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Abstract

Three-dimensional Green’s functions are derived for a steady point heat source in a functionally graded half-space
where the thermal conductivity varies exponentially along an arbitrary direction. We first introduce an auxiliary function
which satisfies an inhomogeneous Helmholtz equation. Then by virtue of the image method which was first proposed by
Sommerfeld for the homogeneous half-space Green’s function of a steady point heat source, we arrive at an explicit expres-
sion for this function. Finally with this auxiliary function, we derive the three-dimensional Green’s functions due to a
steady point heat source in a functionally graded half-space. Also investigated in this paper are the temperature field
induced by a point heat source moving at a constant speed in a functionally graded full-space; the electric potential
due to a static point electric charge in a dielectric full-space with electric field gradient effects; and the two-dimensional
time-harmonic dynamic Green’s function for homogeneous and functionally graded materials with strain gradient effects.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Green’s function; Heat conduction; Functionally graded material; Electric field gradient effects; Strain gradient effect; Half-
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1. Introduction

At the beginning of last century, Sommerfeld [1] derived the half-space Green’s function for a steady point
heat source using the image method. As pointed out by Ochmann [2] that, using the method of superposition,
Sommerfeld [3] solved the half-space problem by summing the contribution from the original and mirror heat
sources and that from a line integration over the single thermal source placed along the z-axis below the mirror
source. In Sommerfeld’s original problem, the half-space is thermally homogeneous, i.e., the thermal conduc-
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tivity is constant everywhere in the half-space. Recently, however, Sommerfeld’s solution and approach have
been extended to the sound field study caused by a monopole source above an impedance plane [2,4,5] and to
the investigation of a steady point heat source interacting with either a weakly or highly conducting interface
between two half-spaces [6].

Functionally graded materials (FGMs), in which the material properties vary smoothly (usually in a fixed
direction), have been utilized as thermal barrier coatings in high-temperature environment. Recently, some
Green’s functions in FGMs have been derived for the development of the corresponding FGM boundary ele-
ment method (BEM) (see, i.e., [7–9]). In the work by Gray et al. [7], the full-space Green’s functions of a steady
heat source was obtained for the graded material where the thermal conductivity varies exponentially in a
fixed direction. So far, however, the corresponding half-space Green’s function is still unavailable. Such a
half-space Green’s function is important itself in the study of the FGM effect on the Green’s function
response, and further it can be implemented into a BEM formulation, avoiding the discretization of the planar
surface of the half space.

Therefore, the main focus of this investigation is to derive the three-dimensional (3D) Green’s functions for
a steady point heat source in a FGM half-space with thermal conductivity varying exponentially along an
arbitrary direction. After introducing an auxiliary function, we find that this new function satisfies an inho-
mogeneous Helmholtz equation, with the boundary value problem being very similar to that for a point source
above an impedance plane [2,5]. Subsequently the Sommerfeld’s method is employed to derive an explicit
expression for the temperature field induced by the steady point heat source in the FGM half-space. Also
in this paper, we have studied a couple of associated problems: The first problem is for a point heat source
moving at a constant speed in a FGM full-space. Again, we introduce a new function which satisfies an inho-
mogeneous Helmholtz equation in a moving coordinate system which moves together with the point heat
source. Based on a similar approach, we have found the temperature field induced by the moving heat source.
The second problem considered is a static point electric charge in a dielectric full-space with electric field gra-
dient effects. We employ the theories first proposed by Mindlin [10] and recently developed by Yang et al. [11],
which account for the size effects resulting from the microstructure, similar to the strain gradient elasticity the-
ory [12–14]. It is found that the electric potential satisfies an inhomogeneous 3D Helmholtz–Laplace equation
with its solution being subsequently derived. As a third associated problem, we consider the out-of-plane dis-
placement induced by an anti-plane time-harmonic line force in a homogeneous and FGM plane with strain
gradient effect. For this problem, we adopt the formulation similar to Paulino et al. [14] and find that the dis-
placement field for a homogeneous plane and the newly introduced function for a FGM plane both satisfy an
inhomogeneous two-dimensional (2D) Helmholtz–Helmholtz equation, with its solution being easily found. It
is remarked that when adopting the electric field gradient or strain gradient theories, the solution is non-sin-
gular at the location of the point charge or the line force, in contrast to the solution for the corresponding
homogeneous space.

