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A three-dimensional kinetic Monte Carlo model is developed to simulate the growth of self-assembled
quantum dot islands. Our multiscale model includes the long-range strain energy contribution from a fast
continuum Green’s function calculation and an up-down ratio describing the relative probability for atoms to
jump out of the plane of the surface during the growth process. For the model material InAs/GaAs�001�, we
studied the effect of the flux rate and the deposition and interruption times on the island shape and ordering,
which shows that a lower flux rate and a longer growth time correspond to a better island distribution. We also
successfully simulated the relation between the island height and the up-down ratio. It is observed that for an
up-down ratio between 1 and 20, the island height increases dramatically with increasing up-down ratio,
reaching an inflection point around 13. When the up-down ratio continues to increase from 20, the island height
approaches a constant value at about 20 grids. The critical up-down ratio 13 signifies the transition from a flat
cluster growth mode to a sharp three-dimensional island growth mode.
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I. INTRODUCTION

Self-assembled quantum dots �QDs� are intensively stud-
ied due to their unique optical and electronic properties, with
potential applications in optoelectronics and semiconductor
devices.1,2 The InAs/GaAs heterostructure is a typical ex-
ample; it is characterized by a large lattice mismatch and
undergoes a growth transition from a two-dimensional �2D�
layer to three-dimensional �3D� islands.3,4 The optical prop-
erties in the 2D layer and 3D islands have also been studied.5

Experimental data indicate that synthesis of an
InAs/GaAs island array is sensitive to ambient growth pa-
rameters, exhibiting both thermodynamic and kinetic
features.6,7 The mechanisms behind the transition from flat
pyramids to sharp domes have been studied intensively.8–13

Using atomic force microscopy, Arciprete et al.13 showed
clearly that different coverage usually corresponds to differ-
ent QD size. The transition from thermodynamically to ki-
netically controlled QD self-assembly was also studied by
Musikhin et al.,14 both experimentally and theoretically.

It is argued that surface diffusivity and mobility could be
affected by the strain field on the surface and even by the
quantum size effect.15–19 Recent first-principles calculations
of Si and Ge adatoms on Si�001� and Ge�001� surfaces
showed clearly the correlation between the surface diffusion
and mobility and the applied strain field.15 Diffusion aniso-
tropy of adatoms due to the applied strain field was also
observed,15 and enhanced evaporation caused by the local
strain was further reported.20 The epitaxial system can main-
tain a lower free energy by transferring atoms from the island
edge to the upper layer, because the transition leads to a
decrease in the contact area between the substrate and a new
layer.13 Thus, atomic transitions to the upper layers lead to a
relaxation in the local strain field. The tradeoff between the
cost of the additional surface energy and the gain of energy
due to elastic relaxation is the very driving force for the
transition from flat pyramids to sharp domes.11,12,18,19,21,22

These arguments provide reason enough to consider situa-
tions where the atom hopping probability to an upper layer
can be higher than that to a lower layer. The kinetics of such
a process could be described by adjusting the probability for
atoms to hop up or hop down, which could subsequently lead
to flat cluster or sharp 3D island self-assembly, and ultimate
control over synthesis mechanisms.

While some simple computational approaches for QD
self-assembly have been discussed before �e.g., Ref. 23�, no
complete 3D QD self-assembly model has been developed so
far in which the growth from flat cluster to 3D islands and
the corresponding island size equalization can be clearly il-
lustrated during the growth process. Such a model would be
vital to understanding the parametric variations of surface
patterns to conventional growth parameters such as flux rate,
interruption time, and temperature, among others. We there-
fore propose a fast multiscale 3D kinetic Monte Carlo
�KMC� QD growth model. It is developed from our original
�x ,y�-plane growth model24,25 by a fast algorithm for the
long-range strain energy calculation and by introducing the
up-down ratio for lateral self-organization. We remark that,
while the material parameters in our simulation are for
InAs/GaAs�001�, the two species �In and As� in the InAs
QD islands are assumed to be equal. In other words, they are
indistinguishable in the KMC simulation.25

With the proposed program, we have successfully simu-
lated the transition of QD flat clusters to 3D islands in the
model InAs/GaAs�001� system, with results consistent with
the experimental observations and numerical simulations
based on different approaches.8,12,18 Furthermore, deposi-
tions with different flux rates are studied to show how the
flux rate affects the island equalization during the deposition
process. Our model has also shown clearly the importance of
the interruption time during the growth of QD islands. We
believe that this model will provide an attractive means for
simulating strain-controlled ordering of QDs on surfaces.
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II. MODEL DESCRIPTION

