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Abstract

The three-dimensional elastostatic Green’s functions for multi-layered half-spaces are expressed in terms of a cylindrical system of

vector functions using the propagator matrix method. To obtain efficient and accurate results near the singularity at the interface

between layers, the singularity extraction method is employed in the transform domain, based on the singular solutions for the bi-

material full space expressed here in vector cylindrical function form. Numerical trials demonstrate that this approach improves on

previous work, which relied on singularity extraction based on the well-known singular (Kelvin) solution for the homogenous full-space.

A boundary element implementation illustrates the practical potential of this work to boundary value problems.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Multi-layered solids occur commonly in nature and in
man-made artefacts (e.g., geological strata, roads, compo-
sites, biological tissue, etc.). However, efficient stress
analysis of these materials by means of integral methods
is stymied by the lack of suitable Green’s functions. The
principal difficulty is that whereas the Green’s functions for
homogeneous media can be expressed in closed form, those
for multi-layered media must themselves be integrated
numerically. Devising efficient integration strategies is
therefore central to the problem.

For horizontally infinite and layered systems, Green’s
functions can be derived using the propagator matrix
method, which originates in the work of Thomson [1],
Haskell [2], and Gilbert and Backus [3] in elasto-dynamics.
More recent work is described in [4–7]. For the elastostatic
problem, the propagator matrix can be obtained directly
rather than as a special case of elastodynamics. Solutions
for multi-layered isotropic media have been obtained by
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Singh [8], Jovanovich et al. [9], Sato and Matsu’ura [10],
Singh [11] and Yue and Wang [12] for transversely
isotropic media. The special case of a finite layer underlain
by a half-space was solved by Chan et al. [13]. Pan [14–16]
employed a novel cylindrical system of vector functions to
derive elastostatic Green’s functions for multi-layered
transversely isotropic half spaces. Parallel work using a
Stroh formulation has been reported by Yuan and Yang
[17] and Yang and Pan [18,19]. The numerical computation
of these Green’s function solutions is difficult.
In this paper, we describe an efficient and robust

approach for accurate calculation of the multilayered
Green’s functions in isotropic media. It employs a sin-
gularity extraction approach in the multi-layered Green’s
functions using the analytical bi-material Green’s function
solution. A similar method of attack, but in the context of
wave motions and differing in significant detail, has been
reported independently by Guzina and Pak [20]. The paper
is organized as follows: in Section 2, we review briefly the
basic equations in terms of the cylindrical system of vector
functions. In Section 3, the layered Green’s functions are
presented. The singularity extraction issue is discussed in
Section 4, and the bi-material Green’s functions are
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presented in Section 5. In Section 6, we demonstrate the
efficiency and accuracy of the method and illustrate its
implementation in a boundary element analysis.

2. Basic relations in terms of the cylindrical system of vector

functions

We consider a system of linearly elastic isotropic parallel
layers, which are fully bonded at their interfaces. The
horizontal variables of a (horizontally) layered system can
be suppressed using a Fourier or Hankel transformation of
the governing equations, which leads to a set of more
tractable first-order differential equations. The (trans-
formed) solutions are functions of the vertical variable z

only. However, a transformation using a cylindrical system
of vector functions [14,15] offers greater generality. The
cylindrical system of vector functions is defined as

Lðr; y; l;mÞ ¼ izSðr; y; l;mÞ,

Mðr; y; l;mÞ ¼ ir

q
qr
þ iy

q
rqy

� �
Sðr; y; l;mÞ,

Nðr; y; l;mÞ ¼ ir

q
rqy
� iy

q
qr

� �
Sðr; y; l;mÞ, ð1Þ

where l is the transform parameter and

Sðr; y; l;mÞ ¼
1ffiffiffiffiffiffi
2p
p JmðlrÞeimy, (2)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, Jm(lr) is the Bessel function of order m,
and ir; iy; iz are the unit vectors in the radial, angular and
vertical directions, respectively (Fig. 1).
S 

