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Multiferroic magnetoelectrics are materials that are both ferroelectric and ferromagnetic
in the same phase. In addition, electric and magnetic polarizations are strongly coupled
in some magnetoelectric multiferroic materials. In this work, by virtue of the image
method, exact closed-form Green’s functions are derived for a uniaxial multiferroic
full-space, half-space, and bimaterial space. While for the bimaterial space case the
interface is assumed to be perfect, for the half-space case four different sets of surface
conditions are considered. The point source can be either an electric or a magnetic
charge. Numerical results are presented to demonstrate the differences among the
infinite-space, half-space, and bimaterial space Green’s functions.

I. INTRODUCTION

Magnetoelectric multiferroic materials are novel com-
pounds that exhibit both ferromagnetism and ferroelec-
tricity simultaneously. In addition, magnetic and electric
polarizations are strongly coupled in some magnetoelec-
tric multiferroic materials. These materials may exhibit a
spontaneous magnetic polarization that can be switched
with an electric field and/or a spontaneous electric po-
larization that can be switched with a magnetic field.
Possible applications of magnetoelectric multiferroics in-
clude multiple-state memory elements, giant magnetic
resistance devices, electric-field-controlled ferromag-
netic-resonance devices, and variable transducers with
either magnetically modulated piezoelectricity or electri-
cally modulated piezomagnetism. Recently, various as-
pects of the fundamental physics of multiferroic materi-
als, including first principles1–4 and micromechanics,5–7

were investigated. In terms of fundamental/analytical so-
lutions, while the bimaterial Green’s functions in aniso-
tropic and fully coupled magneto-electro-elastic materi-
als were derived by virtue of the Stroh formalism,8 a
three-dimensional (3D) solution of plates made of multi-
ferroic composites,9 was also available.

In a more recent study, Li and Li10 derived the explicit
Green’s functions for a uniaxial multiferroic material
full-space induced by a point-electric or magnetic charge,
and then used the Green’s functions to determine the
electromagnetic fields in an ellipsoidal inclusion with

spontaneous polarization and magnetization embedded in
a multiferroic material.

As the fundamental solutions to various governing
systems of equations, Green’s functions represent the
very basic relation between the response at the field point
and the excitation at the source point. Therefore, they can
be directly applied to the analysis of material behaviors
in certain simple cases or used as kernel functions in a
boundary integral equation for analyzing more compli-
cated problems. Green’s functions are also fundamental
for the prediction of the effective material properties in
composites such as the multiferroic material composites.

Because a multiferroic composite would mostly con-
tain interfaces and/or surfaces, a Green’s function solu-
tion in the corresponding bimaterial space and half-space
is important for analyzing the potential effect of the in-
terface and/or surface. Therefore, in this article, we will
determine the electromagnetic fields in a uniaxial mul-
tiferroic bimaterial or in a uniaxial multiferroic half-
space induced by a point-electric or magnetic charge.
Our article is arranged as follows: In Sec. II, we first
present a different approach to derive the Green’s func-
tions for a multiferroic material full-space. In Li and Li,10

a magnetoelectric potential function, g, which satisfies a
dual-harmonic function, is introduced. In our approach,
through the introduction of two new functions, the origi-
nal coupled governing equations for electric and mag-
netic potentials can be decoupled into two inhomoge-
neous Laplace equations for the two newly introduced
functions, the Green’s function solutions of which are
well known. As a result, our approach is direct and
simple in deriving the Green’s functions. In Sec. III, the
Green’s functions for a uniaxial multiferroic bimaterial
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are derived by means of the method of image.11

Our results show that one only needs to invert a single
4 × 4 matrix to find the eight unknown constants appear-
ing in the expressions of magnetoelectric Green’s func-
tions for the multiferroic bimaterial. In Sec. IV, the
Green’s functions for a uniaxial multiferroic half-space
with four different sets of boundary conditions on the
surface of the half-space are presented also by means of
the method of image. The half-space Green’s functions
are derived explicitly for the four different sets of bound-
ary conditions.