2. A steady point heat source in a FGM half-space

In a fixed Cartesian coordinate system (x,y,z), we consider the upper half-space z P 0 with its boundary at
z = 0. A steady point heat source of strength H is located at point (0,0,h), (h > 0) in the half-space. Let T be
the temperature field, then the heat fluxes qx, qy, qz are given by

qx ¼ �k
oT
ox
; qy ¼ �k

oT
oy
; qz ¼ �k

oT
oz
; ð1Þ

where k(x,y,z) is the thermal conductivity of the half-space. In this investigation k(x,y,z) is assumed to vary
exponentially along an arbitrary direction as

k ¼ k0 expðb1xþ b2y þ b3zÞ; ð2Þ

where k0, b1, b2, b3 are material constants. It’s apparent that the gradient direction cosines are given by
b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1þb2

2þb2
3

p b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þb2
2þb2

3

p b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þb2
2þb2

3

p
h i

. On the other hand, the heat fluxes in the half-space must satisfy the fol-

lowing relationship:
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oqx

ox
þ

oqy

oy
þ oqz

oz
¼ HdðxÞdðyÞdðz� hÞ; ðz P 0Þ; ð3Þ

where d() is the Dirac delta function.
It follows from Eqs. (1)–(3) that the temperature field obeys the following inhomogeneous perturbed

Laplace equation:

r2T þ b1

oT
ox
þ b2

oT
oy
þ b3

oT
oz
¼ � H

k0 expðb3hÞ dðxÞdðyÞdðz� hÞ; ðz P 0Þ; ð4Þ

where r2 ¼ o2

ox2 þ o2

oy2 þ o2

oz2 is the 3D Laplace operator.
The boundary condition on the surface z = 0 is given by

oT
oz
� kT ¼ 0; ðz ¼ 0Þ; ð5Þ

where the relative heat transfer coefficient k is a non-negative constant. When k = 0, the surface z = 0 is insu-
lated, whilst when k!1, it becomes a conducting surface.

Our task now is to find the temperature field satisfying Eqs. (4) and (5). If we first introduce a new function
G which is related to the temperature T through

T ¼ exp � b1xþ b2y þ b3z
2

� �
G; ð6Þ

then Eqs. (4) and (5) can be expressed in terms of G as follows:

r2G� a2G ¼ �H
k0

exp � b3h
2

� �
dðxÞdðyÞdðz� hÞ; ðz P 0Þ; ð7Þ

oG
oz
� cG ¼ 0; on z ¼ 0; ð8Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þb2
2þb2

3

p
2

and c ¼ kþ b3

2
. It is found that Eq. (7) is in fact an inhomogeneous Helmholtz equation,

and Eqs. (7) and (8) are very similar to the equations for a point source above an impedance plane [2,5].
Following the approach by Sommerfeld [3] and Ochmann [2], we can easily solve Eqs. (7) and (8) with the

function G being explicitly as

G ¼ H
4pk0

exp � b3h
2

� � exp �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� hÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� hÞ2

q þ
exp �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hÞ2

q
8>><>>:

�2c
Z þ1

0

exp �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hþ gÞ2

q
� cg

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hþ gÞ2

q dg

9>>=>>;; ðz P 0Þ: ð9Þ

It is mentioned that the first term in the parenthesis {} on the right-hand side of Eq. (9) represents the mono-
pole source located at (0,0,h); the second term a mirror source at (0,0,�h); and the third term a line integral
over the single source placed along the z-axis below the mirror point. We further point out that the line inte-

gral in Eq. (9) is always convergent due to the fact that the term a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hþ gÞ2

q
þ cg is always non-

negative.
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It follows from Eqs. (6) and (9) that the temperature field T in the half-space (z P 0) is given by

T ¼ H
4pk0

exp � b1xþ b2y þ b3ðzþ hÞ
2

� � exp �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� hÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� hÞ2

q
8>><>>:

þ
exp �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hÞ2

q � 2c
Z þ1

0

exp �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hþ gÞ2

q
� cg

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hþ gÞ2

q dg

9>>=>>;; ðz P 0Þ:

ð10Þ

Particularly the temperature along the positive z-axis (x = y = 0) can be concisely given by

eT ¼ exp �
~b3ð~zþ 1Þ

2

" #
exp½�~aj~z� 1j�
j~z� 1j þ exp½�~að~zþ 1Þ�

~zþ 1
� 2~c exp½~cð~zþ 1Þ�E1½ð~aþ ~cÞð~zþ 1Þ�

� �
; ð~z P 0Þ;

ð11Þ

where eT ¼ 4phk0

H T ;~z ¼ z
h ;

~b3 ¼ b3h; ~a ¼ ah;~c ¼ ch are all dimensionless and E1(k) is the exponential integral
function [15]

E1ðkÞ ¼
Z 1

k

expð�tÞ
t

dt: ð12Þ

Fig. 1 illustrates the temperature distribution along the positive z-axis for four different values of the gradient
parameter ~b3 ¼ 0; 0:5; 1; 3 with fixed b1 = b2 = 0 and k = 0 (an insulating surface). Apparently the boundary
condition oT

oz ¼ 0 on z = 0 is satisfied. Fig. 1 also shows clearly that the gradient parameter ~b3 has a significant

Fig. 1. Distribution of the temperature field along the positive z-axis for four values of the gradient parameter ~b3 ¼ 0; 0:5; 1; 3 with
b1 = b2 = 0 and k = 0.
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influence on the temperature distribution in the half-space. When ~b3 P 3, the temperature quickly approaches
zero as the field point moves far away from the source ð~z ¼ 1Þ into the half space ð~z� 1Þ.

Several special cases from our general solution are discussed below:

(1) For the boundary condition T = 0 on the surface z = 0 (i.e., k!1), the temperature field in the half-
space is simplified to

T ¼ H
4pk0

exp � b1xþ b2y þ b3ðzþ hÞ
2

� �
�

exp �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� hÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� hÞ2

q �
exp �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ hÞ2

q
8>><>>:

9>>=>>;; ðz P 0Þ;

ð13Þ
(2) If b1 = b2 = b3 = 0, then it follows from Eq. (10) that

T ¼ H
4pk0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þðz�hÞ2

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þðzþhÞ2

q �2k
Z þ1

0

expð�kgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þðzþhþgÞ2

q dg

8><>:
9>=>;; ðz P 0Þ; ð14Þ

which is just the classical result of Sommerfeld for a homogeneous half-space.
(3) It follows from Eq. (10) that the temperature field induced by a steady point heat source at the origin of

the coordinate system in a FGM full-space is expediently given by

T ¼ H
4pk0

exp � b1xþ b2y þ b3z
2

� � exp �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ; ð15Þ

which is consistent with Gray et al. [7]. However, it is noted that by introducing the new function G, the
derivation of the full-space Green’s function becomes much simple due to the fact that the new function
satisfies a Helmholtz equation with its Green’s function being well known.

3. A moving point heat source in a FGM full-space

Through introduction of a new function, the temperature field induced by a point heat source moving at a
constant speed in a FGM full-space can also be easily obtained. We assume that a point heat source of
strength H in a FGM full-space is located at the origin of a fixed Cartesian coordinate system (x,y,z) at time
t = 0, and that the heat source moves with a constant speed V along the positive x-direction. We further
assume that the thermal conductivity of the FGM full-space varies exponentially as

k ¼ k0 expðb2y þ b3zÞ; ð16Þ

where k0, b2, b3 are material constants. Eq. (16) implies that the thermal conductivity is constant in the x-direc-
tion. In addition the thermal diffusivity kd is assumed to be constant everywhere. Consequently the tempera-
ture field satisfies the following equation:

r2T þ b2

oT
oy
þ b3

oT
oz
� 1

kd

oT
ot
¼ �H

k0

dðx� VtÞdðyÞdðzÞ: ð17Þ

In order to solve the above equation, we introduce a new moving coordinate system (n,g,f) which is related to
the fixed coordinate system (x,y,z) through

n ¼ x� Vt; g ¼ y; f ¼ z: ð18Þ

In view of the fact that the moving coordinate system moves at the same speed as the heat source, the tem-
perature field in the new moving coordinate system does not explicitly depends on the time t. Therefore, in
the new coordinate system, Eq. (17) is changed into the following inhomogeneous perturbed Laplace equation