r

iz

ir

ih

i�
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�

Fig. 1. Orientation of point loads.
Since this system forms an orthogonal and complete
space, the displacement and traction vectors can be
expressed in the form [14]:

uðr; y; zÞ ¼
X

m

Z 1
0

½ULðzÞLðr; yÞ þUMðzÞMðr; yÞ

þUN ðzÞNðr; yÞ�l dl,

tðr; y; zÞ ¼ srzir þ syziy þ szziz

¼
X

m

Z 1
0

½TLðzÞLðr; yÞ þ TM ðzÞMðr; yÞ

þ TN ðzÞNðr; yÞ�ldl, ð3Þ

where ULðzÞ;UM ðzÞ;UN ðzÞ are the transformed displace-
ment coefficients in the cylindrical system, and
TLðzÞ;TM ðzÞ;TN ðzÞ are the transformed traction coeffi-
cients.
Without loss of generality, the horizontal and vertical

unit point loads may be assumed to act at a depth z ¼ s on
the z-axis, i.e.

f hðr; y; zÞ ¼
1

2pr
dðrÞdðz� sÞih;

f zðr; y; zÞ ¼
1

2pr
dðrÞdðz� sÞiz;

(4)

where d is the Dirac delta function and ih is the horizontal
unit vector in the y ¼ y0 direction (Fig. 1). We thus have

ih ¼ nrir þ nyiy ¼ cosðy� y0Þir � sinðy� y0Þiy, (5)

where nr, ny are the direction cosines of the unit force
vector.
In general, a body force can be expressed in the form:

f ðr; y; zÞ ¼ f h � ih þ f z � iz

¼
X

m

Z þ1
0

½FLðzÞLðr; yÞ þ F MðzÞMðr; yÞ

þ FN ðzÞNðr; yÞldl, ð6Þ

where the transformed body force coefficients are [15]

F L ¼

Z 2p

0

Z þ1
0

f � Lnðr; yÞrdrdy,

FM ¼ l�2
Z 2p

0

Z þ1
0

f �Mnðr; yÞrdrdy,

FN ¼ l�2
Z 2p

0

Z þ1
0

f �Nnðr; yÞrdrdy, ð7Þ

where the asterisk indicates the complex conjugate. For the
concentrated unit body force expressed by Eq. (4), the
transformed body force coefficients can be obtained by
substituting Eq. (6) into Eq. (7). We thus obtain

FL ¼
nzffiffiffiffiffiffi
2p
p m ¼ 0;

FM ¼
�e�iy0

2l
ffiffiffiffiffiffi
2p
p m ¼ �1;

FN ¼
�ie�iy0

2l
ffiffiffiffiffiffi
2p
p m ¼ �1:

(8)
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It can be shown [15] that the point force vector yields the
following discontinuities in the expansion coefficients of
the traction vector, namely

TLðs�Þ � TLðsþÞ ¼
nzffiffiffiffiffiffi
2p
p m ¼ 0;

TMðs�Þ � TM ðsþÞ ¼
�e�iy0

2l
ffiffiffiffiffiffi
2p
p m ¼ �1;

TNðs�Þ � TN ðsþÞ ¼
�ie�iy0

2l
ffiffiffiffiffiffi
2p
p m ¼ �1:

(9)

Substituting Eq. (3) into the equations of equilibrium
and the constitutive relations, two independent sets of
simultaneous linear differential equations for UL;UM ;TL;
TM , and UN, TN, are obtained. Details of the solution of
these equations can be found in Pan [14,15] based on the
propagator matrix method, but we briefly list some of the
Green’s functions here to clarify the following discussion.
3. Green’s functions for multi-layered half-spaces