II. GREEN’S FUNCTIONS FOR A
MULTIFERROIC FULL-SPACE

The constitutive equations for a uniaxial multiferroic
material with its unique axis along the x3 axis can be
written as

�D1

B1
� = ��11 �11

�11 �11
��E1

H1
� ,

�D2

B2
� = ��11 �11

�11 �11
��E2

H2
� ,

�D3

B3
� = ��33 �33

�33 �33
��E3

H3
� , (1)

where Di and Bi (I � 1, 2, 3) are, respectively, the
electric displacement and magnetic flux components (in
the x1, x2, and x3 directions); Ei and Hi are electric-field
and magnetic field components, respectively; �11 and �33

are the two dielectric permittivity coefficients in the x1

and x3 directions, respectively; �11 and �33 are the two
magnetoelectric coefficients (in the x1 and x3 directions,
respectively); and �11 and �33 are the two magnetic per-
meability coefficients (in the x1 and x3 directions, respec-
tively). We remark that the multiferroic material behavior
exists only if the magnetoelectric coefficient is nonzero,
resulting in the coupling between the electric and mag-
netic fields. In other words, an applied electric field in-
duces a magnetic field, and vice versa. On the other hand,
if all the magnetoelectric coefficients are zero, then the
electric and magnetic fields are decoupled to each other.

The electric and magnetic fields are related to the elec-
tric potential � and magnetic potential � through the
following 2 × 1 column matrix relation

�Ei

Hi
� = −��,i

�,i
� , (2)

where the subscript comma “,” followed by the index i
(i � 1, 2, 3) denotes the derivative of the potential with
respect to the coordinate xi.

For the uniaxial multiferroic free-space case, without
loss of generality, we assume that there is a point-electric

charge P and a point-magnetic charge M, both of which
are located at the origin. Then the electric displacement
Di and magnetic flux Bi satisfy the following equations

�D1

�x1
+

�D2

�x2
+

�D3

�x3
= P��x1���x2���x3� ,

�B1

�x1
+

�B2

�x2
+

�B3

�x3
= M��x1���x2���x3� , (3)

where �( ) is the Dirac delta function. We point out that
due to the linear relation between electric displacement
Di and spontaneous polarization, and magnetic flux Bi

and spontaneous magnetization, the point-electric charge
P and the magnetic-charge M can therefore be also physi-
cally interpreted as the divergence of a polarization and
magnetization, respectively.10 Therefore, the Green’s
functions solutions of Eq. (3) are extremely important as
they can be directly related to the spontaneous polari-
zation- and magnetization-induced fields, or can be
implemented into a boundary-integral formulation for
more complicated problem analysis.

Substituting Eq. (2) into Eq. (1), and then substituting
the results into Eq. (3), we finally arrive at the following
set of inhomogeneous partial differential equations for �
and �

��11 �11

�11 �11
���

�2

�x1
2 +

�2

�x2
2��

� �2

�x1
2 +

�2

�x2
2��� + ��33 �33

�33 �33
��

�2�

�x3
2

�2�

�x3
2
� =

−�P

M� ��x1���x2���x3� . (4)

In the following, we will present a simple approach to
derive the Green’s functions for a multiferroic full-space.
We first consider the following eigenvalue problem

���11 �11

�11 �11
� − ���33 �33

�33 �33
��v = �0

0� . (5)

The two eigenvalues �1 and �2 are given by

�1 =

�33�11 + �11�33 − 2�11�33 +

� ��11�33 − �33�11�2

+ 4��11�33 − �33�11���11�33 − �33�11�

2��33�33 − �33
2 �

,

�2 =

�33�11 + �11�33 − 2�11�33 −

� ��11�33 − �33�11�
2

+ 4��11�33 − �33�11���11�33 − �33�11�

2��33�33 − �33
2 �

, (6)
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and the two eigenvectors v1 and v2 associated with �1

and �2 are

v1 = �−�11 + �1�33

�11 − �1�33
� ,

v2 = �−�11 + �2�33

�11 − �2�33
� . (7)

Because the two matrices ��11 �11

�11 �11
� and ��33 �33

�33 �33
�

are real and symmetric, it can be easily verified that the
following orthogonal relationships with respect to the
two symmetric matrices hold

�v1
T

v2
T���33 �33

�33 �33
��v1 v2� = ��1 0

0 �2
� ,

�v1
T

v2
T���11 �11

�11 �11
��v1 v2� = ��1�1 0

0 �2�2
� ,

(8)

where

�1 = �11
2 �33 + �11

2 �33 − 2�11�33�11

+ ��33�33 − �33
2 ���1

2�33 − 2�1�11� ,

�2 = �11
2 �33 + �11

2 �33 − 2�11�33�11

+ ��33�33 − �33
2 ���2

2�33 − 2�2�11� . (9)

We now introduce two new functions, f and g, which are
related to � and � through

��

�
� = H� f

g� , (10)

where H � [v1 v2].
In view of Eqs. (4), (8), and (10), the two new func-

tions f and g satisfy the following two independent in-
homogeneous 3D Laplace equations

� �2

�x1
2 +

�2

�x2
2 +

1

�1

�2

�x3
2� f =

−
�−�11 + �1�33�P + ��11 − �1�33�M
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1
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�x3
2�g =

−
�−�11 + �2�33�P + ��11 − �2�33�M

�2�2
��x1���x2���x3� .