X. Wang et al. / International Journal of Engineering Science 45 (2007) 939–950 943
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o2T

on2
þ o2T

og2
þ o2T

of2
þ V

kd

oT
on
þ b2

oT
og
þ b3

oT
of
¼ �H

k0

dðnÞdðgÞdðfÞ: ð19Þ

Following the similar approach utilized in the previous section, we now introduce a new function G which is
related to T through

T ¼ exp �ðV =kdÞnþ b2gþ b3f
2

� �
G: ð20Þ

As a result, Eq. (19) is changed into an inhomogeneous Helmholtz equation

o2G

on2
þ o2G

og2
þ o2G

of2
� a2G ¼ �H

k0

dðnÞdðgÞdðfÞ; ð21Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV =kdÞ2þb2

2þb2
3

p
2

. The solution to Eq. (20) is readily given by

G ¼ H
4pk0

exp �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2 þ f2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2 þ f2

q : ð22Þ

In view of Eqs. (18) and (20), the temperature field in the fixed coordinate system is obtained as

T ¼ H
4pk0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þ y2þ z2

q exp �ðV =kdÞðx�VtÞþb2yþb3z
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV =kdÞ2þb2

2þb2
3

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þ y2þ z2

q24 35:
ð23Þ

When b2 = b3 = 0, Eq. (23) reduces to

T ¼ H
4pk0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q exp � V
2kd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q
þ ðx� VtÞ

� �� �
; ð24Þ

which is exactly the solution for a homogeneous full-space [16].

4. A static point charge in a dielectric full-space with electric field gradient effect

In this section, we investigate the electric potential induced by a static point electric charge Q at the origin
of a Cartesian coordinate system (x,y,z) in a dielectric full-space with electric gradient effects. Here we employ
the theories first proposed by Mindlin [10] and recently enhanced by Yang et al. [11], which account for the
size effects resulting from the underlying microstructure. In order to address the problem in a simplified set-
ting, we assume that the piezoelectric effect is ignored and the material is dielectrically isotropic. Therefore, the
electric potential / satisfies the following inhomogeneous 3D Helmholtz–Laplace equation (see, i.e., Yang
et al. [11] for comparison)

r2/� l2r2r2/ ¼ �Q
2 dðxÞdðyÞdðzÞ; ð25Þ

where $2 is again the 3D Laplace operator; l P 0 the material characteristic length; and 2 the dielectric con-
stant in the dielectric space. The electric displacements Dx, Dy, Dz are related to the electric potential /
through

Dx ¼ � 2 ð1� l2r2Þ o/
ox
; Dy ¼ � 2 ð1� l2r2Þ o/

oy
; Dz ¼ � 2 ð1� l2r2Þ o/

oz
: ð26Þ

To find the solution to Eq. (25), we express it equivalently as

944 X. Wang et al. / International Journal of Engineering Science 45 (2007) 939–950
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r2P 1 ¼ �
Q
2 dðxÞdðyÞdðzÞ; ð27Þ

ðr2 � l�2ÞP 2 ¼
Q

2 l2
dðxÞdðyÞdðzÞ; ð28Þ

where P1 = (1 � l2$2)/, P2 = $2/.
Apparently, the solution to the Laplace Eq. (27) is

P 1 ¼ ð1� l2r2Þ/ ¼ Q
4p 2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ; ð29Þ

and the solution to the Helmholtz Eq. (28) is

P 2 ¼ r2/ ¼ � Q

4p 2 l2

exp �l�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p : ð30Þ

It follows from Eqs. (29) and (30) that the electric potential induced by the electric charge is

/ ¼ Q
4p 2

1� exp �l�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p : ð31Þ

As l! 0, which corresponds to the dielectric ceramics without electric field gradient effects, Eq. (31) reduces to
the classical solution

/ ¼ Q
4p 2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p : ð32Þ

There are a couple of features associated with Eqs. (31) and (32), and we briefly discuss them below:

(1) It can be easily shown that when r!1, Eq. (31) approaches the classical solution Eq. (32).

Fig. 2. Distribution of ~/ as a function of ~r for different values of the characteristic length ~l.

