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Summary. We present analytical solutions for the scattering of an antiplane shear wave by a piezoelectric

circular cylinder with an imperfect interface. We first consider the simple case in which the imperfection is

homogeneous along the interface. Two typical imperfect interfaces are addressed: 1) mechanically com-

pliant and dielectrically weakly conducting interface, and 2) mechanically compliant and dielectrically

highly conducting interface. The expressions for the directivity pattern and scattering cross-section of the

scattered shear waves are derived. We then investigate the more difficult problem in which the imperfection

is circumferentially inhomogeneous along the interface. A concise expression for an inhomogeneously

compliant and weakly conducting interface is derived by means of matrix notation. Numerical examples

are presented to demonstrate the effect of the imperfection and the circumferential inhomogeneity of the

interface on the directivity patterns and scattering cross-sections of the scattered shear wave. The cir-

cumferentially inhomogeneous interface is also utilized to model the interface where an arbitrary number

of cracks exist. Results show that when every part of the interface is rather compliant, large low-frequency

peaks of the scattered cross-sections, which correspond to the resonance scattering, can be observed no

matter if the interface is homogeneous or inhomogeneous. The appearance of large low-frequency peaks

can be well explained by estimating the natural frequency of the corresponding reduced mass-spring

system where the cylinder is assumed as a rigid body. Peaks of the scattered cross-sections spanning from

low frequencies to high frequencies can be observed for a cylinder with a partially debonded interface.

1 Introduction

It is well known that due to possible manufacturing errors and preexisting microcracks/defects,

damages in different degrees exist along the interface of composite materials. Therefore, to

capture the effect of such a damaged interface on the field response, suitable imperfect interface

models, instead of the perfect ones, need to be utilized, which renders the necessity of studying

the mechanical behaviors of various imperfect interface models.

The static and dynamic behaviors of composites in the presence of imperfect interface have

received considerable attention from researchers (see, for example, [1]–[8]). In continuum

mechanics, an imperfect interface is primarily based on the assumption that tractions are

continuous across the interface whilst the jumps in displacements across the interface are

proportional to the respective interfacial tractions in terms of the ‘‘spring-type’’ interface

parameters. The ‘‘imperfect interface’’ concept also exists in the fields of thermal conduction [9],
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[10] and electrostatics [11]. While the static Green’s functions associated with imperfect inter-

faces were derived by Pan [12]–[15], the static behavior of piezoelectric composites with

imperfect interface was addressed by Wang and Sudak [16]. Most recently, Fan et al. [17] found

that certain waves exist which propagate near an imperfectly bonded interface between two

half-spaces of different piezoelectric ceramics. In [17] the imperfect interface was modeled by

the linear spring model [1]–[8] (or equivalently the so-called shear-lag model [18]).

The present research is further motivated by recent reports that the existence of a very

compliant interphase layer between the fiber and the surrounding matrix could be the mech-

anism for the photonic band gap (or the strong attenuation band) of the locally resonant sonic

crystal [19]–[21]. As such our mechanically compliant and dielectrically weakly conducting (or

highly conducting) interface with vanishing thickness is relevant (as explained later on). This

interface model is also suitable to simulate a thin interphase layer of finite thickness between the

piezoelectric cylinder and piezoelectric matrix.

This research is, therefore, devoted to the antiplane shear wave scattering by a piezoelectric

circular cylinder of infinite length, which is imperfectly bonded to a piezoelectric matrix. The

imperfect interface between the cylinder and matrix can be: 1) mechanically compliant and

dielectrically weakly conducting, or 2) mechanically compliant and dielectrically highly con-

ducting. As in Wang and Sudak [16], we adopt the aforementioned linear spring model to

simulate a mechanically compliant interface. A dielectrically weakly conducting interface [9]–

[11], [16] is based on the assumption that the normal electric displacement is continuous but the

electric potential is discontinuous across the interface with its jump proportional to the normal

electric displacement. On the other hand, a dielectrically highly conducting interface [10], [16],

[22] is based on the premise that the electric potential is continuous across the interface whereas

the normal electric displacement has a discontinuity across the interface, which is proportional

to certain differential expressions of the electric potential. Both the simple circumferentially

homogeneous and circumferentially inhomogeneous interfaces (see, e.g., [4] or [10] for details

on the inhomogeneous interface model) are investigated in this paper. Furthermore, the

inhomogeneous interface can be conveniently utilized to model the interface along which an

arbitrary number of cracks exist.