(11)

Further simplification can be carried for Eq. (11), result-
ing in the following concise and equivalent expressions

� �2

�x1
2 +

�2

�x2
2 +

�2

����1x3�
2� f =

−4	K1��x1���x2�����1x3� ,

� �2

�x1
2 +

�2

�x2
2 +

�2

����2x3�
2�g =

−4	K2��x1���x2�����2x3� , (12)
where the two constants K1 and K2 are defined as

K1 =
�−�11 + �1�33�P + ��11 − �1�33�M

4	�1��1

,

K2 =
�−�11 + �2�33�P + ��11 − �2�33�M

4	�2��2

. (13)

Therefore, solutions to Eq. (12) can be expediently given by

f =
K1

�x1
2 + x2

2 + �1x3
2

,

g =
K2

�x1
2 + x2

2 + �2x3
2

. (14)

In view of Eqs. (10) and (14), the electric and magnetic
potentials can be now obtained as

��

�
� = H�

K1

�x1
2 + x2

2 + �1x3
2

K2

�x1
2 + x2

2 + �2x3
2
� . (15)

Based on Eq. (15), the full-space multiferroic Green’s
functions G�
 are then found to be

4	G�P =
��11 − �1�33�2

�1��1 �x1
2 + x2

2 + �1x3
2

+
��11 − �2�33�2

�2��2 �x1
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2

,

4	G�M = 4	G�P

=
�−�11 + �1�33���11 − �1�33�

�1��1 �x1
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2

+
�−�11 + �2�33���11 − �2�33�
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2 + x2

2 + �2x3
2

,

4	G�M =
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2
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2

, (16)
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where the definitions of the Green’s functions are:
G�P(xi) is the electric potential � at xi due to a
point-electric charge (P � 1) at origin; G�M(xi) is the
electric potential � at xi due to a point-magnetic
charge (M � 1) at origin; G�P(xi) is the magnetic
potential � at xi due to a point-electric charge (P � 1) at
origin; and G�M(xi) is the magnetic potential � at xi

due to a point-magnetic charge (M � 1) at origin. It is
noted that for the full-space case, the Green’s function
is symmetric. In other words, the electric potential at xi

due to a point-magnetic charge at the origin equals the
magnetic potential at the origin due to a point-electric
charge at xi (also making use of the fact that these
Green’s functions are even functions of the coordinates).
This is an extended result of the well-known Betti–
Maxwell reciprocity theorem, which has found numerous
applications in various mathematical and physical
fields.12

It should be mentioned that the above-derived
Green’s functions are not valid for the decoupling case
�

11
� �33 � 0 due the fact that in this decoupling case

one of the two eigenvectors in Eq. (7) will be zero. For

this degenerated case, instead of deriving a new set of
solutions for the problem, we can simply assign two very
small values for �11 and �33 to separate the two eigen-
values �1 and �2 and to make the two eigenvectors in
Eq. (7) nonzero and independent of each other. In so
doing, the solutions presented in this article can still be
applied with neglected errors.10,13

We emphasize that we have presented a different ap-
proach than that given by Li and Li10 to obtain the
Green’s functions for a full-space multiferroic material.
In Ref. 10, a magnetoelectric potential function, g, which
satisfies a dual-harmonic function, is introduced. In our
approach, through the introduction of two new functions
the original coupled governing Eq. (4) can be decoupled
into two inhomogeneous Laplace equations, Eqs. (11) or
(12), the Green’s function solutions of which are well
known. As a result, our approach is direct and simple
in deriving the Green’s function. We have verified our
solution by comparing our results with those in Ref. 10
and are able to reproduce exactly Figs. 1–3 there.10

Consequently, our solutions can be utilized with high
confidence.

FIG. 1. 3D distribution of the Green’s function component G�P in a
bimaterial space.

