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Abstract

The state-vector approach is proposed to analyze the free vibration of magneto-electro-elastic laminate plates. The

extended displacements and stresses can be divided into the so-called in-plane and out-of-plane variables. Once the state

equation for the out-of-plane variables is obtained, a complex boundary value problem is converted into an equivalent

simple initial value problem. Through the state equation, the propagator matrix between the top and bottom interfaces of

every layer can be easily derived. The global propagator matrix can also be assembled using the continuity conditions. It is

obvious that the order of global propagator matrix is not related to the number of layers. Consequently, this approach

possesses certain virtues including simple formulation, less expensive computation, etc. To test the formulation, the

developed solution is then applied to a simply supported multilayered plate constructed of piezoelectric and/or

piezomagnetic materials. The natural frequencies and corresponding mode shapes are computed and compared with

existing results. Furthermore, the fundamental modes along with a couple of other higher modes, which have never been

reported in previous literature, are presented. Therefore, this completed set of frequencies and mode shapes can be used as

benchmarks for future research in this field. It is also believed that the approach could be useful in the analysis and design

of smart structures constructed from piezoelectric/piezomagnetic composites.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The use of bonded and embedded actuators and sensors (piezoelectric and/or piezomagnetic) in structural
components is rapidly promoting the development of a new technology of so-called smart materials and
structures, which has attracted a great deal of attention in the past few years. For this type of laminated
structures, there are many technical challenges in representing the interaction of the magneto-electro-elastic
fields. It is well known that the laminated piezoelectric and piezomagnetic materials possess electric-magneto-
elastic coupling behaviors. That is, when they undergo elastic deformation, they produce the electric field or
magnetic field, and vice versa. Many different approaches have been developed for the analysis of these
behaviors for various representative structures. While Heyliger and Saravanos [1] and Gao et al. [2] analyzed
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the free vibration of piezoelectric laminated structures, Cheng et al. [3] and Zhang et al. [4] presented exact
solutions for relatively complicated piezoelectric structures under static deformation. Recently Pan [5] derived
the exact closed-form solution for the static deformation of a simply supported magneto-electro-elastic layered
plate with a new and simple formalism which is based on the pseudo-Stroh formalism and the propagator
matrix method. That approach was extended to the analysis of free vibrations of similar layered structures by
Pan and Heyliger [6]. More recently, Lage et al. [7] developed a very nice finite element model for the
structures made of magneto-electro-elastic materials with complex geometry.

The state-vector approach is a very useful tool for the analysis of laminated structures. Initially the
approach was employed in the analysis of purely elastic structures [8–11]. It was then extended to investigate
the exact solutions of piezoelectric and/or piezomagnetic structures under static deformation [12–16]. In this
approach, the extended displacements and stresses can be divided into the so-called in-plane and out-of-plane
variables. Once the state equation for out-of-plane variables is obtained, a complex boundary value problem is
converted into an equivalent simple initial value problem. The propagator matrix between the top and bottom
interfaces of each layer can be derived easily by solving the state equation. The global propagator matrix can
also be assembled using the appropriate continuity conditions between the layers. It is obvious that the order
of the global propagator matrix is not related to the number of layers. Consequently, this approach possesses
certain advantages, including a simple and concise formulation and less-expensive computation.

In this paper, the equations of motion for magneto-electro-elastic laminate structures are derived by virtue
of the state-vector approach. By considering the boundary conditions of a simply supported plate, we express
the analytical solution of the equations of motion in the form of an infinite series, and then a simple state
equation is obtained. After assembling the propagator matrix for each layer, a very simple equation which
directly relates the top and bottom surfaces of the layered plate is derived. With the application of boundary
conditions, the natural frequencies and corresponding modal shapes can then be directly obtained by solving
the resulting equation.

As a numerical example, we apply our solution method to the sandwich plate made of piezoelectric BaTiO3

and magnetostrictive CoFe2O4, with four different lay-ups (i.e., B only, F only, B/F/B, and F/B/F, with B
standing for BaTiO3 and F for CoFe2O4). Representative results are presented and compared with those in
Ref. [6]. Besides the perfect matches to the available literature results, the fundamental and a couple of higher
modes are presented. While the complete set of natural frequencies and modal shapes can serve as benchmarks
in future research, the proposed general approach could be useful in the efficient analysis and design of smart
structures constructed from piezoelectric/piezomagnetic composites.