The Green’s functions in terms of cylindrical coordinates
assume the following general form in each layer (in which it
is understood that the right-hand sides are to be multiplied
by l and integrated from zero to infinity with respect to l)

ur ¼
UM�1ðzÞffiffiffiffiffiffi

2p
p ½J1ðlrÞ=r� lJ0ðlrÞ�e�iy

þ
UN�1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
e�iy

þ
UMþ1ðzÞffiffiffiffiffiffi

2p
p ½lJ0ðlrÞ � J1ðlrÞ=r�eiy

þ
UNþ1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
eiy �

UM0ðzÞffiffiffiffiffiffi
2p
p lJ1ðlrÞ

uy ¼
UM�1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
e�iy

�
UN�1ðzÞffiffiffiffiffiffi

2p
p ½J1ðlrÞ=r� lJ0ðlrÞ�e�iy

þ
UMþ1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
eiy

�
UNþ1ðzÞffiffiffiffiffiffi

2p
p ½lJ0ðlrÞ � J1ðlrÞ=r�eiy þ

UN0ðzÞffiffiffiffiffiffi
2p
p lJ1ðlrÞ,

uz ¼ �
UL�1ðzÞffiffiffiffiffiffi

2p
p J1ðlrÞe�iy þ

ULþ1ðzÞffiffiffiffiffiffi
2p
p J1ðlrÞeiy

þ
UL0ðzÞffiffiffiffiffiffi

2p
p J0ðlrÞ. ð10Þ

Adopting the same convention, the corresponding
tractions on the horizontal plane are

srz ¼
TM�1ðzÞffiffiffiffiffiffi

2p
p ½J1ðlrÞ=r� lJ0ðlrÞ�e�iy

þ
TN�1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
e�iy þ

TMþ1ðzÞffiffiffiffiffiffi
2p
p ½lJ0ðlrÞ � J1ðlrÞ=r�eiy
þ
TNþ1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
eiy �

TM0ðzÞffiffiffiffiffiffi
2p
p lJ1ðlrÞ

syz ¼
TM�1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
e�iy �

TN�1ðzÞffiffiffiffiffiffi
2p
p ½J1ðlrÞ=r� lJ0ðlrÞ�e�iy

þ
TMþ1ðzÞffiffiffiffiffiffi

2p
p i

J1ðlrÞ

r
eiy �

TNþ1ðzÞffiffiffiffiffiffi
2p
p ½lJ0ðlrÞ � J1ðlrÞ=r�eiy

þ
TN0ðzÞffiffiffiffiffiffi

2p
p lJ1ðlrÞ,

szz ¼ �
TL�1ðzÞffiffiffiffiffiffi

2p
p J1ðlrÞe�iy þ

TLþ1ðzÞffiffiffiffiffiffi
2p
p J1ðlrÞeiy þ

TL0ðzÞffiffiffiffiffiffi
2p
p J0ðlrÞ.

ð11Þ

We remark that the remaining stress components can be
obtained from Hooke’s law from these displacements and
tractions. It is further noted that all of these integrands are
oscillatory (arising from the Bessel functions) and their
convergence characteristics vary across a wide spectrum.
Following Pan [14], we make use of an adaptive Gauss
quadrature, developed by Patterson [21,22] and implemen-
ted by Chave [23], to compute these integrals. First, the
infinite integrals are expressed as a finite sum

Z 1
0

f ðl; zÞJmðlrÞdl �
XN

n¼1

Z lnþ1

ln

f ðl; zÞJmðlrÞdl, (12)

where f(l,z) represents any one of the expansion coeffi-
cients in the transformed domain and, in general, the
product lnr is the nth zero of the Bessel function. Then, in
each sub-interval of integration, a first estimate is obtained
using three-point Gauss quadrature

Z lnþ1

ln

f ðl; zÞJmðlrÞdl �
X3
i¼1

wif ðli; zÞJmðlirÞ, (13)

where li is the abscissa and wi is the weight. Using
Patterson’s algorithm, new Gauss points are added into the
interval between the existing Gauss points until the
convergence criterion is satisfied. For slowly convergent
integrals, a continued fraction expansion method [14,24] is
employed to accelerate convergence.