X. Wang et al. / International Journal of Engineering Science 45 (2007) 939–950 945
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(2) It is of interest to observe from Eq. (31) that the electric potential due to a point charge in a dielectric
ceramic with electric field gradient effects is still finite (or non-singular) when r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
! 0 (i.e.,

when approaching the location of the electric charge). More specifically

lim
r!0

/ ¼ Q
4p 2 l

; ð33Þ

which is inversely proportional to l. Furthermore it can be proved that

lim
r!0

dn/
drn
¼ ð�1Þn Q

4p 2 ðnþ 1Þlnþ1
; ðn ¼ 0; 1; 2; 3; . . .Þ; ð34Þ

where d0/
dr0 ¼ /. A detailed proof of Eq. (34) is presented in Appendix A.

(3) On the other hand, we clearly observe from Eq. (32) that, in a dielectric ceramic without electric field
gradient, the electric potential as well as its derivatives with respect to r is singular when r! 0.

The above limiting behaviors for the electric potential due to a point charge are in agreement with those
observed by Yang et al. [11] for electric potential due to a line charge. Fig. 2 demonstrates the distribution
of ~/ ¼ 1�expð�~l�1~rÞ

~r , where ~/ ¼ 4p2r0

Q /;~r ¼ r
r0
;~l ¼ l

r0
with r0 being the nominal length, as a function of ~r for var-

ious values of the characteristic length ~l. The limiting behaviors at the origin and the far field can be clearly
observed from this figure.

5. Two-dimensional time-harmonic Green’s functions for homogeneous materials with strain gradient effect

In this section, we consider the 2D time-harmonic Green’s functions for homogeneous elastic materials with
strain gradient effects. To simplify the analysis, we only consider the anti-plane deformation case. A time-har-
monic line force pe�ixt in the z-direction with circular frequency x is distributed on the z-axis. In what follows,
the time dependence of all the field components will be suppressed. Adopting the related expressions presented
in Paulino et al. [14] and assuming the material to be homogeneous, it is found that the out-of-plane displace-
ment w satisfies the following equation:

r2w� l2r2r2wþ k2w ¼ � p
l

dðxÞdðyÞ; ð35Þ

where r2 ¼ o2

ox2 þ o2

oy2 is the 2D Laplace operator, l shear modulus of the elastic material, l the material char-
acteristic length, and k ¼ x=

ffiffiffiffiffiffiffiffi
l=q

p
with q being the mass density of the elastic material.

Eq. (35) can also be equivalently expressed via the following 2D inhomogeneous Helmholtz–Helmholtz
equation:

ðr2 þ k2
1Þðr2 � k2

2Þw ¼
p

l2l
dðxÞdðyÞ; ð36Þ

where the two positive constants k1 and k2 are given by

k1 ¼
ffiffiffi
2
p

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2l2

pq ; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2l2

pq
ffiffiffi
2
p

l
: ð37Þ

Taking r2w� k2
2w as a new function in Eq. (36) and r2wþ k2

1w as the other, it can be easily shown that

r2w� k2
2w ¼ � ip

4l2l
H ð1Þ0 ðk1rÞ; ð38Þ

r2wþ k2
1w ¼ � p

2pl2l
K0ðk2rÞ; ð39Þ

where H ð1Þn is the nth-order Hankel function of the first kind, Kn is the nth-order modified Bessel function of the
second kind, and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.
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Consequently, the out-of-plane displacement w can be obtained from Eqs. (38) and (39) as

w ¼ p

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2l2

p
l

ip
2

H ð1Þ0 ðk1rÞ � K0ðk2rÞ
� �

: ð40Þ

For the classical elastic material without strain gradient (i.e., l! 0), the above solution reduces to the well
known Green’s solution for 2D Helmholtz equation

w ¼ ip
4l

H ð1Þ0 ðkrÞ: ð41Þ

On the other hand if we let x! 0 (or k! 0) for a static line force, Eq. (40) reduces to

w ¼ � p
2pl
½ln r þ K0ðl�1rÞ�; ð42Þ

which is in agreement with the result in Yang et al. [11].
In view of the following asymptotic behaviors of the Hankel and Bessel functions

H ð1Þ0 ðk1rÞ ! 1þ 2i

p
ln

ck1r
2

� �
; K0ðk2rÞ ! � lnðk2r=2Þ; when r! 0 ð43Þ

one can easily verify that Eq. (40) is finite (non-singular) at origin, while Eq. (41) exhibits logarithmic singu-
larity at origin.

