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S U M M A R Y
This study is motivated by a desire to develop a fast numerical algorithm for computing
the surface deformation field induced by surface pressure loading on a layered, isotropic,
elastic half-space. The approach that we pursue here is based on a circular loading element.
That is, an arbitrary surface pressure field applied within a finite surface domain will be
represented by a large number of circular loading elements, all with the same radius, in which
the applied downwards pressure (normal stress) is piecewise uniform: that is, the load within
each individual circle is laterally uniform. The key practical requirement associated with this
approach is that we need to be able to solve for the displacement field due to a single circular
load, at very large numbers of points (or ‘stations’), at very low computational cost. This
elemental problem is axisymmetric, and so the displacement vector field consists of radial and
vertical components both of which are functions only of the radial coordinate r. We achieve
high computational speeds using a novel two-stage approach that we call the sparse evaluation
and massive interpolation (SEMI) method. First, we use a high accuracy but computationally
expensive method to compute the displacement vectors at a limited number of r values (called
control points or knots), and then we use a variety of fast interpolation methods to determine the
displacements at much larger numbers of intervening points. The accurate solutions achieved
at the control points are framed in terms of cylindrical vector functions, Hankel transforms
and propagator matrices. Adaptive Gauss quadrature is used to handle the oscillatory nature
of the integrands in an optimal manner. To extend these exact solutions via interpolation we
divide the r-axis into three zones, and employ a different interpolation algorithm in each zone.
The magnitude of the errors associated with the interpolation is controlled by the number,
M , of control points. For M = 54, the maximum RMS relative error associated with the
SEMI method is less than 0.2 per cent, and it is possible to evaluate the displacement field at
100 000 stations about 1200 times faster than if the direct (exact) solution was evaluated at
each station; for M = 99 which corresponds to a maximum RMS relative error less than
0.03 per cent, the SEMI method is about 700 times faster than the direct solution.

Key words: cylindrical system of vector functions, elastic isotropy, fast algorithm, multilay-
ered structure, propagator matrix method, surface Green’s function.

1 I N T RO D U C T I O N

The problem of determining the elastic response of a half-space subject to surface loads was introduced by Boussinesq in 1885 and since

then it has attracted the attention of many illustrious mathematicians, physicists and engineers—see Love (1944) for a discussion of the early

literature. Later workers extended the original problem so as to address specific loading geometries, non-uniformity or anisotropy of the elastic

medium, and the loading response of plates and shells as well as half-spaces, and these solutions have been applied in areas as diverse as cell

biology (e.g. Balaban et al. 2001), civil engineering (e.g. Graig 1997) and earth science (e.g. Bevis et al. 2004; Becker & Bevis 2004). One

of the most important extensions of the Boussinesq problem addresses the loading response of a layered elastic half-space—see Pan (1997)

for a brief review of the methods proposed to date. Layered elastic structures are ubiquitous: superlattices in solid-state physics (Bimberg
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et al. 1999), composites in material science (Agarwal & Broutman 1980; Schwarzer 2000), earth or foundation structures (Murthy 2003) and

layered pavements for highway transportation (Khazanovich 1994; Brill & Hayhoe 2004). Modern analytical and numerical research into the

loading of layered elastic structures addresses both forward and inverse problems (Yue & Yin 1998; Wang et al. 2003; Pan & Han 2005). To

the best of the authors’ knowledge, however, even for the relatively simple forward class of problems, no existing algorithms are fast enough

to allow the loading response to be computed at (or even approaching) the interactive time scale.

In this paper we develop a new approach to computing the surface response of a layered elastic half-space to surface pressure loading.

We assume that the pressure (i.e. normal stress) field is applied only within a finite surface area (e.g. within a given polygon) but otherwise

is arbitrary. The arbitrary surface pressure field is discretized using a large number, n, of equally sized circular loading elements, and the

pressure imposed in each element is uniform within each circle. The problem is to compute the displacement at a large number, m, of points

(or stations) distributed over the surface. Because (1) the elastic response to a uniform circular loading element is axisymmetric, and both the

radial and the vertical displacements at the surface depend only on the distance between the centre of the load and the point where displacement

is being computed and (2) the displacement field produced by a single circular load scales linearly with the pressure imposed within that

circle, we can transform our original problem into a nearly equivalent problem: computing the surface deformation field caused by a single

unit pressure load at a total of m n stations (where m n is the product m × n). We shall discuss this transformation at greater length elsewhere

(Bevis et al. 2007). The solution of the original problem can be obtained from the solution of the parallel problem at very little additional

computational cost. In order to exploit this framework, we must be able to compute the surface response at a huge number of points or

stations.