4. Singularity extraction

Gauss quadrature becomes increasingly ineffective at the
near-singularities, which arise when displacements and
stresses are computed in the vicinity of the point load. But
this is precisely where the greatest accuracy is required in
practice. The general technique of singularity extraction
may be applied here, namelyZ 1
0

f ðl; zÞJmðlrÞdl ¼
Z 1
0

½f ðl; zÞ � gðl; zÞ�JmðlrÞdl

þ

Z 1
0

gðl; zÞJmðlrÞdl, ð14Þ

where g(l,z) is the singular part of the function f(l,z) and is
integrable by analytical methods. The first integral on the
RHS is evidently non-singular and is therefore integrable
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by numerical quadrature. Here, the second integral on the
RHS is that part of the corresponding full-space Green’s
function (e.g., Kelvin’s solution) in the physical domain.
Evidently, its transform g(l,z) must also be determined.
For the transversely isotropic case, these can be derived
using the solution by Pan and Chou [25]. However, when
the singularity is at a layer interface, the analytical Green’s
functions for homogenous materials (e.g., Kelvin’s solu-
tion) fail to capture the singularity. In these cases,
singularity extraction can be effective only if the singular
solution for a bi-material is used. Green’s functions for a
bi-material full-space have been obtained by Yue [26] and
Guzina and Pak [27] in closed form. However, we also need
the corresponding functions in the transform domain, and
these are presented below.
5. Bi-material Green’s functions in the transformed domain

The physical domain is assumed to be composed of two
dis-similar isotropic elastic half spaces which are fully
bonded across the plane z ¼ 0 (Fig. 2). The Lame constants
of the upper and lower half-spaces, denoted by (l1, m1) and
(l2, m2), respectively, are used inter-changeably with
Young’s modulus E and Poisson’s ratio n, for clarity.

Without loss of generality, it is assumed that the loaded
plane is located in the lower half-space, i.e., s40. Further,
the lower half space is comprised of two parts; Region 2
(0ozos) and Region 3 (z4s). From the inter-regional
Region 1

Z<0

(�1, �1)

(�2, �2)

(�2, �2)

r 

Fz

Fh

X 

S

Y

Z

Region 2 

0<Z<S

Region 3 

Z>S

�

Fig. 2. The bi-material full-space.
equilibrium and compatibility conditions, we obtain 12
equations, which are sufficient to determine the 12
unknown coefficients in the transformed domain. After
some algebra [28], the resulting Green’s functions in the
transformed domain may be determined (below). These are
found to agree, within a scalar constant, with the auxiliary
functions obtained by Guzina and Pak [27]. As usual, to
determine the corresponding functions in the physical
domain, the integral with respect to l, over the limits from
zero to infinity of the product of these expressions with l,
must be computed.
For Region 1:

UN0ðzÞ ¼ 0,

TN0ðzÞ=l ¼ 0,

UL0ðzÞ ¼
F L0 expð�ld1Þ

2lM1M2
½2m1ð3� 4n2Þð1� n1Þ

þ 2m2ð3� 4n1Þð1� n2Þ þ lðsM1 � zM2Þ�,

lUM0ðzÞ ¼
F L0 expð�ld1Þ

2lM1M2�
½�m1ð3� 4n2Þð1� 2n1Þ

þ m2ð3� 4n1Þð1� 2n2Þ þ lðsM1 � zM2Þ�,

TL0ðzÞ=l ¼
m1FL0 expð�ld1Þ

2lM1M2
½M1ð3� 4n2Þ þM2

þ 2lðsM1 � zM2Þ�,

TM0ðzÞ ¼
m1FL0 expð�ld1Þ

2lM1M2
½m2ð3� 4n1Þð3� 4n2Þ

� m2 þ 2lðsM1 � zM2Þ�, ð15Þ

where the second subscript ‘‘0’’ denotes order m ¼ 0 in the
vector function expansion. This convention is adopted in
other expressions presented below.