Our analyses show that if the interface is homogeneous, then it is sufficient to invert a 2� 2

matrix and an infinite number of 4� 4 matrices to solve the involved unknowns. On the other

hand, if the interface is circumferentially inhomogeneous, it requires that a simultaneous infi-

nite system of linear algebraic equations be solved. Numerical examples are presented to

demonstrate the influence of the interface imperfection and inhomogeneity on the directivity

patterns and scattering cross-sections of the scattered shear wave. While our numerical results

are from the forward solution algorithm, they have demonstrated clearly that the far-field

scattering field can be significantly influenced by the interface imperfection. In other words, the

induced field carries important information for the possible inverse of the interface geometry

and mechanical/electric behaviors. This thus opens the new opportunity of designing imperfect

interface for desirable band gaps [19]–[21].

2 Basic formulations

We consider an infinite long piezoelectric circular cylinder of radius R embedded in an

unbounded piezoelectric matrix as shown in Fig. 1. The region occupied by the cylinder is

S1 : x2 þ y2 � R2 and that by the matrix is S2 : x2 þ y2 � R2 . The cylinder and matrix are both
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transversely isotropic with their poling direction parallel to the z-axis. The cylinder is subject to

an incident antiplane shear wave traveling in the positive x-direction. Throughout the paper,

the superscripts (1) and (2) (or the subscripts 1 and 2) are used to identify the corresponding

quantities in the cylinder and matrix, respectively. In addition, the time factor e�ixt , where x is

the angular frequency, is suppressed.

For the problem considered, the linear piezoelectric constitutive equations in a polar coor-

dinate system are given by

rzr ¼ c44
@w

@r
þ e15

@/
@r

; Dr ¼ e15
@w

@r
� 211

@/
@r

;

rzh ¼ c44
@w

r@h
þ e15

@/
r@h

; Dh ¼ e15
@w

r@h
� 211

@/
r@h

;

ð1Þ

where rzr and rzh are the stress components; Dr and Dh are the electric displacement compo-

nents; w and / are, respectively, the out-of-plane displacement and electric potential; c44; e15,

and 211 are, respectively, the elastic modulus, piezoelectric coefficient, and dielectric permit-

tivity. In addition, w and / satisfy the following coupled partial differential equations:

c44r2wþ qx2wþ e15r2/ ¼ 0;

e15r2w� 211 r2/ ¼ 0;
ð2Þ

where r2 is the two-dimensional Laplace operator and q the mass density of the piezoelectric

material.

We then introduce a new function u which is related to w and / via

u ¼ /� e15

211
w: ð3Þ

x

y
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1
)1(

11
)1(

15
)1(

44 ,,, cec ∈

Piezoelectric matrix 

2
)2(
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)2(

15
)2(

44 ,,, cec ∈

Imperfect interface 

R

Incident 
wave

Fig. 1. An infinite long piezoelectric circular cylinder embedded in an infinite piezoelectric matrix
(cross-section view at z = constant)
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As a result, Eq. (2) is decoupled into

r2wþ k2w ¼ 0;

r2u ¼ 0;
ð4Þ

where k ¼ x
c
; c ¼

ffiffiffiffiffi

~c44

q

q

, with ~c44 ¼ c44 þ e2
15

211
being the piezoelectrically stiffened elastic con-

stant and c the shear wave speed. Meanwhile, the stress and electric displacement components

can be expressed in terms of w and u as

rzr ¼ ~c44
@w

@r
þ e15

@u
@r

; Dr ¼ � 211
@u
@r

;

rzh ¼ ~c44
@w

r@h
þ e15

@u
r@h

; Dh ¼ � 211
@u
r@h

:

ð5Þ

The interface between the cylinder and matrix is first assumed to be homogeneously imperfect.

Furthermore, two typical imperfect interfaces are considered in this paper: 1) a mechanically

compliant and dielectrically weakly conducting interface; 2) a mechanically compliant and

dielectrically highly conducting interface. According to the definitions described in the Intro-

duction, the boundary conditions on a mechanically compliant and dielectrically weakly con-

ducting interface r ¼ R can be expressed as

rð1Þzr ¼ rð2Þzr ¼ aðwð2Þ �wð1ÞÞ; Dð1Þr ¼ Dð2Þr ¼ �bð/ð2Þ � /ð1ÞÞ; r ¼ R; ð6Þ

where the two interface parameters a and b are nonnegative constants. The case where

a; b!1 corresponds to a perfect interface, whereas a ¼ b ¼ 0 describes a completely deb-

onded and charge-free (insulating) interface.

The boundary conditions on a mechanically compliant and dielectrically highly conducting

interface r ¼ R can be expressed as

rð1Þzr ¼ rð2Þzr ¼ aðwð2Þ �wð1ÞÞ; /ð1Þ ¼ /ð2Þ;
1

r2

@2/ð1Þ

@h2
¼ cðDð2Þr � Dð1Þr Þ; r ¼ R; ð7Þ

where c is a nonnegative constant. The case where a; c!1 corresponds to a perfect interface,

whereas a ¼ c ¼ 0 describes a completely debonded and equipotential interface.