On the other hand, at the far field r > > 1, we have the following asymptotic behaviors

H ð1Þ0 ðk1rÞ !

ffiffiffiffiffiffiffiffiffi
2

pk1r

s
ei k1r�p

4ð Þ; K0ðk2rÞ !
ffiffiffiffiffiffiffiffiffi
p

2k2r

r
e�k2r; when r !1: ð44Þ

Then the asymptotic expression of Eq. (40) for w at infinity is

w ¼ p

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pk1ð1þ 4k2l2Þr

q ei k1r�p
4ð Þ; when r!1 ð45Þ

whilst the asymptotic expression of the classical solution Eq. (41) at infinity is

w ¼ p

l
ffiffiffiffiffiffiffiffiffiffi
8pkr
p ei kr�p

4ð Þ when r !1: ð46Þ

Comparing Eq. (45) with Eq. (46), we find that the behavior of w at the far field in the strain gradient space is
different to the classical solution. This phenomenon is different to the corresponding static case in which w at
far field approaches the classical solution.

6. Two-dimensional time-harmonic Green’s functions for FGMs with strain gradient effect

In Section 5, it is assumed that the elastic plane is homogeneous. In this section, we consider the more dif-
ficult problem: a time-harmonic line force in a FGM plane with strain gradient effect. The problem considered
here is very similar to the one considered in the previous section except that the shear modulus and mass den-
sity of the material vary exponentially according to

l ¼ l0 expðbyÞ; q ¼ q0 expðbyÞ; ð47Þ
where l0, q0 and b are material constants. Also adopting the basic equations in Paulino et al. [14], it is found
that the displacement w satisfies the following equation:

1� bl2 o

oy
� l2r2

� �
r2 þ b

o

oy

� �
wþ k2w ¼ � p

l0

dðxÞdðyÞ; ð48Þ

where k ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
.
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First we introduce a new function H which is related to w through

w ¼ exp � b
2

y
� �

H: ð49Þ

As a result, Eq. (48) can now be expressed as

1þ b2l2

4
� l2r2

� �
r2 � b2

4

� �
Hþ k2H ¼ � p

l0

dðxÞdðyÞ; ð50Þ

or equivalently

r4H� ~l�2r2H� k2l�2 � b2

4
~l�2 � b2

4

� �� �
H ¼ p

l2l0

dðxÞdðyÞ; ð51Þ

where ~l ¼ 1ffiffiffiffiffiffiffiffiffiffi
l�2þb2

2

p .

We now discuss the solution to the above equation for the following two cases.

6.1. Case one: k2 P b2l2

4
~l�2 � b2

4

	 

For this case, Eq. (51) can be expressed as the following inhomogeneous Helmholtz–Helmholtz equation

ðr2 þ k2
1Þðr2 � k2

2ÞH ¼
p

l2l0

dðxÞdðyÞ; ð52Þ

where the two positive constants k1 and k2 are given by

k1 ¼
ffiffiffi
2
p

~kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~k2~l2

pq ; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~k2~l2

pq
ffiffiffi
2
p

~l
; ~k ¼

~l
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2l2

4
~l�2 � b2

4

� �s
: ð53Þ

Eq. (52) is identical to Eq. (36), and its solution is expediently given by

H ¼ p~l2

2pl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~k2~l2

p
l0

ip
2

H ð1Þ0 ðk1rÞ � K0ðk2rÞ
� �

: ð54Þ

Inserting the above expression into Eq. (49) results in the expression of the displacement w as

w ¼ p~l2

2pl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~k2~l2

p
l0

exp � b
2

y
� �

ip
2

H ð1Þ0 ðk1rÞ � K0ðk2rÞ
� �

: ð55Þ

Apparently, the above expression is non-singular as r! 0.