UN1ðzÞ ¼
F N1 expð�ld1Þ

lðm1 þ m2Þ
,

TN1ðzÞ=l ¼
m1FL1 expð�ld1Þ

lðm1 þ m2Þ
,

UL1ðzÞ ¼
F M1 expð�ld1Þ

4M1M2
½M1ð3� 4n2Þ

�M2ð3� 4n1Þ þ 2lðzM2 � sM1Þ�,

lUM1ðzÞ ¼
F M1 expð�ld1Þ

4M1M2
½M1ð3� 4n2Þ

þM2ð3� 4n1Þ þ 2lðzM2 � sM1Þ�,

TL1ðzÞ=l ¼
m1FM1 expð�ld1Þ

2M1M2
½M1ð3� 4n2Þ

�M2 þ 2lðzM2 � sM1Þ�,

TM1ðzÞ ¼
m1FM1 expð�ld1Þ

2M1M2
½M1ð3� 4n2Þ

þM2 þ 2lðzM2 � sM1Þ�, ð16Þ

d1 ¼ jz� sj,

d2 ¼ zþ s,

d3 ¼ z� s,
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M1 ¼ m1 þ ð3� 4n1Þm2,

M2 ¼ m2 þ ð3� 4n2Þm1. ð17Þ

For Region 2 and 3:

UN0ðzÞ ¼ 0,

TN0ðzÞ=l ¼ 0,

UL0ðzÞ ¼
FL0 expð�ld1Þ

8m2lð1� n2Þ
ð3� 4n2 þ ld1Þ

þ
FL0 expð�ld2Þ

8m2lM1M2ð1� n2Þ

½�2l2ðm1 � m2ÞM1zs�M1ðm1
� m2Þð3� 4n2Þld2 � ðm21ð3� 4n2Þ

2

� m22ð3� 4n1Þð5� 12n2 þ 8n22Þ

þ m1m2ð3� 4n2Þð2� 4n1Þð1� 2n2ÞÞ�,

lUM0ðzÞ ¼
�F L0 expð�ld1Þ

8m2ð1� n2Þ
d3

þ
FL0 expð�ld2Þ

8m2lM1M2ð1� n2Þ
½�4m2ð1� n2Þ

ðm1ð3� 4n2Þð1� 2n1Þ � m2ð3� 4n1Þð1� 2n2ÞÞ

þM1ðm1 � m2Þð3� 4n2Þld3

þ 2l2ðm1 � m2ÞM1sz�, ð18Þ

TL0ðzÞ=l ¼
�FL0 expð�ld1Þ

4lð1� n2Þ
signðz� sÞð2� 2n2 þ ld1Þ

þ
F L0 expð�ld2Þ

4lM1M2ð1� n2Þ
½2m21ð3� 4n2Þð1� n2Þ

� 2m22ð3� 4n1Þð1� n2Þ þ lsM1ðm1 � m2Þ

þ lzM1ðm1 � m2Þð3� 4n2Þ

þ 2l2ðm1 � m2ÞM1szÞ�,

TM0ðzÞ ¼
F L0 expð�ld1Þ

4lð1� n2Þ
ð1� 2n2 þ ld1Þ

þ
F L0 expð�ld2Þ

4lM1M2ð1� n2Þ
½2m1m2ð3� 4n2Þð1� 2n1Þ

� m21ð3� 4n2Þð1� 2n2Þ � m22ð3� 4n1Þð1� 2n2Þ

þ lsM1ðm1 � m2Þ � lsM1ðm1 � m2Þð3� 4n2Þ

� 2l2ðm1 � m2ÞM1sz�.