FIG. 2. 3D distribution of the Green’s function component G�M in a
bimaterial space.
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III. GREEN’S FUNCTIONS FOR A
MULTIFERROIC BIMATERIAL

With the simple full-space Green’s function solutions,
we can derive the corresponding Green’s functions in
two bonded multiferroic half-spaces. We assume that the
two half-spaces are uniaxial multiferroic materials hav-
ing a unique axis along the x3 axis, and that the interface
x3 � 0 separating the two half-spaces is perfect. Namely,
the electric potential, magnetic potential, normal electric
displacement, and normal magnetic flux are all continu-
ous across the interface. Without loss of generality, an
electric charge, P, and a magnetic charge, M, are as-
sumed to be located at x1 � x2 � 0, x3 � h, (h > 0) in
the upper half-space of the multiferroic bimaterial.

Following the basic idea of the method of image in
static electricity,11 the electric and magnetic potentials in
the two half-spaces induced by the electric and magnetic
charges can be assumed as

��1

�1
� = H1�

K1

�x1
2 + x2

2 + �1
�1��x3 − h�2

K2
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2 + x2
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�x1
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2 + �1
�1��x3 + h�2
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�x1
2 + x2

2 + �2
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�
+ H1�

T3
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2 + x2

2 + ���1
�1�x3 + ��2

�1�h�
2

T4

�x1
2 + x2

2 + ���2
�1�x3 + ��1

�1�h�
2
� ,

x3 � 0 , (17)

��2

�2
� = H2�

L1

�x1
2 + x2

2 + ���1
�2�x3 − ��1

�1�h�
2

L2

�x1
2 + x2

2 + ���2
�2�x3 − ��2

�1� h�
2
�

+ H2�
L3

�x1
2 + x2

2 + ���1
�2�x3 − ��2

�1�h�2

L4

�x1
2 + x2

2 + ���2
�2�x3 − ��1

�1� h�2
� ,

x3 � 0 , (18)

where H1,�1
(1),�2

(1) pertain to the upper half-space,
whereas H2,�1

(2),�2
(2) belong to the lower half-space;

K1 and K2 have been defined in Eq. (13) with the material
properties belonging to the upper half-space; TI, Li,
(i � 1–4) are eight unknown constants to be determined.
Then, enforcing the interface conditions on x3 � 0 re-
sults in the following set of linear algebraic equations

H11
�1�K1 + H11

�1�T1 + H12
�1�T4 − H11

�2�L1 − H12
�2�L4 = 0 ,

H12
�1�K2 + H12

�1�T2 + H11
�1�T3 − H11

�2�L3 − H12
�2�L2 = 0 ,

H21
�1�K1 + H21

�1�T1 + H22
�1�T4 − H21

�2�L1 − H22
�2�L4 = 0 ,

H22
�1�K2 + H22

�1�T2 + H21
�1�T3 − H21

�2�L3 − H22
�2�L2 = 0 ,

−J11
�1�K1 + J11

�1�T1 + J12
�1�T4 + J11

�2�L1 + J12
�2�L4 = 0 ,

−J12
�1�K2 + J12

�1�T2 + J11
�1�T3 + J11

�2�L3 + J12
�2�L2 = 0 ,

−J21
�1�K1 + J21

�1�T1 + J22
�1�T4 + J21

�2�L1 + J22
�2�L4 = 0 ,

−J22
�1�K2 + J22

�1�T2 + J21
�1�T3 + J21

�2�L3 + J22
�2�L2 = 0 ,

(19)

where H11
(i), H12

(i), H21
(i), H22

(i) are the four components of
Hi, and

J11
�i� = ��1

�i���33
�i� H11

�i� + �33
�i� H21

�i� � ,

J12
�i� = ��2

�i���33
�i� H12

�i� + �33
�i� H22

�i� � ,

J21
�i� = ��1

�i���33
�i� H11

�i� + �33
�i� H21

�i� � ,

J22
�i� = ��2

�i���33
�i� H12

�i� + �33
�i� H22

�i� � ,

�i = 1, 2� . (20)

As a result, the eight unknown constants Ti, Li, (i � 1–4)
can be uniquely determined by the eight independent
algebraic equations in Eq. (18). More specifically

�
T1 T3

T4 T2

L1 L3

L4 L2

� = Y�
−H11

�1� −H12
�1�

−H21
�1� −H22

�1�

J11
�1� J12

�1�

J21
�1� J22

�1�
��K1 0

0 K2
� ,

(21)

where

Y = �
H11

�1� H12
�1� −H11

�2� −H12
�2�

H21
�1� H22

�1� −H21
�2� −H22

�2�

J11
�1� J12

�1� J11
�2� J12

�2�

J21
�1� J22

�1� J21
�2� J22

�2�
�

−1

. (22)