2. State space equation

Consider an anisotropic, magneto-electro-elastic, and N-layered rectangular plate with horizontal
dimensions Lx and Ly and total thickness H (in the vertical or thickness direction) as shown in Fig. 1. A
Cartesian coordinate system is attached to the plate and its origin is at one of the four corners on the bottom
surface, with the plate occupying the positive region. Layer j is bonded by the lower interface zj�1 and the
upper interface zj with thickness hj ¼ zj�zj�1. We assume that the extended displacement and traction vectors
are continuous across the layer interface. On the top and bottom surfaces of the plate, a combination of
traction and/or displacements are assumed to be known. We further assume that its four edges are simply
supported, which is consistent with Eq. (18) in the next section.

For a linear, anisotropic magneto-electro-elastic solid, the coupled constitutive equation can be written in
the following form:

si ¼ cikgk � ekiEk � qkiHk; Di ¼ eikgk þ �ikEk þ dikHk; Bi ¼ qikgk þ dikEk þ mikHk, (1)

where si, Di and Bi are the stress, electric displacement and magnetic induction, respectively; gk, Ek and Hk are
the strain, electric field and magnetic field, respectively; cik, eik and mik are the elastic, dielectric, and magnetic
permeability coefficient matrices, respectively; and eik, qik and dik are the piezoelectric, piezomagnetic and
magnetoelectric coefficients, respectively. We remark that various uncoupled cases can be reduced by setting
the appropriate coefficients to zero, while material coefficients used in this paper are taken from Pan and
Heyliger [6] and Ramirez et al. [17].
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The relationship between strain and displacement, electric (magnetic) field and its potential can be expressed
as

gij ¼ 0:5 ui;j þ uj;i

� �
; Ei ¼ �j;i; Hi ¼ �c;i, (2)

where ui ¼ u v w½ �T are the elastic displacements, and j and c are the electric and magnetic potentials,
respectively. The subscript after the comma, e.g., ‘‘,i’’, in the elastic displacement, electric and magnetic
potentials denotes partial derivative with respect to the ith component of the coordinates.

For the free vibration problem, the body forces, electric charge and current densities are zero; thus the
governing equations of motion for the dynamic case are given by

sij;j ¼ r
q2ui

qt2
; Dj;j ¼ 0; Bj;j ¼ 0, (3)

where r is the density of the material. Eqs. (1) to (3) form the equation set which includes 17 equations and 17
unknowns. The 17 unknowns are composed of three elastic displacements, six stresses, three electric
displacements, three magnetic inductions, one electric potential and one magnetic potential.

To solve the problem conveniently, we will first convert the unknowns into the dimensionless forms, as
defined below:

s ¼ s=cmax; D ¼ D=emax; B ¼ B=qmax; s ¼ s=xmax; j ¼ jemax=cmax, (4)

c ¼ cqmax=cmax; r ¼ r=rmax; o ¼ oxmax

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmax=rmax

p
, (5)

where cmax, emax and qmax are the maximum values of the elastic, piezoelectric and piezomagnetic coefficients
of the given materials. Similarly, xmax is the maximum length of the laminate including side lengths and
thickness, and rmax is the maximum material density among all layers.

The 17 unknowns can be divided into two categories. One is termed in-plane variables (related to the in-
plane stress, electrical displacement and magnetic displacement, which are taken as secondary variables). The
other is termed out-of-plane variables (related to the extended displacements and tractions, which are taken as
primary variables). The primary variables are expressed in the vector form as

g ¼ u v Dz Bz sz tzx tzy j c w
� �T

, (6)

where the superscript T denotes transpose, subscripts x, y and z correspond to subscripts 1, 2 and 3 in Eqs. (1),
(2) and (3). With the state-vector approach, the secondary variables can be easily connected to the primary
variables. However, for simplification, only the state equation for the primary variables is considered, which
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Fig. 1. The magneto-electro-elastic layered plate.
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can be written as

qg
qz
¼ Ag, (7)

where

A ¼
0 A1

A2 0

" #
, (8)

and

A1 ¼

a 0 b1
q
qx

g1
q
qx

�
q
qx

b b4
q
qy

g3
q
qy

�
q
qy

b2
q2

qx2
þ b5

q2

qy2
b3

q2

qx2
þ b6

q2

qy2
0

Sym g2
q2

qx2
þ g4

q2

qy2
0

r
q2

qt2

2
666666666666666664

3
777777777777777775

. (9)