The 3D layer-by-layer KMC growth model is developed
from our 2D �x ,y�-plane growth model24,25 where diffusion
of the InAs compound �on the surface of GaAs substrate�
was simulated by assuming them as a single species with
cubic crystal structures �see, e.g., Ref. 26�. As in our previ-
ous model, the important contribution from the long-range
elastic strain energy is included using a fast algorithm based
on the Green’s function method.27,28 Furthermore, to account
for the adsorption and desorption motion of the atoms,29,30 an
up-down ratio is introduced.23

First, the 2D hopping probability of an atom from one
lattice site to a nearest or next nearest neighbor site in the
�x ,y� plane is still governed by the Arrhenius law, enhanced
by the long-range strain energy field and an additional
Schwöbel step-edge barrier for monatomic step
crossing.24–26,31–34 The hopping probability is given by

p = �0 exp�−
Es + En − Estr�x,y�

kBT
� , �1�

where �0 is the attempt frequency �=1013 s−1�, T the tempera-
ture, and kB the Boltzmann constant. Also, in Eq. �1�, Es and
En are the binding energies to the surface and to the neigh-
boring atoms, respectively. Finally, Estr�x ,y�, a function of
the plane coordinates �x ,y�, is the energy correction from the
long-range strain field due to the lattice misfit between the
substrate and the deposited material. We remark that, while
the importance of strain for diffusion was addressed via first-
principles calculation15 assuming a uniform axial or biaxial
strain field, with some interesting results for the strain-
induced diffusion and mobility features, the strain field and
the corresponding strain energy are calculated in this paper
using the Eshelby inclusion theory combined with the
Green’s function solution.27,28 The required input parameters
are the bulk elastic stiffness tensor and lattice misfit of
InAs/GaAs�001�. The specific chemical species selected for
these simulations are implied in the definition of the strain
energy. Furthermore, as this long-range strain energy needs
to be calculated repeatedly during the simulation, we have
developed a fast algorithm by precalculating the strain en-
ergy along a unit circle and then interpolating its value at any
location afterwards.27,28

We calculate the binding energy to the neighboring atoms
in the �x ,y� plane, En, using the following approach. We take
the strength of all single nearest neighbor bonds Eb to be
0.3 eV, and reduce it by a factor of � �=1/�2� for the next
nearest neighbors.34 To evaluate the diffusion barrier, the
binding energy at the site P0, where the diffusing atom is
located �one of the eight locations surrounding the center
atom shown by the solid box in Fig. 1�b��, is calculated to be

EP0
= nEb + �mEb �2�

with n�4 and m�4 being, respectively, the number of near-
est and next nearest atoms. Similarly, for the site P1 to which
the atom is going to hop �one of the 16 locations surrounding
the solid box shown by the dashed box in Fig. 1�b��, we have

EP1
= g�n�Eb + �m�Eb� �3�

where n��4 and m��4 are, respectively, the number of
nearest and next nearest atoms at the new site P1, and g
describes the coupling between the adjacent lattice sites.34

We point out that, while a small g corresponds to a weak
coupling, a large g corresponds to a strong coupling. Follow-
ing previous studies, we assume a weak coupling between
the adjacent lattice sites with g=0.2 in this paper.34 There-
fore, the overall binding energy En caused by neighbor inter-
actions for an atom to jump from site P0 to site P1 is given
by the difference of the binding energies at the corresponding
lattice sites,

En = �n − gn��Eb + �m − gm���Eb. �4�

Second, the binding energy to the surface of the �x ,y�
plane, i.e., Es, was assumed to be constant �actually, Es
=1.3 eV� in our previous 2D �x ,y�-plane self-assembly
model.24,25 In other words, in our 2D model, the atom diffu-
sion on the surface was mainly controlled by the neighboring
binding energy among the atoms on the surface as described
by Eq. �4�. It is apparent, however, that the relative position
of the adatom with respect to the surface structure should
influence the diffusion activity on the surface. Therefore, the
surface binding energy should depend on the surface geom-
etry of both the initial and final positions of the atoms. Based
on recent molecular dynamics calculations35 and KMC
simulations24–26,34 in 2D, we therefore propose the following
simple equation for the 3D surface binding energy �Fig. 1�:

Es = �1 − g�Es0 + �p − gp���Es0 + �q − gq����Es0, �5�

where Es0 is the binding energy for the atom exactly under
the selected adatom �Fig. 1�, p ,q are the numbers of nearest
and next nearest atoms in the original position �p�4,q
�4�, p� ,q� are the number of nearest and next nearest atoms
in the new position �p��4,q��4�. The other two param-
eters g and �, as in 2D, are used to scale the energy contri-
bution from the atoms in the first and second squares �Fig.
1�a� and 1�b��. Assuming that the maximum surface binding
energy is 1.3 eV as before for the 2D growth simulation,24,25

which means that all the positions under this adatom are
occupied by atoms, we can find Es0=0.28 eV from Eq. �5� by
back calculation.