The above results demonstrate that we only need to
invert a single 4 × 4 matrix [see Eq. (22)] to find the eight
unknown constants appearing in the expressions of the
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magnetoelectric Green’s functions for the multiferroic
bimaterial. Therefore, explicit expressions of the Green’s
functions G�
 for the multiferroic bimaterial are finally
solved. We also remark that while the bimaterial Green’s
functions are for the perfect bonded interface case,
Green’s functions corresponding to other interface con-
ditions, in particular the homogeneous-type and spring-
type conditions, could also be derived.14,15 To demon-
strate the derived solutions, we show in Figs. 1 and 2 the
Green’s functions G�P (the magnetic potential induced
by a unit point-electric charge) and G�M (the electric
potential induced by a unit point-magnetic charge).
While the material properties of the upper half-space are
taken from Ref. 10, the lower half-space is assumed to be
BaTiO3. The material coefficients for the two half-spaces
are listed in Table I.

Because the magnetoelectric coefficients �11 and �33

are zero for the lower half-space, which corresponds to
the degenerated case we discussed in the previous sec-
tion, we perturbed �11 and �33 to be nonzero during
calculation so that the Green’s function solutions we de-
rived here can still be used. While Figs. 1(a) and 2(a)
show the distributions of G�P and G�M in both the upper

and lower half-spaces as functions of the cylindrical co-
ordinates r and x3, Figs. 1(b) and 2(b) plot the variation
of G�P and G�M along the x3 axis (i.e., with r � 0). It is
observed that, due to the existence of the lower half-
space the properties of which are quite different from
those of the upper multiferroic half-space, the distribu-
tion of G�P in the lower half-space can be altered
significantly (see Fig. 3 in Ref. 10 as a comparison),
while G�M ≈ 0 in the lower half-space, which is due to
the fact that the dielectric permittivity coefficients for the
lower half-space are much higher than those for the upper
half-space. More interestingly, there exists a point at
x1 � x2 � 0, x3 � −1.08h in the lower half-space at
which G�P attains a maximum value of 1623/h A. In
addition, our results clearly show that, unlike the full-
space multiferroic Green’s function, the correspond-
ing bimaterial Green’s functions is not symmetric
[i.e., G�M  G�P for the bimaterial case (Fig. 1 versus
Fig. 2)]. Therefore, the bimaterial Green’s functions are
required to capture the material-mismatch effect on the
field quantities.

IV. GREEN’S FUNCTIONS FOR A MULTIFERROIC
HALF-SPACE

In this section, we derive the Green’s functions for a
multiferroic half-space (x3 � 0) where a point-electric
charge P and a point-magnetic charge M are located at
x1 � x2 � 0, x3 � h, (h > 0). Again, we assume that the
half-space is a uniaxial multiferroic material having a
unique axis along the x3 axis. Here, we discuss four
different types of boundary conditions on the surface

FIG. 3. Variations of the Green’s functions G�P, G�M, G�P, and G�M along the positive x3 axis for the half-space case with D3 � B3 � 0 on
x3 � 0 (solid lines, considering the influence of the surface) and for the full-space (dashed lines, ignoring the influence of the surface).

TABLE I. The constitutive moduli for the multiferroic bimaterial.a

Bimaterial �11 �33 �11 �33 �11 �33

Upper half-space 5 3 8 9.3 5.9 1.57
Lower half-space 0 0 1120 1260 0.05 0.1

aUnit: magnetoelectric coefficient in 10−12 Ns/VC; dielectric permittivity
in 10−11 C2/Nm2; magnetic permeability in 10−4 Ns2/C2.
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x3 � 0: (1) � � � � 0; (2) D3 � B3 � 0; (3) � �
B3 � 0; and (4) � � D3 � 0. We point out that although
these conditions are special homogeneous conditions,
other more complicated boundary conditions, such as the
combined homogeneous conditions and even the spring-
type conditions can be equally addressed and solved in
the exact closed form.16 On the other hand, for more

general cases, one could simply use the present Green’s
function solution to develop the corresponding boundary
integral equation, which can be discretized and solved
numerically.13

Similar to the discussion in the previous section, the
electric potential and magnetic potential in the half-space
can be assumed as

��

�
� = H�

K1

�x1
2 + x2

2 + �1�x3 − h�2

K2

�x1
2 + x2

2 + �2�x3 − h�2
� + H�

T1

�x1
2 + x2

2 + �1�x3 + h�2

T2

�x1
2 + x2

2 + �2�x3 + h�2
� + H�

T3

�x1
2 + x2

2 + ���1x3 + ��2h�
2

T4

�x1
2 + x2

2 + ���2x3 + ��1h�
2
� ,

x3 � 0 , (23)
where Ti (i � 1–4) are four unknown constants to be determined by the prescribed boundary conditions on the surface.
In the following, we discuss the four types of boundary conditions one by one.