The coefficients in Eq. (9) are

a ¼
1

c55
; b ¼

1

c44
; b1 ¼ �

e15

c55
; g1 ¼ �

q15

c55
,

b2 ¼ �11 þ
e215
c55

; b3 ¼ d11 þ
e15q15

c55
; b4 ¼ �

e24

c44
,

b5 ¼ �22 þ
e224
c44

; b6 ¼ d22 þ
e24q24

c44
; g3 ¼ �

q24

c44
,

g2 ¼ m11 þ
q2
15

c55
; g4 ¼ m22 þ

q2
24

c44
. ð10Þ

In Eq. (8), the submatrix A2 is given as

A2 ¼

�a11
q2

qx2
� c66

q2

qy2
þ r

q2

qt2
�a12

q2

qxqy
� c66

q2

qxqy
�n21

q
qx
�n31

q
qx
�n11

q
qx

�a22
q2

qy2
� c66

q2

qx2
þ r

q2

qt2
�n22

q
qy
�n32

q
qy
�n12

q
qy

z22 z23 z12
Sym z33 z13

z11

2
666666666664

3
777777777775
, (11)

where

aij ¼ cij � ci3n1j � e3in2j � q3in3j ði ¼ 1; 2; j ¼ 1; 2Þ, (12)

nij ¼ zi1cj3 þ zi2e3j þ zi3q3j ði ¼ 1; 2; 3; j ¼ 1; 2Þ, (13)

zij ¼ xji

�
det k ði ¼ 1; 2; 3; j ¼ 1; 2; 3Þ. (14)
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In Eqs. (13) and (14)

j ¼

c33 e33 q33

e33 ��33 �d33

q33 �d33 �m33

2
64

3
75, (15)

and xij are the corresponding algebraic cofactors of j.

3. General solution for simply-supported plate

For an extended simply supported multilayered plate, the boundary (edge) conditions can be written as
follows:

v ¼ w ¼ j ¼ c ¼ sx ¼ 0 at x ¼ 0 and x ¼ Lx, (16)

u ¼ w ¼ j ¼ c ¼ sy ¼ 0 at y ¼ 0 and y ¼ Ly. (17)

For time-harmonic motion of the form ejotðj ¼
ffiffiffiffiffiffiffi
�1
p
Þ, the general solution of the state variables in the form

of g x; y; z; tð Þ � ~g x; y; zð Þejot is expressed as

g x; y; tð Þ ¼
X1
m¼1

X1
n¼1

~umn zð Þ cos px sin qy

~vmn zð Þ sin px cos qy

~Dzmn zð Þ sin px sin qy

~Bzmn zð Þ sin px sin qy

~szmn zð Þ sin px sin qy

~tzxmn zð Þ cos px sin qy

~tzymn zð Þ sin px cos qy

~jmn zð Þ sin px sin qy

~cmn zð Þ sin px sin qy

~wmn zð Þ sin px sin qy

2
66666666666666666664

3
77777777777777777775

ejot, (18)

where o is the frequency and

p ¼
mp
Lx

; q ¼
np
Ly

, (19)

with n and m being two positive integers. Substitution of Eq. (18) into the state Eq. (7) then yields

d ~gmn

dz
¼ ~A oð Þ ~gmn, (20)

where

~gmn zð Þ ¼ ~umn ~vmn
~Dzmn

~Bzmn ~szmn ~tzxmn ~tzymn ~jmn
~cmn ~wmn

h iT
, (21)

~A oð Þ ¼
0 ~A1 oð Þ

~A2 oð Þ 0

" #
, (22)

ARTICLE IN PRESS
J. Chen et al. / Journal of Sound and Vibration 304 (2007) 722–734726



Aut
ho

r's
   

pe
rs

on
al

   
co

py

with

~A1 oð Þ ¼

a 0 b1p g1p �p

0 b b4q g3q �q

�b1p �b4q �b2p
2 � b5q

2 �b2p2 � b6q
2 0

�g1p �g3q �b3p
2 � b6q

2 �g2p2 � g4q
2 0

p q 0 0 �ro2

2
6666664

3
7777775
, (23)

~A2 oð Þ ¼

a11p2 þ c66q2 � ro2 a12 þ c66ð Þpq �n21p �n31p �n11p

a21 þ c66ð Þpq a22q2 þ c66p2 � ro2 �n22q �n32q �n12q

n21p n22q z22 z32 z12
n31p n32q z23 z33 z13
n11p n12q x21 z31 z11

2
6666664

3
7777775
. (24)