6.2. Case two: k2 < b2l2

4
~l�2 � b2

4

	 

For this case, Eq. (51) can be expressed as the following inhomogeneous Helmholtz–Helmholtz equation

ðr2 � k2
1Þðr2 � k2

2ÞH ¼
p

l2l0

dðxÞdðyÞ; ð56Þ

where the two positive constants k1 and k2 are given by

k1 ¼
ffiffiffi
2
p

~kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4~k2~l2

pq ; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4~k2~l2

pq
ffiffiffi
2
p

~l
; ~k ¼

~l
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l2

4
~l�2 � b2

4

� �
� k2

s
: ð57Þ

It is noted that 1� 4~k2~l2 ¼ 1� b2~l2

2

	 
2

þ 4k2~l4l�2 P 0.
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It follows from Eq. (56) that

r2H� k2
2H ¼ �

p

2pl2l0

K0ðk1rÞ; ð58Þ

r2H� k2
1H ¼ �

p

2pl2l0

K0ðk2rÞ: ð59Þ

As a result we have

H ¼ p~l2

2pl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4~k2~l2

p
l0

½K0ðk1rÞ � K0ðk2rÞ�: ð60Þ

Inserting the above solution into Eq. (49) results in the expression of the displacement w as

w ¼ p~l2

2pl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4~k2~l2

p
l0

exp � b
2

y
� �

½K0ðk1rÞ � K0ðk2rÞ�; ð61Þ

which is regular as r! 0.

7. Conclusions

The Green’s function for a steady point heat source in a FGM half-space is derived in Section 2 by virtue of
a new function and the image method of Sommerfeld. Since the Green’s function and its derivatives are very
simple, it can be conveniently implemented into a BEM formulation for practical applications in the future.

Some associated problems are also studied in this paper: a constantly moving point heat source in a FGM
full-space in Section 3; a static point charge in a dielectric full-space with electric field gradient effects in Sec-
tion 4; and a time-harmonic line force in a homogeneous and FGM planes with strain gradient effects in Sec-
tions 5 and 6. For the point charge case (Section 4), we find that the electric potential and its derivatives due to
the point charge in a dielectric full-space with electric field gradient effects are still finite at the source point.
This is in contrast to the classical solution where the source point is singular. For the case of a time-harmonic
line force (Section 5), we find that the out-of-plane displacement is non-singular at the source location and that
at the far field it does not approach the classical solution. This is in contrast to both the classical solution and
the corresponding static solution. We expect that the new fundamental solution Eq. (31) can be incorporated
into a BEM formulation suitable for the dielectric ceramics accounting for electric field gradient effects, and
that Eqs. (40), (55) and (61) can also be applied to formulate a BEM for time-harmonic problems in homo-
geneous materials and FGMs with strain gradient effects.
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Appendix A. Proof of Eq. (34)

Apparently Eq. (34) is valid for n = 0, i.e.,

lim
r!0

/ ¼ Q
4p 2 l

: ðA:1Þ

If we assume that Eq. (34) is valid for an integer n = N, then

lim
r!0

dN/
drN
¼ ð�1ÞN Q

4p 2 ðN þ 1ÞlNþ1
: ðA:2Þ

It can be easily verified from Eq. (31) that
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r
d/
dr
þ / ¼ Q

4p 2 l
expð�l�1rÞ: ðA:3Þ

Then it follows from the above expression that

r
dNþ1/
drNþ1

þ ðN þ 1Þ d
N/

drN
¼ ð�1ÞN Q

4p 2 lNþ1
expð�l�1rÞ: ðA:4Þ

The above can also be equivalently expressed as

dNþ1/
drNþ1

¼
�ðN þ 1Þ dN /

drN þ ð�1ÞN Q
4p2lNþ1 expð�l�1rÞ

r
: ðA:5Þ

Taking the limit r! 0 to both sides of the above expression, we have

lim
r!0

dNþ1/
drNþ1

¼ lim
r!0

�ðN þ 1Þ dN /
drN þ ð�1ÞN Q

4p2lNþ1 expð�l�1rÞ
r

: ðA:6Þ

In view of (A.2), the numerator of the right hand side approaches zero when r! 0. Then by applying the
L’Hospital’s Rule to the right hand side of (A.6), we finally arrive at

lim
r!0

dNþ1/
drNþ1

¼ ð�1ÞNþ1 Q

4p 2 ðN þ 2ÞlNþ2
; ðA:7Þ

which states that Eq. (34) is also valid for n = N + 1.
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