Type (1). � = � = 0 on x3 = 0

By enforcing the boundary conditions � � � � 0 on x3 � 0, it is found that

T1 = −K1, T2 = −K2, T3 = T4 = 0 . (24)

Consequently, the electric and magnetic potentials in the half-space take the following simple forms

��

�
� = H�

K1

�x1
2 + x2

2 �1�x3 − h�2
−

K1

�x1
2 + x2

2 + �1�x3 + h�2

K2

�x1
2 + x2

2 + �2�x3 − h�2
−

K2

�x1
2 + x2

2 + �2�x3 + h�2
�, x3 � 0 . (25)

Therefore, the explicit expressions of the Green’s functions G�
 are

4	G�P =
��11 − �1�33�2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
−

1

�x1
2 + x2

2 + �1�x3 + h�2�
+

��11 − �2�33�
2

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
−

1

�x1
2 + x2

2 + �2�x3 + h�2
� , (26a)

4	G�M = 4	G�P =
�−�11 + �1�33���11 − �1�33�

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
−

1

�x1
2 + x2

2 + �1�x3 + h�2�
+

�−�11 + �2�33���11 − �2�33�

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
−

1

�x1
2 + x2

2 + �2�x3 + h�2� , (26b)

4	G�M =
��11 − �1�33�2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
−

1

�x1
2 + x2

2 + �1�x3 + h�2�
+

��11 − �2�33�2

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
−

1

�x1
2 + x2

2 + �2�x3 + h�2� . (26c)

We remark that this set of half-space Green’s functions can be reduced from our bimaterial Green’s functions
[Eqs. (17) and (18)] by assuming the lower half-space with very large �ii and �ii.
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Type (2). D3 = B3 = 0 on x3 = 0

By enforcing the boundary conditions D3 � B3 � 0 on x3 � 0, it is found that

T1 = K1, T2 = K2, T3 = T4 = 0 . (27)

Thus, the electric and magnetic potentials in the half-space take the following simple forms

��

�
� = H�

K1

�x1
2 + x2

2 + �1�x3 − h�2
+

K1

�x1
2 + x2

2 + �1�x3 + h�2

K2

�x1
2 + x2

2 + �2�x3 − h�2
+

K2

�x1
2 + x2

2 + �2�x3 + h�2
�, x3 � 0 . (28)

The corresponding Green’s functions G�
 can be finally derived to be

4	G�P =
��11 − �1�33�2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

1

�x1
2 + x2

2 + �1�x3 + h�2�
+

��11 − �2�33�2

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

1

�x1
2 + x2

2 + �2�x3 + h�2� , (29a)

4	G�M = 4	G�P =
�−�11 + �1�33���11 − �1�33�

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

1

�x1
2 + x2

2 + �1�x3 + h�2�
+

�−�11 + �2�33���11 − �2�33�

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

1

�x1
2 + x2

2 + �2�x3 + h�2
� , (29b)

4	G�M =
��11 − �1�33�2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

1

�x1
2 + x2

2 + �1�x3 + h�2�
+

��11 − �2�33�2

�2��2�x1
2 + x2

2 + �2�x3 − h�2 � 1

�x1
2 + x2

2 + �2�x3 − h�2
+

1

�x1
2 + x2

2 + �2�x3 + h�2� . (29c)

Similar to the first set of half-space Green’s functions [Eq. (26)], this set of half-space Green’s functions again can
be reduced from our bimaterial Green’s functions [Eqs. (17) and (18)] by assuming the lower half-space with very
small �ii, �ii, and �ii.