In view of Eqs. (3) and (5), Eq. (6) can also be expressed in terms of w and u as

~c
ð1Þ
44

@wð1Þ

@r
þ e

ð1Þ
15

@uð1Þ

@r
¼ ~c

ð2Þ
44

@wð2Þ

@r
þ e

ð2Þ
15

@uð2Þ

@r
¼ aðwð2Þ �wð1ÞÞ;

2ð1Þ11

@uð1Þ

@r
¼2ð2Þ11

@uð2Þ

@r
¼ b uð2Þ � uð1Þ þ e

ð2Þ
15

2ð2Þ11

wð2Þ � e
ð1Þ
15

2ð1Þ11

wð1Þ

" #

; r ¼ R;

ð8Þ

and Eq. (7) in terms of w and u as

~c
ð1Þ
44

@wð1Þ

@r
þ e

ð1Þ
15

@uð1Þ

@r
¼ ~c

ð2Þ
44

@wð2Þ

@r
þ e

ð2Þ
15

@uð2Þ

@r
¼ aðwð2Þ �wð1ÞÞ;

uð1Þ þ e
ð1Þ
15

2ð1Þ11

wð1Þ ¼ uð2Þ þ e
ð2Þ
15

2ð2Þ11

wð2Þ;

@2uð1Þ

@h2
þ e

ð1Þ
15

2ð1Þ11

@2wð1Þ

@h2
¼ cR2 2ð1Þ11

@uð1Þ

@r
� 2ð2Þ11

@uð2Þ

@r

� �

; r ¼ R:

ð9Þ
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3 Solutions in terms of series expansion

Functions wð1Þ;uð1Þ in the cylinder and wð2Þ;uð2Þ in the matrix can be expanded in terms of

cosðnhÞ as

wð1Þ ¼ A
ð1Þ
0 J0ðk1rÞ þ

X

þ1

n¼1

Að1Þn Jnðk1rÞ cosðnhÞ;

uð1Þ ¼ B
ð1Þ
0 þ

X

þ1

n¼1

Bð1Þn rn cosðnhÞ;

9

>

>

>

>

=

>

>

>

>

;

0 � r � R; ð10Þ

wð2Þ ¼ eik2x þ A
ð2Þ
0 H

ð1Þ
0 ðk2rÞ þ

X

þ1

n¼1

Að2Þn Hð1Þn ðk2rÞ cosðnhÞ;

uð2Þ ¼
X

þ1

n¼1

Bð2Þn r�n cosðnhÞ;

9

>

>

>

>

=

>

>

>

>

;

r � R; ð11Þ

where the first term eik2x in wð2Þ is the incident antiplane shear wave (or incident SH wave) of

the unit amplitude propagating along the positive x-direction, whilst A
ð2Þ
0 H

ð1Þ
0 ðk2rÞþ

P

þ1

n¼1

A
ð2Þ
n H

ð1Þ
n ðk2rÞ cosðnhÞ in wð2Þ is associated with the scattered shear wave from the cylinder;

H
ð1Þ
n and Jn are the nth order Hankel and Bessel functions of the first kind, and

A
ð1Þ
0 ; B

ð1Þ
0 ; A

ð2Þ
0 ; A

ð1Þ
n ; B

ð1Þ
n ; A

ð2Þ
n ; B

ð2Þ
n ðn ¼ 1; 2; 3; . . . ;þ1Þ are unknown constants to be deter-

mined.

In addition, the term eik2x can be expanded as [23]

eik2x ¼ J0ðk2rÞ þ 2
X

þ1

n¼1

inJnðk2rÞ cosðnhÞ; ð12Þ

For a mechanically compliant and dielectrically weakly conducting interface, we enforce the

boundary conditions (8) and solve the unknown expansion coefficients as

A
ð1Þ
0

A
ð2Þ
0

2

4

3

5 ¼
k1~c

ð1Þ
44 J1ðk1RÞ �k2~c

ð2Þ
44 H

ð1Þ
1 ðk2RÞ

k1~c
ð1Þ
44 J1ðk1RÞ � aJ0ðk1RÞ aH

ð1Þ
0 ðk2RÞ

2

4

3

5

�1

k2~c
ð2Þ
44 J1ðk2RÞ

�aJ0ðk2RÞ

2

4

3

5;

B
ð1Þ
0 ¼

e
ð2Þ
15

2ð2Þ11

J0ðk2RÞ þ � e
ð1Þ
15

2ð1Þ
11

J0ðk1RÞ e
ð2Þ
15

2ð2Þ11

H
ð1Þ
0 ðk2RÞ

" #

A
ð1Þ
0

A
ð2Þ
0

2

4

3

5;