Finally, as discussed in the Introduction, the growth sys-
tem always tries to decrease its free energy by moving atoms
at the edge to upper layers to form 3D islands. The probabil-
ity for an atom to hop to an upper or lower layer depends on

FIG. 1. �Color online� Schematic illustration of 3D QD self-
assembly �cubic crystal� model. �a� An atom on top of the substrate
surface �x ,y� plane, �b� the relative locations of the atom grid on the
�x ,y� plane, and �c� the corresponding binding energy Es related to
the in-plane locations.
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the material properties and growth conditions,5,13 and is as-
sumed here to be the dominant mechanism that enables for-
mation of out-of-plane structures during growth. To account
for the up and down motion of the atoms, an additional pa-
rameter � is introduced,23 which is defined as the ratio of the
probability for edge atoms to hop up to that for hopping
down. In other words, if we let Pup and Pdown be the up and
down probabilities, respectively, then the up-down ratio �
= Pup/ Pdown. It is further remarked that the up-down ratio
actually reflects the balance between surface energy increase
and strain energy decrease.12,18 This physical activity is illus-
trated in Fig. 2 where layer 1 is the substrate and the atom A
is on the edge of layer 2 of the deposited atoms �i.e., within
the QD island�. It is also understandable that the up or down
jump probability of atom A is controlled only by the up-
down ratio instead of by the individual up and down jump
probabilities. Moreover, strictly speaking, since the strain en-
ergy changes along the island height direction,36 the up-down
ratio will, in general, not be constant in different island lay-
ers �e.g., Ref. 37�. However, in order to extract the important
contribution of the up-down ratio, we assume that the up-
down ratio � is constant and is affected only by the geometry
around it but not by the layer position relative to the surface.
Furthermore, in order to form 3D islands, the number of
atoms jumping up should be larger than those jumping down,
which means that the up-down ratio � should be larger than
1. Otherwise, all the atoms will tend to move to lower layers
to form the atomically thin layer-by-layer Frank–van der
Merwe structure.

The new 3D KMC simulation routine is similar to the 2D
model we developed before,24,25 but is extended to 3D with
the jump ratio and enhanced by the fast strain energy calcu-
lation. In the program, atom diffusion processes are simu-
lated one by one. Within the surface plane, each atom at most
has four possible nearest and four possible next nearest dif-
fusion positions �Fig. 1�b��, or four nearest �along the x and
y directions� and four next nearest neighbors �along the two
diagonal directions�. Every possible diffusion step of a given
atom is obtained by evaluating the probability p from Eq.
�1�, along with a given multiple-factor �Pup and Pdown� ratio
for the probability of jumping up or down. These probabili-
ties are stored and added to get the total diffusion probability
for the atom. The total probability is then obtained by adding
all the probabilities for the atoms together. During the simu-
lation, an atom is randomly chosen to move to a new lattice
site in accordance with its likelihood and the move is ex-
ecuted with those near the island edge subject to the Schwö-
bel barrier. The corresponding time interval �t �i.e., propor-
tional inversely to the overall probability� is calculated and
added to the elapsed simulation time.26,34,38,39 Since the
movement of an atom also alters the diffusion barriers for the

neighboring atoms in the previous neighborhood as well as
in the new one, the moving atom and all the atoms in its
surrounding area have to be recalculated to obtain the new
diffusion probabilities.

The strain energy is calculated based on the Green’s func-
tion method27,28,40 combined with a unique fast algorithm.
First, it can be shown that, on the surface of an anisotropic
semiconductor substrate, the strain energy due to a concen-
trated lattice misfit �source� is proportional to E��� /r6,27,28,40

where r and � are the in-plane polar coordinates with origin
at the source point. Since the strain energy scales as 1 /r6,
one needs only to calculate the energy value along the cir-
cumference of the unit circle, i.e., one only needs E��� using
the Green’s function solution; for the strain energy at any
surface location r and �, the result is simply E��� /r6. Sec-
ond, even though one can significantly reduce the execution
time for the strain energy calculation using this precalcula-
tion approach, simulation of the strain energy at each jump
step is still computationally very expensive. Fortunately, the
strain energy changes only slightly with the motion of a
single atom, and it is optimal to calculate the strain field at
every 2000–3000 jump steps �in our examples, strain energy
is calculated at every 2500 steps�. Third, to speed up the
computation further, the strain energy calculation does not
extend over the whole system but only over a circular surface
area of a given radius R around the point where the strain is
to be evaluated, due to the rapid decay of this field as 1/r6

�the radius R is taken to be 30 lattice grids�.