Type (3). � = B3 = 0 on x3 = 0

By enforcing the boundary conditions � � B3 � 0 on x3 � 0, then Ti (i � 1–4) can be uniquely determined
to be

T1 =
K1�H11J22 + H12J21�

H12J21 − H11J22
, T2 =

K2�H11J22 + H12J21�

H11J22 − H12J21
,

T3 =
2K2H12J22

H12J21 − H11J22
, T4 =

2K1H11J21

H11J22 − H12J21
, (30)

with J�
 having been defined in Eq. (20).
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The explicit expressions of the Green’s functions G�
 for this case can be finally derived to be

4	G�P =
H 11

2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H11J22 + H12J21

�H12J21 − H11J22��x1
2 + x2

2 + �1�x3 + h�2�
+

H 12
2

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H11J22 + H12J21

�H11J22 − H12J21��x1
2 + x2

2 + �1�x3 + h�2�
+

2H11H12

H12J21 − H11J22
� H12J22

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H11J21

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� ,

(31a)

4	G�M =
H11H21

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H11J22 + H12J21

�H12J21 − H11J22��x1
2 + x2

2 + �1�x3 + h�2�
+

H12H22

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H11J22 + H12J21

�H11J22 − H12J21��x1
2 + x2

2 + �2�x3 + h�2�
+

2H11H12

H12J21 − H11J22
� H22J22

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H21J21

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� ,

(31b)

4	G�P =
H11H21

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H11J22 + H12J21

�H12J21 − H11J22��x1
2 + x2

2 + �1�x3 + h�2�
+

H12H22

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H11J22 + H12J21

�H11J22 − H12J21��x1
2 + x2

2 + �2�x3 + h�2�
+

2

H12J21 − H11J22
� H12

2 H21J22

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H11
2 H22J21

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� ,

(31c)

4	G�M =
H 21

2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H11J22 + H12J21

�H12J21 − H11J22��x1
2 + x2

2 + �1�x3 + h�2�
+

H 22
2

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H11J22 + H12J21

�H11J22 − H12J21��x1
2 + x2

2 + �2�x3 + h�2�
+

2H21H22

H12J21 − H11J22
� H12J22

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H11J21

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� .

(31d)

Type (4). � = D3 = 0 on x3 = 0

By enforcing the boundary conditions � � D3 � 0 on x3 � 0, then Ti (i � 1–4) can be uniquely determined
to be

T1 =
K1�H21J12 + H22J11�

H22J11 − H21J12
, T2 =

K2�H22J11 + H21J12�

H21J12 − H22J11
,

T3 =
2K2H22J12

H22J11 − H21J12
, T4 =

2K1H21J11

H21J12 − H22J11
. (32)
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The corresponding Green’s functions G�
 are found to be

4	G�P =
H 11

2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H21J12 + H22J11

�H22J11 − H21J12��x1
2 + x2

2 + �1�x3 + h�2�
+

H 12
2

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H22J11 + H21J12

�H21J12 − H22J11��x1
2 + x2

2 + �2�x3 + h�2�
+

2H11H12

H22J11 − H21J12
� H22J12

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H21J11

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� ,

(33a)

4	G�M =
H11H21

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H21J12 + H22J11

�H22J11 − H21J12��x1
2 + x2

2 + �1�x3 + h�2�
+

H12H22

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H22J11 + H21J12

�H21J12 − H22J11��x1
2 + x2

2 + �2�x3 + h�2�
+

2

H22J11 − H21J12
� H11H22

2 J12

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H12H21
2 J11

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� ,

(33b)

4	G�P =
H11H21

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H21J12 + H22J11

�H22J11 − H21J12��x1
2 + x2

2 + �1�x3 + h�2�
+

H12H22

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H22J11 + H21J12

�H21J12 − H22J11��x1
2 + x2

2 + �2�x3 + h�2�
+

2H21H22

H22J11 − H21J12
� H12J12

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H11J11

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� ,

(33c)

4	G�M =
H 21

2

�1��1
� 1

�x1
2 + x2

2 + �1�x3 − h�2
+

H21J12 + H22J11

�H22J11 − H21J12��x1
2 + x2

2 + �1�x3 + h�2�
+

H 22
2

�2��2
� 1

�x1
2 + x2

2 + �2�x3 − h�2
+

H22J11 + H21J12

�H21J12 − H22J11��x1
2 + x2

2 + �2�x3 + h�2�
+

2H21H22

H22J11 − H21J12
� H22J12

�2��2�x1
2 + x2

2 + ���1x3 + ��2h�2
−

H21J11

�1��1�x1
2 + x2

2 + ���2x3 + ��1h�2
� .

