̄b→0

w̄�r̄,p� =
J0�pr̄�

p4 −
1

p4 +
r̄2

4p2 +
r̄2

2�1 + v f�

��−
1 + v f

2p2 +
J1��p�

p2 + v f

J1�p�
p3 +

J1�p�
2p


+

r̄2

8p
J1�p� −

r̄2

4p
ln r̄J1�p� �38�

Substitution of this expression in Eq. �28a� reduces the integral
equation exactly to that for a fully flexible plate �Chen 2000�.

Finally, it should be noted that with some modifications, the
preceding approach for fully pervious plate can be used to ana-
lyze the case of an impermeable plate. In that case the boundary
conditions Eqs. �18a�, �18b�, and �18d� remain unchanged,
whereas the hydraulic boundary condition Eq. �18c� at the plate-

soil interface becomes



¯

v̄z�r̄,0� = 
d�̄ f�r̄, z̄�
dz̄

�
z̄=0

= 0 �0 � r̄ � 1� �39a�

�̄ f�r̄,0� = 0 �1 � r̄ � �� �39b�

The corresponding mixed boundary value problem should be for-
mulated in terms of the transformed contact stress and the surface
pore pressure which results in a coupled system of dual integral
equations. These dual integral equations can again be reduced to
two coupled Fredholm integral equations of the second kind by
introducing two auxiliary functions and subsequently solved by
numerical procedure. The dynamic response of the vertically
loaded impermeable plate can thus be obtained. Details can be
found in Zeng and Rajapakse �1999� and Jin and Liu �1999�.

Numerical Results

Comparison with Existing Solutions for Purely
Elastic Soil

The accuracy of the present solution is verified by comparing the
compliance functions for a vertically loaded rigid circular footing
on a homogeneous saturated semi-infinite soil with the corre-
sponding results presented by Zeng and Rajapakse �1999�. In
order to make the comparison, Eq. �34� is now given in an alter-
native form as

�v =
�1 − ��P

4Gr0
�F1�a0� + iF2�a0�� �40�

where F1�a0�+ iF2�a0� denotes the dynamic compliance function
that is given by

F1�a0� = Re
 1

Kvv�a0� + ia0Cvv�a0��
F2�a0� = Im
 1

Kvv�a0� + ia0Cvv�a0��
The parameters used for this reduced problem are as follows:

�=0.97, M̄ =M /G=12.2, m̄=m /�=1.1, �̄w=�w /�=0.53,

b=ab /��G=2.3, �=0, and �=1/4. The computed compliance
coefficients, F1 and F2, from the present study for the rigid per-
meable plate case as well as those from Zeng and Rajapakse
�1999� are shown in Fig. 2. It is evident that the two results are in
excellent agreement.

Solution for Saturated Soil

After validating our formulation for the reduced case, we
now consider the dynamic response of a flexible plate with rigid
core resting on the saturated soil and investigate in detail the
influence of the soil and plate properties. For illustration pur-
poses, numerical results are obtained for the following nondimen-

sional material parameters: v f =0.167, v=0.4, M̄ =12.2, m̄=1.1,

�=0.97, and �̄w=0.53. In addition, different values of b̄=1,
100,10,000, r̄b=0.25,0.5,0.75, and �=0,1 ,10,100,1,000 are
adopted to examine the influence of the soil permeability,
rigid core size, and plate flexibility on the dynamic impedance
function. Evidently a value of �=0 corresponds to a fully rigid

foundation.
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Figs. 3–8 show the variation of Kvv and Cvv with the normal-
ized frequency a0 for three different values of internal friction

parameter b̄. It is observed that for b̄=10,000 �low-permeability
soil�, the dynamic stiffness coefficient Kvv decreases monotoni-
cally with increasing frequency a0 except for the very low fre-

quency range �Fig. 7�. However, for b̄=1 and 100, the dynamic
stiffness coefficient Kvv could be oscillatory with respect to a0

for certain combinations of rb /r0 and � �e.g., Figs. 3�a� and 5�a��.
It is further shown that at low frequencies the dynamic stiffness
coefficients for flexible plates are considerably smaller than those
for rigid foundations. Generally the stiffness coefficient decreases
as the plate becomes more flexible. At higher frequencies, the
influence of the flexural rigidity on the stiffness coefficient is

rather complicated, although for large values of b̄ and r̄b the stiff-
ness Kvv may increase with increasing �. On the other hand, for

all the three values of b̄ and the frequency range covered in this
paper, the dynamic damping coefficient Cvv decreases as � in-
creases. Compared with the stiffness coefficient, the damping co-
efficient is relatively insensitive to the variation of the internal
friction parameter.