III. SIMULATION RESULTS

A. Dependence of island height on up-down ratio

Using the 3D QD self-assembly approach described
above, we can now simulate the epitaxial growth process.
The growth model is over 100�100 grids with periodic
boundary condition, and the model material is
InAs/GaAs�001�. Again, while there are two different spe-
cies �In and As� in a compound InAs QD, we do not distin-
guish them in our KMC diffusion simulation,34 and chemical
species information is implied in the mismatch strain and
elastic stiffnesses used in the strain energy calculation. We
first study the effect of the up-down ratio on the island
height. Shown in Fig. 3 are the island distributions for dif-
ferent up-down ratios. It is observed clearly from Fig. 3 that
�1� the average island height increases with increasing up-
down ratio � �for small up-down ratio, say, ��5, basically
only 2D growth mode can be observed�; �2� the island size
and shape are very sensitive to the up-down ratio � when it is
less than 20; �3� the ratio Pup/ Pdown determines the 2D to 3D
transition, instead of the absolute values of Pup and Pdown.
This ratio is directly proportional to the ratio of the ascend-
ing �desorption� and descending �adsorption� atoms on the
surface,29,41 and could be further related to the surface and
bulk energy ratio in the system.12,18

To further understand the effect of the up-down ratio on
the average island height, the data in Fig. 3 along with more
simulated results for large up-down ratios are analyzed quan-
titatively. The relation between the average island height and

FIG. 2. �Color online� Illustration of the up or down jump for an
edge atom A during 3D QD self-assembly.
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the up-down ratio is presented in Fig. 4, and, interestingly, it
is similar to that in Ref. 23 based on a different simulation
approach. Figure 4 also clearly demonstrates the following.
�1� The average island height experiences sharp changes
when the up-down ratio varies from 3 to around 20. In other
words, the average island height in this range of up-down
ratios is very sensitive to the up-down ratio, and that the
islands become higher with increasing up-down ratio. �2�
When � is larger than 20, the curve flattens to a horizontal
line. This means that the average island height will mostly
keep at a constant maximum value when the up-down ratio is
large �say, ��30�. �3� The inflection point approximately at
�=13 physically corresponds to the critical transition point
from 2D cluster �flat pyramids� growth to 3D island �sharp
domes� growth,9,11,12,18 and this up-down ratio could be con-
nected to the surface and bulk energy ratio.42 Our critical
value of �=13 also agrees with previous calculations23 show-
ing flattened pyramids at �=6 and sharp domes at �=15.

B. Island size distributions

Island size equalization relies on the movement of atoms
on the surface during epitaxial growth. It could start at the
very beginning of the deposition process if a low flux rate is
given.24,25 Figure 5 demonstrates the island size dependence
on growth times for three different up-down ratios ��=10,
20, and 30 in the first, second, and third rows� under a rela-
tively low flux rate F=0.01 ML/s. Island distributions im-
mediately after the deposition �i.e., the interruption time ti
=0� are shown in the first column, 100 s after the deposition
�ti=100 s� in the second column, and 200 s after deposition
�ti=200 s� in the third column �Fig. 5�. It is observed from
Fig. 5 that �1� island size equalization starts at the very be-
ginning and continues with increasing interruption time; �2�
for a fixed up-down ratio ��=10, 20, and 30�, with increasing
interruption time, small isolated islands tend to join onto the
large ones in their proximity, and the island distribution be-
comes more and more ordered; �3� for fixed interruption time
�ti=0, 100 s, and 200 s�, an increasing up-down ratio, in gen-
eral, increases the height of the islands �changes the shape of
the islands�, just as we have observed from Fig. 3. Since the
up-down ratio is closely related to the surface and bulk en-
ergy ratio, this could provide experimentalists the opportu-
nity to control and optimize the island shape and distribution.

While Fig. 5 illustrates the influence of the interruption
time on the island size, Figs. 6 and 7 demonstrate further the
effect of the deposition time on the island shape and size for
fixed up-down ratio �=10. It is clearly observed from Fig. 6
that, again, island size equalization starts from the very be-
ginning of the deposition process and it becomes large with
increasing deposition �td=50, 100, and 160 s� and interrup-
tion �ti=200 s� time. Figure 6 furthermore demonstrates that,
with increasing island size, the number of islands decreases
�small islands join onto the neighboring large ones�. The size
change of the islands during growth can also be observed
clearly from the same zoom-in island in Fig. 6 where both its
height and lateral dimension are seen to increase dramati-

FIG. 3. �Color online� 3D island distributions for different up-
down ratios � with total coverage c=1.6 monolayers �ML�. Fixed
growth parameters are temperature T=700 K, flux rate F
=0.01 ML/s, and interruption time ti=200 s �total simulation
time=deposition time �td=160 s� plus interruption time �ti=200 s��.