ð13Þ

A
ð1Þ
n

B
ð1Þ
n

A
ð2Þ
n

B
ð2Þ
n

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼ 2in

k1~c
ð1Þ
44 J 0nðk1RÞ ne

ð1Þ
15 Rn�1 �k2~c

ð2Þ
44 H

ð1Þ0
n ðk2RÞ ne

ð2Þ
15 R�n�1

k1~c
ð1Þ
44 J 0nðk1RÞ þ aJnðk1RÞ ne

ð1Þ
15 Rn�1 �aH

ð1Þ
n ðk2RÞ 0

0 2ð1Þ11 Rn�1 0 2ð2Þ11 R�n�1

b
e
ð1Þ
15

2ð1Þ
11

Jnðk1RÞ n 2ð1Þ11 Rn�1 þ bRn �b
e
ð2Þ
15

2ð2Þ
11

H
ð1Þ
n ðk2RÞ �bR�n

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

�1

�

k2~c
ð2Þ
44 J 0nðk2RÞ

aJnðk2RÞ

0

b
e
ð2Þ
15

2ð2Þ
11

Jnðk2RÞ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

; ðn ¼ 1; 2; 3; . . . ;þ1Þ;

where the prime ð0Þ denotes the derivative with respect to the variable in the parenthesis.
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Similarly, for a mechanically compliant and dielectrically highly conducting interface, we

enforce the boundary conditions (9) and find the unknowns to be

A
ð1Þ
0

A
ð2Þ
0

2

6

4

3

7

5

¼
k1~c

ð1Þ
44 J1ðk1RÞ �k2~c

ð2Þ
44 H

ð1Þ
1 ðk2RÞ

k1~c
ð1Þ
44 J1ðk1RÞ � aJ0ðk1RÞ aH

ð1Þ
0 ðk2RÞ

2

6

4

3

7

5

�1

k2~c
ð2Þ
44 J1ðk2RÞ

�aJ0ðk2RÞ

2

4

3

5;

B
ð1Þ
0 ¼

e
ð2Þ
15

2ð2Þ11

J0ðk2RÞ þ � e
ð1Þ
15

2ð1Þ
11

J0ðk1RÞ e
ð2Þ
15

2ð2Þ11

H
ð1Þ
0 ðk2RÞ

" #

A
ð1Þ
0

A
ð2Þ
0

2

6

4

3

7

5

;

ð15Þ

A
ð1Þ
n

B
ð1Þ
n

A
ð2Þ
n

B
ð2Þ
n

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

¼ 2in

k1~c
ð1Þ
44 J 0nðk1RÞ ne

ð1Þ
15 Rn�1 �k2~c

ð2Þ
44 H

ð1Þ0
n ðk2RÞ ne

ð2Þ
15 R�n�1

k1~c
ð1Þ
44 J 0nðk1RÞþaJnðk1RÞ ne

ð1Þ
15 Rn�1 �aH

ð1Þ
n ðk2RÞ 0

e
ð1Þ
15

2ð1Þ11

Jnðk1RÞ Rn �e
ð2Þ
15

2ð2Þ
11

H
ð1Þ
n ðk2RÞ �R�n

n
e
ð1Þ
15

2ð1Þ
11

Jnðk1RÞ nRnþ c2ð1Þ11 Rnþ1 0 c2ð2Þ11 R�nþ1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

�1

�

k2~c
ð2Þ
44 J 0nðk2RÞ

aJnðk2RÞ

e
ð2Þ
15

2ð2Þ11

Jnðk2RÞ

0

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

; ðn¼ 1;2;3; . . . ;þ1Þ: ð16Þ

4 Directivity pattern and scattering cross section

In the far field r!1, the scattered component in w exhibits the following asymptotic behavior

wð2sÞ ¼

ffiffiffiffiffiffiffiffiffiffi

2

pk2r

s

e
i k2r�p

4ð Þ A
ð2Þ
0 þ

X

þ1

n¼1

Að2Þn e�inp
2 cosðnhÞ

" #

; r !1; ð17Þ

where the superscript (2s) indicates that this quantity is the scattering field in material 2, i.e., in

the matrix.

As a result the electric potential /ð2Þ and stress component rð2Þzr in the far field induced by the

scattered shear wave are

/ð2sÞ ¼ e
ð2Þ
15

2ð2Þ11

wð2sÞ; rð2sÞ
zr ¼ ik2~c

ð2Þ
44 wð2sÞ; r!1: ð18Þ

It is observed from Eq. (18) that in the far field /ð2sÞ is proportional to wð2sÞ and rð2Þzr .