(33d)
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Remark 1:

The four unknowns appearing in Eq. (23) have been
determined explicitly for the four types of boundary con-
ditions on the surface of the uniaxial multiferroic half-
space. As a result, the explicit expressions of the Green’s
function G�
 can be obtained. For types (1) and (2), the
Green’s function are symmetric (i.e., G�M � G�P); while
for types (3) and (4), the Green’s functions are not sym-
metric (i.e., G�M  G�P) due to the effect of the bound-
ary conditions on the surface. It can be easily checked
from the above expressions that G�P � G�M � G�P �
G�M � 0 on x3 � 0 for type (1), G�P � G�M � 0 on
x3 � 0 for type (3), and G�P � G�M � 0 on x3 � 0 for
type (4), which correspondingly satisfy the boundary
conditions on the surface of the half-space.

Remark 2:

We emphasize that while exact closed-form Green’s
functions have been derived for the four types of
boundary conditions on the surface [i.e., (1) � � � � 0;
(2) D3 � B3� 0; (3) � � B3 � 0; (4) � � D3 � 0],
the more general problems with complicated boundary
conditions would need a numerical approach to solve
them. One example is the inhomogeneous spring-type
boundary condition D3 � k� + b on the surface, where
k is the “spring coefficient” and b is an arbitrary constant.
The boundary-integral-equation method would be an ex-
cellent candidate to attack this type of problem by mak-
ing use of the present exact closed-form Green’s func-
tions as the kernels.13

To demonstrate the influence of the surface of the
half-space on the distribution of the Green’s function, we
present in Fig. 3 the distributions of G�P, G�M, G�P, and
G�M along the positive x3 axis in solid lines for type (2)
(e.g., D3 � B3� 0 on x3 � 0). The material properties
of the half-space are those in Ref. 10 (or see Table I). As
a comparison, we also present the corresponding full-
space results in dashed lines where the influence of the
surface is ignored. It is obvious that the surface condition
has a significant effect on the Green’s functions, espe-
cially for field points that are very close to the surface. It
is further observed from Fig. 3 that, due to the effect of
the surface condition, the magnitudes of the half-space
G�
 near the surface are larger than those for the full-
space. While we only present the results for type (2) of
the boundary conditions, the half-space Green’s func-
tions corresponding to other types of boundary condi-
tions will also affect the near-surface response compared
to the full-space Green’s functions. In other words, if one
is interested in the near-field response, the suitable half-
space Green’s functions, instead of the full-space
Green’s functions, need to be used. On the other hand,
the simple full-space Green’s functions can be used if the
interested domain is far from the surface because in this

case the half-space Green’s functions are insensitive to
the boundary condition on the surface (when the source
and field points are both far from the surface).

The half-space Green’s functions presented in this sec-
tion should be extremely useful when connecting to ex-
perimental studies. Because the Green’s function is a
fundamental solution representing the field response due
to a unit source at another location, it can be directly
utilized to calculate accurately and efficiently the re-
sponse due to any possible defect in the multiferroic
material, and therefore a program can be designed to
backcalculate the defect size and location. Another ap-
plication, which is closely related to our half-space
Green’s functions, is to combine our solutions with ex-
perimental tests (e.g., an indentation test) to understand
multiferroic material behaviors and even to invert the
effective composite material properties. To simulate an
indentation test on the multiferroic half-space, one only
needs to move the source from an inner location to the
surface (i.e., let h � 0 in our half-space Green’s func-
tions). The corresponding piezoelastic half-space
Green’s functions have been applied very successfully in
the continuum mechanics community.17–19

V. CONCLUSIONS

In this research, we have derived magnetoelectric
Green’s functions for a uniaxial multiferroic full-space,
bimaterial space, and half-space by means of the method
of image. The expressions of these Green’s functions are
rather simple [e.g., Eqs. (17) and (18) for the bimaterial
case] and explicit [see, e.g., Eqs. (26), (29), (31), and (33)
for the half-space case]. Numerical results are also pre-
sented to show the influence of the surface conditions on
the Green’s functions, indicating clearly that for points
close to the surface, the half-space Green’s functions,
instead of the full-space Green’s functions, have to be
used.

Due to their simple and explicit form of expression,
these Green’s functions could find numerous applica-
tions. They can be conveniently applied to investigate the
electromagnetic fields induced by the inclusion of vari-
ous shapes with spontaneous polarization and magneti-
zation embedded in a multiferroic bimaterial space or
half-space. Combined with the basic micromechanics
theory, the corresponding inhomogeneity problem can
also be investigated so that the effective material behav-
ior in multiferroic composites can be accurately ana-
lyzed. These results could be connected to the future
experimental measurement for verification. Furthermore,
using these Green’s functions as the kernels in the bound-
ary integral equation, the corresponding formulation can
be applied to the analysis of multiferroic material-based
novel devices.
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