FIG. 4. �Color online� Average island height vs up-down ratio �
�for � from 3 to 50�. Fixed growth parameters are temperature T
=700 K, flux rate F=0.01 ML/s, total coverage c=1.6 ML, and
interruption time ti=200 s.

FIG. 5. �Color online� Island distributions for different interrup-
tion times �ti=0, corresponding to deposition time td=160 s, ti

=100 s, and ti=200 s� and for different up-down ratios ��=10, 20,
and 30�. Fixed growth parameters are temperature T=700 K, flux
rate F=0.01 ML/s, and total coverage c=1.6 ML.
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cally during growth. Shown in Fig. 7 is the histogram for the
relationship between the island diameter �of the equivalent
circle at the bottom of the island� and the corresponding
number of islands, which again displays clearly the island
size and number variation during growth.

Finally, Fig. 8 shows the effect of the flux rate �F=1, 0.1,
and 0.01 ML/s� on the island distribution. For a low flux rate
�e.g., at F=0.01 Ml/s�, the deposited atoms have more time
to move to the equilibrium position during the deposition
process and to assemble together. Furthermore, a low flux

rate �say, F=0.01 ML/s� usually corresponds to large and
ordered islands. Therefore, besides the up-down ratio, the
flux rate is also important in order to obtain an ordered and
uniform-size QD island distribution. This is particularly true
as a low flux rate is required for size equalization starting
from the beginning of the deposition.

IV. CONCLUSION

In this paper, we propose a 3D QDs epitaxial growth
model by enhancing our former �x ,y�-plane growth model

FIG. 6. �Color online� Island distributions during and after
deposition. Deposition time �a� td=50 s with 0.5 ML coverage, �b�
td=100 s with 1 ML coverage, �c� td=160 s with 1.6 ML coverage
�i.e., at the beginning of the interruption time�, and �d� interruption
time ti=200 s. Fixed growth parameters are temperature T=700 K,
flux rate F=0.01 ML/s, total coverage c=1.6 ML, and up-down
ratio �=10. The zoom-in for the same island during the deposition
and interruption time shows clearly the island size change �height h
and lateral dimensions b and d� during growth.

FIG. 7. �Color online� Average island diam-
eter �of the bottom equivalent circle of the island�
vs number of islands during and after deposition.
Fixed growth parameters are temperature T
=700 K, flux rate F=0.01 ML/s, total coverage
c=1.6 ML and up-down ratio �=10.

FIG. 8. �Color online� Island distributions for different deposi-
tion processes of 0.5, 1, and 1.6 ML with flux rates F=1, 0.1, and
0.01 ML/s. Fixed growth parameters are temperature T=700 K, to-
tal coverage c=1.6 ML, and up-down ratio �=10.

FAST MULTISCALE KINETIC MONTE CARLO… PHYSICAL REVIEW B 75, 205339 �2007�

205339-5



with a fast algorithm for long-range strain energy calculation
and an up-down jump ratio for the diffusing atoms. Specifi-
cally, the balance between surface energy increase and bulk
energy decrease in growth is demonstrated by introducing
the up-down ratio. Further studied is the dependence of the
island height and shape on the up-down ratio. Combining the
up-down ratio and one of the growth parameters �i.e., flux
rate�, island equalization during and after deposition is dem-
onstrated. The main conclusions from our 3D KMC model
are as follows.

�1� The phenomena of self-assembly and shape transition
of the islands �i.e., from flat pyramids to sharp domes� can be
simulated by changing the up-down ratio.

�2� For other fixed growth parameters, island height and
size greatly depend on the up-down ratio. For the examples
used in this paper, the average island height increases with
increasing up-down ratio and island size and shape are also
very sensitive to the up-down ratio when it is less than 20.

Furthermore, we found that a critical value of the up-down
ratio is around 13 where the QD morphology can change
significantly from flat to sharp 3D islands.

�3� It is the up-down ratio, the ratio that characterizes the
atom probability of jumping to the upper layer over that to
the lower layer, that determines the QD sharp transition, in-
stead of the absolute jump probability value.

�4� Island size equalization could start at the very begin-
ning of deposition process if the flux rate is low. With in-
creasing interruption time, an ordered island distribution
with uniform size can be obtained.
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