Therefore, the far field behaviors of the stress and elastic displacement in the piezoelectric

matrix can be determined by the electric potential at the far field. The far-field directivity
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pattern of scattering is defined as the plot exhibiting the angular distribution of the absolute

value of the amplitude of the stress component rð2Þzr at a large distance from the scatterer (i.e.,

the cylinder in this paper). Thus the directivity pattern of the scattered shear wave is given by

[8], [24]

DðhÞ ¼ A
ð2Þ
0 þ

X

þ1

n¼1

Að2Þn e�inp
2 cosðnhÞ

�

�

�

�

�

�

�

�

�

�

: ð19Þ

According to Liu et al. [24], the scattering cross-section of one scatterer is defined as the ratio

of the total energy flow carried outwards by the scattered wave to the energy flow of the

incident wave through a normal area that is equal to the cross-section area of the scatterer.

Thus, the scattering cross-section of the shear wave for the cylinder is

Q ¼
2 A

ð2Þ
0

�

�

�

�

�

�

2

þ
P

þ1

n¼1

A
ð2Þ
n

�

�

�

�

�

�

2

k2R
: ð20Þ

5 Inhomogeneous interface

If the imperfection of the interface is not uniform but circumferentially inhomogeneous, then

Eqs. (8) and (9) for the boundary conditions on the imperfect interface should be modified (see

[10] for more details) to account for the nonuniformity of imperfection along the interface. As

an example, in this section we only consider an inhomogeneously compliant and weakly con-

ducting interface. It is noted that Eq. (8) is still valid here if we take a and b as functions of the

circumferential angle h, i.e., a ¼ aðhÞ � 0 and b ¼ bðhÞ � 0. However, in order to analyze

the inhomogeneous imperfection along the interface, it is more feasible to expand wð1Þ;uð1Þ in
the cylinder and wð2Þ;uð2Þ in the matrix, in terms of e

inh, as follows:

wð1Þ ¼
X

þ1

n¼�1
Að1Þn Jnðk1rÞeinh;

uð1Þ ¼
X

þ1

n¼�1
Bð1Þn r nj jeinh;

9

>

>

>

>

>

=

>

>

>

>

>

;

0 � r � R; ð21Þ

wð2Þ ¼ eik2x þ
X

þ1

n¼�1
Að2Þn Hð1Þn ðk2rÞeinh;

uð2Þ ¼
X

þ1

n¼�1
Bð2Þn r� nj jeinh;

9

>

>

>

>

>

=

>

>

>

>

>

;

r � R; ð22Þ

where A
ð1Þ
n ; B

ð1Þ
n ; A

ð2Þ
n ; B

ð2Þ
n are unknown expansion coefficients to be determined. In addition,

the term eik2x can be expanded as [23]

eik2x ¼
X

þ1

n¼�1
inJnðk2rÞeinh: ð23Þ

The two given imperfect functions aðhÞ and bðhÞ, which are periodic functions of h, can be

expanded into the following two Fourier series:
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aðhÞ ¼
X

þ1

n¼�1
Xneinh; bðhÞ ¼

X

þ1

n¼�1
Yneinh; ð24Þ

where X�n ¼ �Xn; Y�n ¼ �Yn ðn ¼ 0; 1; 2; . . . ;þ1Þ are known coefficients.

By enforcing the boundary conditions on the imperfect interface, we finally arrive at a set of

linear algebraic equations for the expansion coefficients

k1~c
ð1Þ
44 J 0nðk1RÞAð1Þn þ nj jeð1Þ15 R nj j�1Bð1Þn � k2~c

ð2Þ
44 Hð1Þ

0

n ðk2RÞAð2Þn

þ nj jeð2Þ15 R� nj j�1Bð2Þn ¼ k2~c
ð2Þ
44 inJ 0nðk2RÞ; ð25:1Þ

k1~c
ð1Þ
44 J 0nðk1RÞAð1Þn þ

X

þ1

m¼�1
Xn�mJmðk1RÞAð1Þm

þ nj jeð1Þ15 R nj j�1Bð1Þn �
X

þ1

m¼�1
Xn�mHð1Þm ðk2RÞAð2Þm ¼

X

þ1

m¼�1
Xn�mimJmðk2RÞ; ð25:2Þ

nj j 2ð1Þ11 R nj j�1Bð1Þn þ nj j 2ð2Þ11 R� nj j�1Bð2Þn ¼ 0; ð25:3Þ

e
ð1Þ
15

2ð1Þ11

X

þ1

m¼�1
Yn�mJmðk1RÞAð1Þm þ nj j 2ð1Þ11 R nj j�1Bð1Þn þ

X

þ1

m¼�1
Yn�mR mj jBð1Þm

� e
ð2Þ
15

2ð2Þ11

X

þ1

m¼�1
Yn�mHð1Þm ðk2RÞAð2Þm �

X

þ1

m¼�1
Yn�mR� mj jBð2Þm ¼

e
ð2Þ
15

2ð2Þ11

X

þ1

m¼�1
Yn�mimJmðk2RÞ; ð25:4Þ

where n is any integer from �1 to þ1.