This paper is focused on the key task of developing an extremely fast algorithm for calculating the surface displacements due to a uniform

circular pressure load on the surface of the layered isotropic elastic half-space. To achieve our goal, we first express the displacement solution

in terms of a cylindrical system of vector functions (involving infinite integrals of Bessel functions) and the propagator matrix method (Gilbert

& Backus 1966; Pan 1989a,b, Pan 1997). We employ adaptive Gauss quadrature (e.g. Lucas 1995) to carry out the infinite integration where

the zeros in the integrands are predicted and an acceleration method is introduced to speed up the integration. Even though the adaptive Gauss

quadrature is very accurate and efficient as compared to the simple Simpson or trapezoidal integrations, point-by-point calculation is still

extremely CPU intensive. To solve the speed problem, we propose a novel two-stage algorithm, namely the sparse evaluation and massive

interpolation (SEMI) method.

During the first stage (sparse evaluation) we compute a high accuracy solution to the loading problem at a relatively small number of

points using the direct (expensive) method mentioned above. The elementary loading problem is axisymmetric and so its solution can be

stated in terms of radial and vertical components of displacement, both of which are scalar functions of the radial coordinate r, where r = 0

corresponds to the centre of the circular load. The small number (M) of r-values where we directly evaluate the solution are referred to as

control points or knots. In the second stage (massive interpolation) we produce an approximate estimate of the displacement at any number

of points (r-values) by interpolating between the values determined at the control points. To do this we divide the surface domain (r = 0 to

infinity) into three sections and utilize a specific interpolation method based on the morphology or character of the surface displacement field

in each section.

We have engaged in a series of numerical experiments to determine the accuracy and the speed of the SEMI approach as compared to

direct evaluation. To compute the loading response at a large number of points, say 100 000 stations, with a modest degree of error, say with

maximum RMS relative error of less than 0.2 per cent, our SEMI method is ∼1200 times faster than direct point-by-point evaluation. For

more accurate results with maximum RMS relative error of less than 0.03 per cent, our SEMI method is still ∼700 times faster than the direct

calculation.

This paper is organized as follows: In Section 2, we state the problem and the governing equations. In Section 3, the general solutions

of the field quantities are derived using propagator matrices and the cylindrical system of vector functions. The special solution for the case

of the uniform circular load is discussed in detail in Section 4. Section 5 presents the SEMI method outlined above. In Section 6, Numerical

examples are provided to assess accuracy and computational efficiency (and interesting features in our SEMI approach are identified), and

finally we discuss our results in Section 7.

2 P RO B L E M S TAT E M E N T A N D G OV E R N I N G E Q UAT I O N S

Let us consider a layered half-space made up of p parallel, elastic isotropic layers lying over an elastic isotropic half-space. The layers are

numbered serially with the layer at the top being layer 1 and the last layer p, which is just above the half-space (Fig. 1). We place the

cylindrical coordinate on the surface with the z-axis pointing into the layered half-space. The kth layer is bounded by the interfaces z = zk −1,

zk . As such, zk −1 is the coordinate of the upper interface of the kth layer, and zk that of the lower interface. It is obvious that the thickness

of the kth layer is hk = zk − zk −1, with z0 = 0 and zp = H , where H is the depth of the last layer interface. The interfaces between the

adjacent layers are assumed to be welded. The top surface is subject to uniform unit pressure within a circle of radius R. For a well-posed

problem, the solution in the homogeneous half-space of the layered system should be also finite when the physical dimension approaches

infinity.
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Surface deformation due to loading of a layered elastic half-space 13

Figure 1. A multilayered elastic half-space under uniform vertical load q within the circle of radius R.

For the isotropic elastic solid, we have, in each layer, the following governing equations in the cylindrical coordinates:

(1) Equilibrium equations without body force:

∂σrr

∂r
+ ∂σrθ

r∂θ
+ ∂σr z

∂z
+ σrr − σθθ

r
= 0

∂σrθ

∂r
+ ∂σθθ

r∂θ
+ ∂σθ z

∂z
+ 2σrθ

r
= 0

∂σr z

∂r
+ ∂σθ z

r∂θ
+ ∂σzz

∂z
+ σr z

r
= 0

, (1)

where σ ij is the stress tensor.