And

UN1ðzÞ ¼
FN1 expð�ld1Þ

2m2l
�

FN1 expð�ld2Þðm1 � m2Þ
2m2lðm1 þ m2Þ

,

TN1ðzÞ=l ¼ �
FL1 expð�ld1Þ

2l
signðz� sÞ þ

F N1 expð�ld2Þðm1 � m2Þ
2lðm1 þ m2Þ

,

UL1ðzÞ ¼
F M1 expð�ld1Þ

8m2ð1� n2Þ
ld3

þ
FM1 expð�ld2Þ

8m2lM1M2ð1� n2Þ
½�4m2ð1� n2Þ
ðm1ð3� 4n2Þð1� 2n1Þ � m2ð3� 4n1Þð1� 2n2ÞÞ

�M1ðm1 � m2Þð3� 4n2Þld3 þ 2l2ðm1 � m2ÞM1sz�,

lUM1ðzÞ ¼
F M1 expð�ld1Þ

8m2ð1� n2Þ
ð3� 4n2 � ld1Þ þ

F M1 expð�ld2Þ

8m2M1M2ð1� n2Þ

½�2l2ðm1 � m2ÞM1zsþM1ðm1 � m2Þð3� 4n2Þld2

� ðm21ð3� 4n2Þ
2
� m22ð3� 4n1Þð5� 12n2 þ 8n22Þ

þ m1m2ð3� 4n2Þð2� 4n1Þð1� 2n2ÞÞ�, ð19Þ

TL1ðzÞ=l ¼
FM1 expð�ld1Þ

4ð1� n2Þ
ð1� 2n2 þ ld1Þ

þ
FM1 expð�ld2Þ

4M1M2ð1� n2Þ
½�2m21ð3� 4n2Þð1� n2Þ

þ 2m22ð3� 4n1Þð1� n2Þ þM1ðm1 � m2Þð3� 4n2Þ

þM1ðm1 � m2Þð�lsþ lzð3� 4n2Þ � 2l2szÞ�,

TM1ðzÞ ¼ �
F M1 expð�ld1Þ

4ð1� n2Þ
signðz� sÞð2� 2n2 � ld1Þ

þ
FM1 expð�ld2Þ

4M1M2ð1� n2Þ
½2m21ð3� 4n2Þð1� n2Þ

� 2m22ð3� 4n1Þð1� n2Þ �M1ðm1 � m2Þðls

þ lzð3� 4n2Þ � 2l2szÞ�.

In these equations, we list results only for those terms
corresponding to m ¼ 0 and 1, signified by the subscripts 0
and 1, respectively. The terms corresponding to m ¼ �1
can be obtained similarly.
6. Numerical results

In the limiting case, the Green’s functions for a layered
half-space can be verified by comparing them with Mind-
lin’s solutions. In general, we consider a layered half-space
(Fig. 3) composed of three layers with the elastic properties
listed in Table 1. The layer interfaces are located at
z ¼ 0.25 and 1.5. It is noted that Case 1 in Table 1
corresponds to the Mindlin problem of a homogenous half-
space.
We now compare two singularity extraction methods for

this special case (Case 1). For brevity, we refer to the
results obtained using Pan’s algorithm [14], which makes
use of the Kelvin solution, as Method I. The present
approach, which employs the bi-material solution, is
named Method II.
The objective is to obtain results of high accuracy

corresponding to approximately six significant figures.
However, the definition of error tolerance is complicated
by computation of the displacements and stresses from the
weighted sum of 15 integrals. Further, because it is not
practical to establish apriori which, if any, of these
integrals are predominant, failure of convergence in one
or more integrals (which entails substantial computational
cost) may not translate into significant loss of precision
overall. To devise an algorithm which is both robust and
(optimally) efficient under these conditions is difficult: we
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Z1 = 0.25

B A

Fig. 3. Geometry of a three-layered half-space (not to scale).

Table 1

Elastic properties of a three-layered half-space

Case 1 Case 2

E n E n

Layer 1 1.0 0.25 1.0 0.25

Layer 2 1.0 0.25 5.0 0.25

Layer 3 1.0 0.25 25.0 0.25
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Fig. 4. Singular kernel functions: (a) UM0lJ1ðlrÞ and (b) TL0J0ðlrÞ for

source point at B (0, 0, 1.5) and field point at A (0.01, 0, 1.5),

corresponding to r ¼ 0.01.
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follow Pan [14] in adopting an algorithm, which delivers
accurate results if it is convergent, but which may (or may
not) deliver accurate results if convergence fails. The
algorithm is therefore robust but not optimally efficient.