If we introduce the following vectors (as in [8] and [25]):

A1 ¼ Að1Þn

h i

; A2 ¼ Að2Þn

h i

; B1 ¼ Bð1Þn

h i

; B2 ¼ Bð2Þn

h i

;

K1 ¼ k2~c
ð2Þ
44 inJ 0nðk2RÞ
� �

; K2 ¼
X

þ1

m¼�1
Xn�mimJmðk2RÞ

" #

; K4 ¼
e
ð2Þ
15

2ð2Þ11

X

þ1

m¼�1
Yn�mimJmðk2RÞ

" #

;

ð26Þ

and further define the following square matrices (as in [8] and [25]):

Q11¼ k1~c
ð1Þ
44 diagJ 0nðk1RÞ; Q12¼ e

ð1Þ
15 diag nj jR nj j�1;

Q13¼�k2~c
ð2Þ
44 diagHð1Þ

0

n ðk2RÞ; Q14¼ e
ð2Þ
15 diag nj jR� nj j�1;

Q21¼ k1~c
ð1Þ
44 diagJ 0nðk1RÞþ Xn�mJmðk1RÞ½ �; Q22¼ e

ð1Þ
15 diag nj jR nj j�1; Q23¼� Xn�mHð1Þm ðk2RÞ

h i

;

Q32¼2ð1Þ11 diagR nj j�1; Q34¼2ð2Þ11 diagR� nj j�1; Q41¼
e
ð1Þ
15

2ð1Þ11

Yn�mJmðk1RÞ½ �;

Q42¼2ð1Þ11 diag nj jR nj j�1þ Yn�mR mj j� �

; Q43¼�
e
ð2Þ
15

2ð2Þ11

Yn�mHð1Þm ðk2RÞ
h i

; Q44¼� Yn�mR� mj j� �

;

ð27Þ

then the original set of linear algebraic equations (25) can be equivalently expressed as
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Q11 Q12 Q13 Q14

Q21 Q22 Q23 0

0 Q32 0 Q34

Q41 Q42 Q43 Q44

2

6

6

6

6

4

3

7

7

7

7

5

A1

B1

A2

B2

2

6

6

6

6

4

3

7

7

7

7

5

¼

K1

K2

0

K4

2

6

6

6

6

4

3

7

7

7

7

5

; ð28Þ

with its solution being given by

A1

B1

A2

B2

2

6

6

6

6

4

3

7

7

7

7

5

¼

Q11 Q12 Q13 Q14

Q21 Q22 Q23 0

0 Q32 0 Q34

Q41 Q42 Q43 Q44

2

6

6

6

6

4

3

7

7

7

7

5

�1
K1

K2

0

K4

2

6

6

6

6

4

3

7

7

7

7

5

: ð29Þ

Apparently if the interface is inhomogeneously imperfect, one needs to solve a simultaneous

infinite system of linear algebraic equations to find the unknowns (see Eq. (28)). This is dif-

ferent to the uniform interface case where it is sufficient to invert a 2� 2 matrix and an infinite

number of 4� 4 matrices to find the involved unknowns (see Eqs. (13)–(16)).

The directivity pattern of the scattered shear wave is now given by

DðhÞ ¼
X

þ1

n¼�1
Að2Þn e

in h�p
2ð Þ

�

�

�

�

�

�

�

�

�

�

; ð30Þ

and the scattering cross-section of the shear wave for the cylinder is

Q ¼ 2

k2R

X

þ1

n¼�1
Að2Þn

�

�

�

�

2
: ð31Þ

6 Examples

In the following two subsections we will consider a PZT-5 cylinder imperfectly bonded to a

BaTiO3 matrix by a uniform interface (Subsect. 6.1) or by a circumferentially inhomogeneous

interface (Subsect. 6.2). The material properties of BaTiO3 and PZT-5 are listed in Table 1.

6.1 A uniform interface

In this subsection we consider a uniform interface. In our calculation, the series in Eqs. (10) and

(11) are truncated at n ¼ N to obtain the results with a relative error less than 1%. Table 2

demonstrates the dependence of N on frequency k1R. It is observed that N is a monotonically

Table 1. Material properties of BaTiO3 and PZT-5

c44

ð1010 N
�

m2Þ

~c44

ð1010 N
�

m2Þ

e15

ðC
�

m2Þ

211

ð10�9 F=mÞ

q

ð103 kg
�

m3Þ
cðm=sÞ

BaTiO3 4:4 5:7164 11:4 9:8722 5:7 3166:8

PZT-5 2:11 3:9754 12:3 8:1103 7:75 2264:9
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increasing function of k1R . On the other hand, our calculations show that N is independent of

the degree of the interface imperfection.