There are also a couple of interesting features in Figs. 3–8 that
are worthy to discuss: First, with increasing flexural rigidity of the
plate ���, the dynamic stiffness and damping coefficients become
less frequency-dependent. In addition, the influence of the plate

Fig. 2. Comparison of compliance function for a rigid plate on
saturated soil: �a� real part; �b� imaginary part
flexibility on the stiffness and damping coefficients decreases as
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the radius of the rigid core increases. The effects of the plate
rigidity and rigid core size are essentially similar to those de-
scribed by Iguchi and Luco �1982� for the corresponding vis-
coelastic case.

Of particular interest are the vibration responses of a circular
foundation supported on a highly permeable soil or a nearly im-
permeable soil. In these two limiting cases, the dynamic stiffness
and damping coefficients of the foundation can be determined in
a straightforward way from Eqs. �30� and �34�, where the nondi-

¯

Fig. 3. Influence of plate flexibility on dynamic stiffness coefficient

for b̄=1: �a� rb /r0=0.25; �b� rb /r0=0.50; and �c� rb /r0=0.75
mensional parameter b is taken respectively to be arbitrarily small
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�b̄→0� and arbitrarily large �b̄→��. In the limit of b̄ approaching
zero, all excess pore pressure is dissipated and the elastic skeleton
will alone carry the stress. Therefore the saturated soil can be
adequately represented by using an elastic model with the shear
modulus and Poisson’s ratio corresponding to the drained values,

i.e., G0=G, �0=�=� /2��+G�. On the other hand, if b̄ approaches
infinity, no pore water would have yet been drained so that the
variation of the fluid volume per unit reference volume � is zero.
This implies that the constitutive relations, e.g., Eqs. �2a�–�2c�,

Fig. 4. Influence of plate flexibility on dynamic damping coefficient

for b̄=1: �a� rb /r0=0.25; �b� rb /r0=0.50; and �c� rb /r0=0.75
should be modified to



�z − �� f = 2G
�uz

�z
+ �� + �2M�e, 	zr = G� �ur

�z
+

�uz

�r
�

�41�
� f = − �Me

where �z−�� f essentially presents the total normal stress
component including the contribution of the pore water. Thus
the saturated soil behaves as if it were an equivalent elastic
medium with shear modulus G�=G and Poisson’s ratio
��= ��+�2M� /2��+�2M +G�. Again, the dynamic impedance
functions can be obtained by resorting to the ideal elastic case.

Fig. 5. Influence of plate flexibility on dynamic stiffness coefficient

for b̄=100: �a� rb /r0=0.25; �b� rb /r0=0.50; and �c� rb /r0=0.75
The above-presented statement is indeed graphically confirmed
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by Fig. 9, which depicts the variation of the impedance coeffi-

cients with a0 for saturated soils with b̄=10−2 and b̄=106 as well
as those corresponding to the elastic media with Poisson’s ratio
�0=�=� /2��+G�=0.4 and ��= ��+�2M� /2��+�2M +G�=0.47.
In preparing Fig. 9, the soil parameters utilized are the same as
those used in Figs. 3–8, but the relative flexibility of the plate, �,
and the size of the rigid core, r̄b, are fixed to be 10 and 0.5,
respectively. It should also be pointed out that the results for the
elastic case of v�=0.47 have been multiplied by �1−�� / �1−v��.
The necessity for this change stems from the fact that the stiffness
and damping coefficients for the elastic case are in fact normal-

Fig. 6. Influence of plate flexibility on dynamic damping coefficient

for b̄=100: �a� rb /r0=0.25; �b� rb /r0=0.50; and �c� rb /r0=0.75
ized by v�=0.47, and obviously not consistent with the Poisson’s
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¯

ratio of v=0.4 adopted for normalizing the saturated soil. Simi-
larly, for comparison, the impedance functions of elastic medium
with v0=0.4 are plotted against an adjusted nondimensional fre-
quency defined by

a0� =��1 − n��s

�
� �

G
r0� =�1 −

�̄w
2

m̄
a0

Further, by setting a0=�=0, the impedance functions for

the two limiting cases of b̄→0 and b̄→� would ultimately be
simplified to the well-known static force-displacement relation-

Fig. 7. Influence of plate flexibility on dynamic stiffness coefficient

for b̄=10,000: �a� rb /r0=0.25; �b� rb /r0=0.50; and �c� rb /r0=0.75
ships for a rigid foundation bearing on an elastic soil, i.e.,
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4Gr0�v / P=1−�0 and 1−��, respectively. Table 1 shows the
calculated compliance functions 4Gr0�v / P from the present
study for different values of Poisson’s ratio of the solid skeleton.
As can be seen, the results agree well with the explicit analytical
solutions.