For non-singular cases, both methods converge and
provide results with high precision (6S), but for near-
singular cases (i.e., where the separation of the source and
field points is an order of magnitude less than the layer
thickness) convergence is much slower using Method I, as
these points approach the free surface. This result is
expected because it is well known that the Kelvin singular
function differs from the Mindlin singular function by a
factor of two (2), and therefore the singularity subtraction
algorithm, using Method I, fails.

We now consider the more general problem in greater
detail. A point source is located at (0, 0, 1.5), designated as
point B: that is, on the interface between layers 2 and 3
(Fig. 3). Results are sought at a field point designated as
point A (0.01, 0, 1.5), which is also located on the layer
interface but at some small distance along the x-axis
(Fig. 3). In relation to the characteristic dimensions of the
problem (i.e., the layer thicknesses), this field point is near-
singular. As noted above, in the numerical computation, 15
different numerical integrals must be computed to con-
struct the layered Green’s functions. Here we select from
them kernel function 1, namely, UM0lJ1ðlrÞ, and kernel
function 4, namely TL0J0ðlrÞ for illustrative purposes. For
field point A (i.e., r ¼ 0.01), Fig. 4 shows how these kernel
functions vary with l: they are oscillatory and non-
convergent over this range and consequently difficult to
integrate. After subtraction of the singular part of the
layered Green’s function using the bi-material Green’s
function, the residues (non-singular parts of the layered
Green’s functions) present a very different picture, as
shown in Fig. 5.
It is apparent from Fig. 5 that the residues are non-zero

only near the origin, i.e., the residues converge quickly.
Further, the magnitudes of these residues are only a small
fraction of the corresponding singular parts. The non-zero
values observed at large values of l are spurious; these arise
from numerical truncation errors. Some care is needed to
ensure that these errors do not contaminate the solution,
and this can be achieved by ensuring that the first
integration interval is sufficiently small (i.e., less than the
scaled first zero of the Bessel function).
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TL0J0ðlrÞ for source point at B (0, 0, 1.5) and field point at A (0.01, 0, 1.5),

corresponding to r ¼ 0.01.

Table 2

Displacements at field point A (0.01, 0, 1.5) due to unit point force at B (0, 0

Due to unit point force Fx Due to unit point force

Method I (full-space) Method II (bimaterial) Method I (full-space)

ux 1.3273456 1.3273458 0.0

uy 0.0 0.0 0.93118093

uz 0.2066954 0.2066952 0.0

Table 3

Stresses at field point A (0.01, 0, 1.5) due to unit point force at B (0, 0, 1.5)

Due to unit point force Fx Due to unit point forc

Method I (full-space) Method II (bimaterial) Method I (full-space)

sxx �603.2 �602.8 0.0

syy 86.3 86.1 0.0

szz 155.3 155.0 0.0

syz 0.0 0.0 34.4

sxz �34.9 �34.4 0.0

sxy 0.0 0.0 �106.793
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Tables 2 and 3 list the displacements and stresses in the
three-layered half-space, using the singular extraction
Method I (full space) and Method II (bi-material) resulting
from unit point forces directed along the three axes (x, y

and z, respectively).
We observe from Table 2 the excellent agreement, for

displacements, between the two methods. However, the
results obtained by Method II require only a small fraction
(less than 5%) of the computational time taken by Method
I, because Method I (unlike Method II) fails to converge.
This failure of convergence of Method I is significant here
as may be observed by comparing the corresponding
stresses in Table 3. These show that, in most cases, three
significant figure accuracy is the best that can be achieved
using Method I, and only then by expending considerably
more (at least one order of magnitude) computational
effort.
This result can be traced to the failure of the singularity