Figure 2 shows the directivity patterns of the scattered waves for a perfectly bonded

(a; b!1 or a; c!1) cylinder for eight different frequencies k1R ¼ 0:5; 1; 5; 10; 20;

40; 80; 120 . Figures 3 and 4 plot, respectively, the corresponding results for a compliant and

weakly conducting interface with a ¼ 0:1 l1

R
; b ¼ 0:1 21

R
and those for a compliant and highly

conducting interface with a ¼ 0:1 l1

R
; c ¼ 0:1

21R
, with a ¼ 0:1 l1

R
representing a rather compliant

interface. It is observed from Figs. 2–4 that 1) with increasing frequency, the directivity pattern

becomes complicated and concentrated along the incident wave direction ðh ¼ 0Þ; 2) the

imperfection of the interface can significantly alter both the shape and size of the directivity

pattern. Particularly the influence of the dielectric imperfection on the directivity pattern is

obvious and should not be ignored (i.e., comparing Fig. 3 to Fig. 4).

Figure 5 presents the scattering cross-section of the scattered shear wave for a perfect

interface (dashed lines) and for a compliant and weakly conducting interface a ¼ 0:1 l1

R
; b ¼ 0

(solid lines). It is observed from Fig. 5 that there are a sequence of maxima and minima for the

scattered shear wave when the interface is perfect (dashed lines). We further remark that small

high-frequency peaks, which correspond to the resonance scattering, can appear for a perfect

interface; whilst large low-frequency peaks, which also correspond to the resonance scattering,

can be observed for the insulating and rather compliant imperfect interface. Actually, the

observed small high-frequency peaks for a perfect interface (from our model where the shear

wave speed in the cylinder is lower than that in the matrix) is in agreement with the results of

Liu et al. [24]. The lowest frequency at which the large peak appears for the imperfect interface

can be also estimated by treating the cylinder as a rigid body; the natural (or resonance)

frequency of the corresponding spring-mass system is estimated to be k1R ¼
ffiffiffiffiffiffiffi

0:2
p

¼ 0:4472,

which is very close to the actual resonance frequency k1R ¼ 0:4293 observed in Fig. 5. We

remark that similar approaches were proposed in [8] and [20] to obtain a rough estimation for

the lowest resonance frequency. Furthermore, our calculations also show (not presented due to

space limits) that the scattering cross-sections for the compliant and insulating interface

a ¼ 0:1 l1

R
; b ¼ 0 are quite different from those for the compliant and equipotential interface

a ¼ 0:1 l1

R
; c ¼ 0. In other words, the dielectric imperfection also has a significant influence on

the scattered cross-sections.

6.2 A circumferentially inhomogeneous interface

In this subsection we consider a circumferentially inhomogeneous interface. We further assume

the following special circumferentially inhomogeneous interface

aðhÞ ¼
a0; hj j < h0=2

0; h0=2 < hj j � p

(

; bðhÞ ¼
b0; hj j < h0=2

0; h0=2 < hj j � p

(

ð32Þ

where a0 and b0 are two nonnegative constants. On the part hj j < h0=2, the cylinder is

imperfectly bonded to the matrix; whilst on the rest part of the interface h0=2 < hj j � p, the

Table 2. Dependence of truncation number N on frequency k1R

k1R 0:5 1 5 10 20 40 80 120 160 200 300 400 500 600 1000

N 2 2 6 10 18 36 66 98 126 156 230 300 376 444 734
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cylinder is completely debonded from the matrix (i.e., this part of the interface is always made

of an insulating crack). We further notice that in the limit a0; b0 !1, the inhomogeneous

interface model (32) reduces to the partially debonded interface which is made of a perfectly

bonded part within hj j < h0=2 and an insulating crack within h0=2 < hj j � p.
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Fig. 2. Directivity patterns of the scattered waves for a perfectly bonded cylinder under eight different
frequencies k1R ¼ 0:5; 1; 5; 10; 20; 40; 80; 120
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The two functions aðhÞ and bðhÞ in Eq. (32) can be expanded into Fourier series as

aðhÞ ¼ a0

p

X

þ1

n¼�1

sin nh0

2

n
einh; bðhÞ ¼ b0

p

X

þ1

n¼�1

sin nh0

2

n
einh; ð33Þ

where X0 ¼ a0

p lim
n!0

sin
nh0

2

n
¼ a0h0

2p ; Y0 ¼ b0

p lim
n!0

sin
nh0

2

n
¼ b0h0

2p . In the actual evaluation of Eq. (33), the

two Fourier series are truncated at n ¼ �200 to obtain results with a relative error less than

0.1%. In order to demonstrate the influence of the inhomogeneity of the interface imperfection,

we show in Fig. 6 the directivity patterns for the partially debonded interface which is made of

a perfectly bonded part within hj j < h0=2 and an insulating crack within h0=2 < hj j � p
(a0; b0 !1) with k1R ¼ 10. It is observed that the directivity pattern for h0 ¼ 2p in Fig. 6 is

just that for a perfect interface case as shown in Fig. 2 (for k1R ¼ 10). Comparing this pattern

(corresponding to h0 ¼ 2p) to the other three cases in Fig. 6, one can clearly observe the

significant influence of the interface inhomogeneity on the directivity patterns. It shall be

mentioned that due to the nonuniformity of the interface described by Eq. (32), we have to

truncate the series in Eqs. (21) and (22) at least at n ¼ �100 to obtain results with a relative

error less than 1%.