The solution of state Eq. (20) can be expressed as follows:

~gmn zð Þ ¼ exp ~A oð Þz
� �

~gmn 0ð Þ ¼ P z;oð Þ½ � ~gmn 0ð Þ, (25)

which describes the propagating relation between layers. Actually, for the layer j, the state vectors between the
top and bottom interfaces of layer j satisfy the following relationship:

~gmn zj

� �
¼ Pj hj ;o

� �� �
~gmn zj�1

� �
. (26)

The propagating relationship given in Eq. (26) can be used repeatedly so that we can propagate the physical
quantities from the bottom surface to the top surface of the multilayered plate. Thus, we have

~gmn Hð Þ ¼ ½T oð Þ� ~gmn 0ð Þ, (27)

where T oð Þ½ � ¼ PN hN ;oð Þ½ � PN�1 hN�1;oð Þ½ � � � � P2 h2;oð Þ½ � P1 h1;oð Þ½ �.

4. Modal analysis

For homogeneous boundary conditions, the natural frequencies and mode shapes can be solved from
Eq. (27). Under the assumption that the top and bottom surfaces are free boundaries (i.e., the elastic traction
and z-direction electric displacement and magnetic induction are all zero), the state vector on the bottom
surface of Eq. (27) can be expressed as a linear combination of five unit vectors. These can be written in the
matrix form as

~g0mn 0ð Þ ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

2
6666664

3
7777775

T

. (28)

Substituting Eq. (28) into (27), we obtain

~g0mn Hð Þ ¼ T oð Þ½ � ~g0mn 0ð Þ. (29)

The state vector on the top surface can also be expressed as a linear combination of all rows in matrix
~g0mn Hð Þ; thus,

~gmn Hð Þ ¼ ~g0mn Hð ÞR, (30)

where R ¼ r1 r2 r3 r4 1½ �T, and ri (i ¼ 1,2,3,4) are the factors of each linear combination. Considering the
boundary conditions, the rows from 3 to 6 of the matrix ~g0mn Hð Þ are related to R by

~g0mn Hð Þ
� �

3:6
R ¼ 0. (31)
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The amplitude of the transverse stress in the yz-plane can be expressed as

~syzmn ¼ ~g0mn Hð Þ
� �

7
R. (32)

Therefore, substituting R, which can be solved from Eqs. (31) and (32), and setting the transverse stress
in the yz-plane be zero, we can easily determine the nature frequencies by a Prohl graph or dichotomy from

ARTICLE IN PRESS

Table 1

Dimensionless natural frequencies oi of sandwiched piezoelectric and/or magnetostrictive plates

Mode 1 2 3 4 5 6 7 8

B only 1.2660 2.3003 4.0111 5.8050 7.2465 9.7703 10.9049 12.9050

F only 1.0181 1.9747 3.3917 4.6118 5.4544 8.2670 8.5661 11.4523

B/F/B 0.9652 1.8556 3.2353 4.4972 5.3786 8.2569 8.5491 10.8845

F/B/F 1.0672 1.9598 3.3879 4.7424 5.8990 8.3331 8.7094 10.3661

Fig. 2. Anti-symmetric modal shapes of fundamental frequencies in the first column of Table 1: (a) B only with normalized frequency

o ¼ 1.2660; (b) F only with o ¼ 1.0181; (c) B/F/B with o ¼ 0.9652; and (d) F/B/F with o ¼ 1.0672. Solid square for u, solid circle for v,

solid triangle for w, open circle for j, and open triangle for c.

J. Chen et al. / Journal of Sound and Vibration 304 (2007) 722–734728
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Fig. 3. Symmetric mode shapes of fundamental frequencies in the second column of Table 1: (a) B only with normalized frequency

o ¼ 2.3003; (b) B/F/B with o ¼ 1.8556. Solid square for u, solid circle for v, solid triangle for w, open circle for j, and open triangle for c.

Fig. 4. Symmetric modal shapes of frequencies in the third column of Table 1. (a) B only with normalized frequency o ¼ 4.0111; (b) F

only with o ¼ 3.3917; (c) B/F/B with o ¼ 3.2353; and (d) F/B/F with o ¼ 3.3879. Solid square for u, solid circle for v, solid triangle for w,

open circle for j, and open triangle for c.