subtraction method, using Method I, at the interface
between two dis-similar materials, which consequently
necessitates numerical integration of singular kernel func-
tions similar to those depicted in Fig. 4, rather than those
in Fig. 5.
Fig. 6 illustrates the variation along the x-axis on the

interface between layers 2 and 3 (i.e., on the plane z ¼ 1.5)
of, (a), vertical displacement uz

z and, (b), shear stress sz
xz

due to a vertical point force at (0, 0, 1.5), for the two cases
listed in Table 1: namely a 3-layered material and a
homogenous material. The singularity is captured in both
cases using the bi-material singular extraction method (i.e.,
Method II). The relatively soft 3-layered material under-
goes significantly greater deformation than the homoge-
nous material, but the shear stress distributions are very
similar.
, 1.5)

Fy Due to unit point force Fz

Method II (bimaterial) Method I (full-space) Method II (bimaterial)

0.8 E-16 �0.2066951 �0.2066952

0.93118091 0.0 0.0

0.1 E-16 0.9325203 0.9325200

e Fy Due to unit point force Fz

Method II (bimaterial) Method I (full-space) Method II (bimaterial)

�0.3 E-13 82.64 82.67

0.5 E-14 �82.72 �82.69

0.9 E-14 �0.14 �0.02

34.5 0.0 0.0

�0.2 E-14 �154.9 �155.0

�106.792 0.0 0.0
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To illustrate the application of these Green’s functions to
boundary element analysis, we analyze the settlement of a
smooth (frictionless) flexible disk of unit radius R subjected
to unit vertical pressure and founded on a three-layered
halfspace, defined by the material properties of Table 1
(Case 2) and the geometry of Fig. 3. Making use of
quadrantal symmetry, 33 eight-noded quadratic boundary
elements (Fig. 7) are used to discretize the disk: the free-
surface condition is automatically satisfied. The results of
the analysis (Fig. 8), obtained by using the three-dimen-
sional code, BEMECH [29] show: (a) the settlement profile
of the ground surface and (b) the variation of vertical
displacement with depth below the disk centroid. On this
scale, the results are indistinguishable from a correspond-
ing multi-region analysis [30] using Kelvin’s solution for
each region which requires a total of 324 elements: outside
the disk, the infinite surface is truncated at a radius of 50
units and discretized using just 8 quadratic boundary
elements in the radial direction, while layer 3 is assumed to
be underlain by a rigid layer at a depth z of 6 units. This
analysis yields a centroidal surface settlement, which is
0.8% greater than that obtained using the multi-layer
Green’s functions. Also shown in Fig. 8 for comparison
purposes are the analytical settlement profiles for a
homogenous half-space (normalized to the same centroidal
surface settlement). Fig. 8(a) shows that surface settlements
decay very rapidly outside the loaded area for the multi-
layered half-space by comparison with the homogenous
half-space, while the profile of vertical settlements with
respect to depth beneath the centroid (Fig. 8(b)) clearly
reflects the stiffness profile itself, i.e., settlements are
concentrated in the more compliant upper layers. In this
simple example, despite the substantial reduction in the
number of boundary elements, the saving in computational
time resulting from use of the multi-layer Green’s functions
is not significant. However, the advantages of reduced data
preparation effort; the ability to cope effectively with
difficult geometries (i.e., very thin layers) and the scope for
further significant computational efficiency gains (includ-
ing specification of less stringent error tolerances) offers
considerable promise.

7. Conclusion

Some of the difficulties of computing three-dimensional
Green’s functions in multi-layered half-spaces have been
explored. This investigation shows that a significant gain in
computational efficiency and accuracy can be obtained by
utilizing the closed-form solutions for the bi-material half-
space. A boundary element analysis illustrates the potential
of this approach in practical multi-layered problems, where
accurate efficient computation of near-singular kernel
functions is of paramount importance.
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