Our formulation is also very convenient to investigate the more general case in which there

exist an arbitrary number of cracks along the interface. Let us consider, for instance, m equal-

length insulating cracks uniformly distributed along the interface. The rest of the interface is

perfectly bonded. The length of each crack is assumed to be pR
m

(i.e., half of the interface is

occupied by cracks), and the centers of these cracks are located at h ¼ ð2j�1Þp
m

; j ¼ 1; 2; . . . ;m.

Presented in Fig. 7 are the directivity patterns for the case of m ðm ¼ 1� 8Þ equal-length
cracks uniformly distributed along the interface with k1R ¼ 20. Apparently the number of

cracks on the interface greatly affects the shape and size of the directivity patterns. For example

when there exists a single crack on the interface ðm ¼ 1Þ, the magnitudes of the directivity

7

6

5

4

3

2

1

0
0 5 10 15 20 25 30 35 40 45 50

k1R

Q
Large low-frequency

Small high-frequency

Fig. 5. Scattering cross-sections of the scattered shear wave for a perfect interface (dashed lines) and
for a rather compliant and insulating interface a ¼ 0:1 l1

R
; b ¼ 0 (solid lines)
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pattern in the forward (h ¼ 0 on the top) and backward directions are, respectively, about 16

and 5; while when there are eight cracks on the interface ðm ¼ 8Þ, these values decrease,

respectively, to about 11 and 3. Besides the amplitude, the shape of the directivity patterns for

m ¼ 1 is also quite different from that for m ¼ 8.

Figure 8 demonstrates the scattering cross-sections of the scattered shear wave for a circular

cylinder with an imperfect interface described by Eq. (32) with a0 ¼ 0:1 l1

R
; b0 ¼ 0. The large

low-frequency peaks are observed for an inhomogeneously imperfect interface. In addition, the

resonance frequencies k1R ¼ 0:151; 0:210; 0:295; 0:366; 0:424 for the five different values of

h0 ¼ p
4 ;

p
2 ; p; 3p

2 ; 2p observed in Fig. 8 are in close agreement with the predictions

k1R ¼
ffiffiffiffiffiffi

h0

10p

q

¼ 0:158; 0:224; 0:316; 0:387; 0:447 by treating the cylinder as a rigid body. It is

also clear from Fig. 8 that when h0 decreases (i.e., the imperfectly bonded part shrinks and the

crack part enlarges), the resonant magnitude of the scattering cross-section increases consid-

erably.

Finally, we present in Fig. 9 the scattering cross-sections of the scattered shear wave for the

partially debonded interface which is made of a perfectly bonded part within hj j < h0=2 and an

insulating crack within h0=2 < hj j � p (a0; b0 !1) with h0=p (solid lines) and also for a

perfect interface, i.e., h0=2p (dashed lines). The frequency range is k1R =0 to 50. While the

shape and size differences of the scattering cross-sections from both the partially debonded and

perfectly bonded cylinders can be clearly observed, it is of particular interest to notice that, for

a partially debonded cylinder, the resonance peaks exist within the entire frequency domain,

spanning from very low to very high frequencies.
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7 Conclusions

An exact analysis to the shear wave scattering by an imperfectly bonded piezoelectric cylinder is

presented in this paper. Both the homogeneous and circumferentially inhomogeneous imperfect

interfaces are considered. The imperfect interface model adopted in this research can be used to

simulate damage (e.g., microcracks) occurring on the interface as well as a thin interphase layer

between the cylinder and the matrix. Numerical examples demonstrate some distinguished

scattering features from homogeneous and inhomogeneous interfaces. The observed large low-

frequency peaks of the scattering cross-sections are further verified using the corresponding

simplified mass-spring system (by treating the cylinder as a rigid body when the interface is

rather compliant). Our numerical results also show clearly the influence of the dielectric

imperfection (i.e., weakly conducting and highly conducting) on directivity patterns and scat-

tered cross-sections. While in the present scattering problem, only a single piezoelectric cylinder

is considered, the corresponding wave scattering by a cluster of piezoelectric cylinders is also of

interest and forms the subject of future study. We point out that the forward solution presented

in this paper, combined with the corresponding inverse algorithm, could be very useful to the

design of photonic band gap materials where interface imperfection plays an important role

[19]–[21].
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