J. Chen et al. / Journal of Sound and Vibration 304 (2007) 722–734 729
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Eq. (32). Under the assumption that the thickness in the z-direction is divided into K sections, and first letting
Ui

0 ¼ ~g0mn 0ð ÞR, we obtain

Ui
L ¼ exp ~A oið ÞzL

� �
Ui

L�1 ðL ¼ 1; 2; . . .KÞ, (33)

where oi is the ith natural frequency, and zL is the z-coordinate on the top of section L. Meanwhile,
Ui

L L ¼ 0; 1; 2; . . .Kð Þ constructs the ith mode shape of the laminated plate. In order to describe the mode
shapes of the structure more accurately, the number K is typically taken to be much larger than the number of
layers within the plate.

5. Simplification of the propagator matrix

In order to simplify the computational task, we can expand the exponential matrix e
~Az in Eq. (25) into an

infinite Taylor series as follows:

exp
0 ~A1

~A2 0

" #
z

( )
¼

I 0

0 I

" #
þ

0 ~A1

~A2 0

" #
zþ

z2

2!

0 ~A1

~A2 0

" #
0 ~A1

~A2 0

" #
þ

z3

3!

0 ~A1

~A2 0

" #
0 ~A1

~A2 0

" #
0 ~A1

~A2 0

" #
þ � � �

¼

cosh z
ffiffiffiffiffiffiffiffiffiffiffi
~A1
~A2

p	 
 ~A1ffiffiffiffiffiffiffiffiffiffiffi
~A2
~A1

p sinh z
ffiffiffiffiffiffiffiffiffiffiffi
~A2
~A1

p	 

~A2ffiffiffiffiffiffiffiffiffiffiffi
~A1
~A2

p sinh z
ffiffiffiffiffiffiffiffiffiffiffi
~A1
~A2

p	 

cosh z

ffiffiffiffiffiffiffiffiffiffiffi
~A2
~A1

p	 


2
666664

3
777775. ð34Þ

By letting G ¼ ~A1
~A2 and H ¼ ~A2

~A1, the exponential matrix is recast as

exp
0 ~A1

~A2 0

" #
z

( )
¼

cosh z
ffiffiffiffi
G
p� � ~A1ffiffiffiffiffi

H
p sinh z

ffiffiffiffi
H
p� �

~A2ffiffiffiffi
G
p sinh z

ffiffiffiffi
G
p� �

cosh z
ffiffiffiffi
H
p� �

2
66664

3
77775. (35)

Assuming that the eigenvalues and the corresponding eigenvectors of the matrix G are, respectively, P and
W, we have ffiffiffiffi

G
p
¼ W

ffiffiffiffi
P
p

W�1 � WKW�1 (36)

ARTICLE IN PRESS

Fig. 5. Anti-symmetric modal shapes of frequencies in the fourth column of Table 1. B only with normalized frequency o ¼ 5.8050. Solid

square for u, solid circle for v, solid triangle for w, open circle for j, and open triangle for c.
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and

cosh ðz
ffiffiffiffi
G
p
Þ ¼ Iþ

z2 WKW�1 WKW�1
� �

2!
þ

z4 WKW�1 WKW�1 WKW�1 WKW�1
� �

4!
þ � � �

¼ W Iþ
z2K2

2!
þ

z4K4

4!
þ � � �

� �
W�1. ð37Þ

Let the eigenvalues of G be s0; s1; . . . sn, then Eq. (37) can be expressed in a very simple form as

cosh ðz
ffiffiffiffi
G
p
Þ ¼ W diag cosh z

ffiffiffiffi
s0
p� �

; cosh z
ffiffiffiffi
s1
p� �

; . . . ; cosh z
ffiffiffiffi
sn

p� �� �
W�1. (38)

Similar processes can be introduced for the calculation of cosh z
ffiffiffiffi
H
p� �

, sinh z
ffiffiffiffi
G
p� �� ffiffiffiffi

G
p

, and
sinh z

ffiffiffiffi
H
p� �� ffiffiffiffi

H
p

.