Finally, the influences of the plate flexibility on the stress dis-
tribution under the circular plate and the plate bending moment
are studied. As an example, Figs. 10 and 11 present the numerical
results for a flexible circular plate with rigid core �v f =0.167,

rb=0.5� supported on a semi-infinite saturated soil �b̄=100,

�=0.4, M̄ =12.2, m̄=1.1, �=0.97, �̄w=0.53� for four values of
�=1,10,100,1000. In Figs. 10 and 11, the contact pressure and

Fig. 8. Influence of plate flexibility on dynamic damping coefficient

for b̄=10,000: �a� rb /r0=0.25; �b� rb /r0=0.50; and �c� rb /r0=0.75
bending moment are normalized by



¯

�r0
2�z�r̄,0�

P

and

�2�r̄Mr�r̄�
P

�
respectively, and the dimensionless frequency a0=2 is adopted.
As expected, the contact stress distribution depends strongly on
the plate flexibility. A relatively stiff plate having �=1 or 10 tends
to exhibit significant stress concentration near the edge. As the
plate flexibility increases, the concentration domain moves to-
ward the boundary between the rigid and flexible portion of the
plate �r̄b=0.5�. The bending moment distribution of the outer

Table 1. Static Compliances of a Rigid Plate on Highly Permeable and

Poisson’s ratio of soil skeleton

Analytical
solutions

�elastic soil�

�=0 ��0=0, ��=0.460� 1.00

�=1/5 ��0=1/5, ��=0.462� 0.80

�=1/4 ��0=1/4, ��=0.463� 0.75

�=1/3 ��0=1/3, ��=0.465� 0.67

�=1/2 ��0=1/2, ��=0.500� 0.50

Fig. 9. Impedance functions for a foundation on saturated soils with

b→0 and b̄→�: �a� Stiffness coefficient; �b� damping coefficient
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flexible plate is also greatly influenced by the plate flexibility and
its value decreases as � increases.

Conclusions

This paper presents an analytical solution for the vertical vibra-
tion of a flexible plate with a rigid core resting, in smooth contact,
on a semi-infinite saturated soil. The soil skeleton and the pore
water are both considered to be compressible. The Hankel trans-
form techniques are employed in deriving the fundamental solu-
tions of the skeleton displacements, stresses, and pore pressure,
which are subsequently used to formulate a set of dual integral
equations associated with the required mixed boundary value
problem. It is further shown that these integral equations can be
reduced to a Fredholm integral equation of the second kind and

Impermeable Saturated Soils

4Gr0�v / P

umerical
results

b̄=10−2�

Analytical
solutions

�elastic soil�

Numerical
results

�b̄=106�

92−0.0044j 0.540 0.5593−0.0098j

95−0.0032j 0.538 0.5515−0.0081j

96−0.0039j 0.537 0.5488−0.0075j

64−0.0036j 0.535 0.5429−0.0062j

09−0.0020j 0.500 0.5008−0.0021j

Fig. 10. Contact stress distribution for flexible plates on saturated
soils: �a� real part; �b� imaginary part
Nearly

N

�

0.99

0.79

0.74

0.66

0.50
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subsequently solved with the standard numerical procedure. The
solution of the Fredholm integral equation is then utilized to
evaluate the influences of the plate flexibility, the internal friction
parameter of the soil, and the exciting frequency on the dynamic
stiffness and damping coefficients. For the reduced simple cases,
the present solutions are in very good agreement with the existing
solutions.

Numerical results presented in this paper show that the plate
flexibility leads to a considerable reduction of the dynamic stiff-
ness coefficient at low frequency, while at the high frequency the
behavior of the dynamic stiffness coefficient becomes compli-
cated. The dynamic damping coefficient Cvv in general decreases
with increasing flexural rigidity and is relatively insensitive to the
variation of the internal friction parameter b as compared to the
stiffness coefficient. Our numerical results also indicate that with
increasing flexural rigidity of the plate ���, the dynamic stiffness
and damping coefficients become less frequency-dependent,
while the influences of the plate flexibility on the stiffness and
damping coefficients decrease as the radius of the rigid core in-

Fig. 11. Bending moment profile for flexible plates on saturated soil
b b
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creases. Finally, it is found that the distributions of contact stress
and bending moment strongly depend on the plate flexibility. A
plate with low value of � �stiffer� indicates large stress concen-
tration near the edges and also large bending moment; as the plate
flexibility increases, the stress concentration domain moves to-
ward the boundary between the rigid and flexible portion of the
plate.