6. Numerical examples

In this section, we apply the above formulation to the study of natural frequencies and modal shapes of the
three-layered plate. The horizontal dimensions of the plate are (Lx ¼ Ly ¼ 1m), and each layer is composed of

ARTICLE IN PRESS

Fig. 6. Anti-symmetric modal shapes of frequencies in the fifth column of Table 1: (a) B only with normalized frequency o ¼ 7.2465; (b) F

only with o ¼ 5.4544; (c) B/F/B with o ¼ 5.3786; and (d) F/B/F with o ¼ 5.8990. Solid square for u, solid circle for v, solid triangle for w,

open circle for j, and open triangle for c.
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either piezoelectric BaTiO3 or magnetostrictive CoFe2O4 with material properties from Pan and Heyliger [6]
(Note: In Ref. [6], the densities for both materials were assumed to be the same, i.e., with r ¼ 5700 kg/m3; in
this paper, however, we use the density r ¼ 5800 kg/m3 for BaTiO3 and 5300 kg/m3 for CoFe2O4 [17]).
Furthermore, each layer is assumed to be of equal thickness of 0.1m so that the total thickness of the plate is
H ¼ 0.3m. Four different cases are considered: ‘‘B only’’, ‘‘F only’’, ‘‘B/F/B’’, and ‘‘F/B/F’’, with B standing
for BaTiO3 and F for CoFe2O4. B only represents a homogeneous plate with stack B/B/B, and F only with
stack F/F/F. The integers m and n in Eq. (19) for the wavenumbers p and q are fixed at 1. Listed in Table 1 are
the first eight natural frequencies in dimensionless form (Eqs. (4) and (5)) for each of the four cases (using the
densities in Ref. [17] for B and F), with some of the frequencies for modes 2–5 being slightly different to those
available in Ref. [6] due to the difference in the choice of density. However, if both densities are assumed to be
equal as they are in Ref. [6], the frequencies corresponding to modes 2–5 are exactly the same as those
presented in Pan and Heyliger [6] based on a different approach.

Mode shapes corresponding to the mode frequencies 1–6 in Table 1 are plotted in Figs. 2–7. In these figures,
the elastic displacements in the x-, y-, and z-directions are normalized by the maximum value in the whole
thickness region for the three components. The electric potential and magnetic potential are normalized by

ARTICLE IN PRESS

Fig. 7. Symmetric modal shapes of frequencies in the sixth column of Table 1: (a) B only with normalized frequency o ¼ 9.7703; (b) F

only with o ¼ 8.2670; (c) B/F/B with o ¼ 8.2569; and (d) F/B/F with o ¼ 8.3331. Solid square for u, solid circle for v, solid triangle for w,

open circle for j, and open triangle for c.
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their corresponding maximum (nonzero) values. First, compared to Pan and Heyliger [6], the mode shapes
corresponding to modes 2–5 (i.e., Figs. 3–6) are the same as those in Ref. [6] (even though the densities are
slightly different). Since these modal shapes have been discussed in detail in Ref. [6], we concentrate on the
fundamental and the 6th mode shapes, i.e., which are shown, respectively, in Figs. 2 and 7.

The fundamental mode shapes are shown in Figs. 2a–d for the four different lay-ups. While it is clear that
this is an anti-symmetric mode, the three elastic displacement mode shapes are obviously independent of the
different lay-ups. In other words, the elastic displacement shape is insensitive to the piezoelectric and/or
piezomagnetic coupling. On the other hand, the mode shape of the electric and magnetic potentials,
particularly that of the electric potential, are very sensitive to the four different layered cases, and thus could
be applied to the inverse of material property and structure lay-ups. Figs. 7a to 7d show the symmetric mode
shapes of the 6th mode whose natural frequencies are given in Table 1. Similarly while the elastic
displacements are clearly independent of the four material lay-ups, the modal shapes of electric and magnetic
potentials are completely different for different material cases.

7. Conclusions

In this paper, the state-vector approach was proposed for the analysis of free vibration of magneto-electro-
elastic and layered plates. We selected the out-of-plane variables, which include the extended displacements as
well as the z-direction tractions, electric displacement and magnetic induction, as the primary unknowns. In so
doing, a state equation was derived and the complex boundary value problem was converted into a simple
initial value problem. As a special application, a simply supported multilayered plate is assumed for the modal
analysis, with the order of the global propagator matrix being extremely simple and independent of the
number of layers. For the given four lay-ups, while some of the natural frequencies and the corresponding
mode shapes are in excellent agreement with existing literature results (for the reduced case where the two
materials are assumed to have the same density), the fundamental and some higher modes are also presented
and discussed in detail. The complete set of the frequencies and modal shapes can serve as benchmarks for
future numerical analysis, while the general approach described in this paper could find extensive applications
in different areas where smart and adoptive coupled composite structures are involved.
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