Appendix

We assume without the loss of generality that y�x� r̄b. The
function w̃�r̄ , p� in Eq. �26� can be written as

w̃�r̄,p� = w1�r̄,p� + w2�r̄,p� + w3�r̄,p� + w4�r̄,p� + w5�r̄,p�

�42�

where

w1�r̄,p� =
1

p4 �J0�pr̄� − J0�pr̄b�� +
r̄2 − r̄b

2

2r̄b

J1�pr̄b�
p3

w2�r̄,p� = e0�ln
r̄

r̄b

−
r̄2 − r̄b

2

2r̄b
2 ��1 + v f�
 J1�pr̄b�

r̄bp3 −
J1�p�

p3 �
w3�r̄,p� = e0�ln

r̄

r̄b

−
r̄2 − r̄b

2

2r̄b
2 �
 J2�p�

p2 −
J1�p�

2p
�

w4�r̄,p� = e0�1 + v f�ln r̄b�ln
r̄

r̄b

−
r̄2 − r̄b

2

2r̄b
2 � J1�p�

2p

w5�r̄,p� = − �r̄2 ln
r̄

r̄b

−
r̄2 − r̄b

2

2
� J1�p�

4p

By employing the following relations and formulas for the inte-
grals involving Bessel functions
d

dx
�

r̄b

x r̄

�x2 − r̄2� J0�pr̄� − J0�pr̄b�
p3 +

r̄2 − r̄b
2

2r̄b

J1�pr̄b�
p2 dr̄ =

d

dx
�

r̄b

x

�x2 − r̄2�− J1�pr̄�
p2 +

r̄J1�pr̄b�
r̄bp2 dr̄ =

x

p
�

r̄b

x ��x2 − r̄2J2�pr̄�
r̄

dr̄ �43�

�
0

� � J1�r̄bp�
r̄bp2 −

J1�p�
p2 cos�py�dp =�

r̄b

1 1

r̄b
��

0

� 1

p
J2�r̄bp�cos�py�dpdr̄b

= � −
1

2� y2�1 − r̄b
2�

r̄b
2 + ln r̄b y � r̄b

−
1

2� y2�1 − r̄b
2�

r̄b
2 + ln r̄b −

y�y2 − r̄b
2

r̄b
2 − ln

r̄b

y + �y2 − r̄b
2 y � r̄b� �44�

we obtain

2�

��1 − ���0

�

p cos�py�� d

dx
�

0

x r̄H�r̄ − r̄b�w1�r̄,p�
�x2 − r̄2

dr̄dp

=
2�

��1 − ���0

� x

p
cos�py��

r̄b

x

�x2 − r̄2J2�r̄p�
r̄

dr̄dp =
�

��1 − ���
y2 ln
x + �x2 − r̄b

2

r̄b

−
xy2�x2 − r̄b

2

r̄b
2 � + 
x2 ln

x + �x2 − r̄b
2

r̄b

− x�x2 − r̄b
2�
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 xy
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2
�x2 − r̄b
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+ 2xy ln
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2
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2�

��1 − ���0

�

p cos�py�
d

dx
�

0

x r̄H�r̄ − r̄b�w2�r̄,p�
�x2 − r̄2

dr̄dp

= −
�

��1 − ��
e0�1 + v f�

�� y2�1 − r̄b
2�

r̄b
2 + ln r̄b −

y�y2 − r̄b
2

r̄b
2 − ln

r̄b

y + �y2 − r̄b
2 f�x�

�46�

in which

f�x� =
d

dx
�

r̄b

x r̄

�x2 − r̄2�ln
r̄

r̄b

−
r̄2 − r̄b

2

2r̄b
2 dr̄

= ln
x + �x2 − r̄b

2

r̄b

−
x�x2 − r̄b

2

r̄b
2 �47�

2�

��1 − ���0

�

p cos�py�
d

dx
�

0

x r̄H�r̄ − r̄b�w3�r̄,p�
�x2 − r̄2

dr̄dp

= −
2�

��1 − ��
e0y2f�x� �48�

2�

��1 − ���0

�

p cos�py�
d

dx
�

0

x r̄H�r̄ − r̄b�w4�r̄,p�
�x2 − r̄2

dr̄dp

=
�

��1 − ��
e0�1 + v f�ln r̄bf�x� �49�

2�

��1 − ���0

�

p cos�py�
d

dx
�

0

x r̄H�r̄ − r̄b�w5�r̄,p�
�x2 − r̄2

dr̄dp

=
�

��1 − ���x�x2 − r̄b
2 + x2 ln

x − �x2 − r̄b
2

r̄b
 �50�

Substitution of Eqs. �45�–�50� in Eq. �31� finally yields the
closed-form expression for the kernel K�x ,y�, as shown in Eq.
�32b� of the main text.
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