(2) Constitutive relations:

σrr = c11γrr + c12(γθθ + γzz)

σθ z = c44γθ z

, (2)

where

c11 = E(1 − ν)

(1 + ν)(1 − 2ν)
; c12 = Eν

(1 + ν)(1 − 2ν)
; c44 = E

2(1 + ν)
. (3)

The constitutive relations for the other normal and shear components can be found similarly. While in eq. (2), γ ij are the engineering strain

components, in eq. (3), E and ν are, respectively, Young’s modulus and Poisson’s ratio.

(3) The strain–displacement relations:

γrr = ∂ur

∂r
, γθθ = ∂uθ

r∂θ
+ ur

r
, γzz = ∂uz

∂z

γθ z = ∂uθ

∂z
+ ∂uz

r∂θ
, γr z = ∂uz

∂r
+ ∂ur

∂z
, γrθ = ∂ur

r∂θ
+ ∂uθ

∂r
− uθ

r

,

(4)

where ui is the displacement field.

3 G E N E R A L S O L U T I O N I N T E R M S O F C Y L I N D R I C A L S Y S T E M O F V E C T O R

F U N C T I O N S

The cylindrical system of vector functions is very convenient in treating axisymmetric problem and it is defined as (Pan 1989a,b, 1997)

L(r, θ ; λ, m) = ez S(r, θ ; λ, m),

M(r, θ ; λ, m) =
(

er
∂

∂r
+ eθ

∂

r∂θ

)
S(r, θ ; λ, m),

N(r, θ ; λ, m) =
(

er
∂

r∂θ
− eθ

∂

∂r

)
S(r, θ ; λ, m)

(5)
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with

S(r, θ ; λ, m) = 1√
2π

Jm(λr )eimθ , (6)

where J m(λr) is the Bessel function of order m with m = 0 corresponding to the axisymmetric deformation, which will be discussed in detail

later on. It should be also noticed that the scalar function S in eq. (6) satisfies the Helmholtz equation

∂2 S

∂r 2
+ ∂S

r∂r
+ ∂2 S

r 2∂θ 2
+ λ2 S = 0. (7)

We quickly remark that the cylindrical system of vector functions is an extension of the Hankel transform and can be directly applied

to a vector function. Since this vector function system (eq. 5) forms an orthogonal and complete space, any integrable vector and/or scalar

function can be expressed in terms of it. In particular, the displacement and traction (with the z-axis as the normal) vectors can be expressed

as

u(r, θ, z) =
∑

m

∫ +∞

0

[UL (z)L(r, θ ) + UM (z)M(r, θ ) + UN (z)N(r, θ )]λdλ (8)

t(r, θ, z) ≡ σr zer + σθ zeθ + σzzez

=
∑

m

∫ +∞

0

[TL (z)L(r, θ ) + TM (z)M(r, θ ) + TN (z)N(r, θ )]λdλ.
. (9)

Making use of these expansions along with the strain–displacement and constitutive relations, we have, in general,

ur (r, θ, z) =
∑

m

∫ ∞

0

(
UM

∂S

∂r
+ UN

∂S

r∂θ

)
λdλ (10a)

uθ (r, θ, z) =
∑

m

∫ ∞

0

(
UM

∂S

r∂θ
− UN

∂S

∂r

)
λdλ (10b)

uz(r, θ, z) =
∑

m

∫ ∞

0

UL Sλdλ (10c)

σrr (r, θ, z) =
∑

m

∫ ∞

0

[
c11

(
UM

∂2 S

∂r 2
+ UN

∂2 S

r∂r∂θ
− UN

∂S

r 2∂θ

)
+ c12

(
UM

∂2 S

r 2∂θ2
+ UM

∂S

r∂r
− UN

∂2 S

r∂r∂θ
+ UN

∂S

r 2∂θ

)
+ c12

dUL

dz
S

]
λdλ

(11a)

σθθ (r, θ, z) =
∑

m

∫ ∞

0

[
c12

(
UM

∂2 S

∂r 2
+ UN

∂2 S

r∂r∂θ
− UN

∂S

r 2∂θ

)
+ c11

(
UM

∂2 S

r 2∂θ2
+UM

∂S

r∂r
− UN

∂2 S

r∂r∂θ
+ UN

∂S

r 2∂θ

)
+ c12

dUL

dz
S

]
λdλ

(11b)

σzz(r, θ, z) =
∑

m

∫ ∞

0

(
−λ2c12UM + c11

dUL

dz

)
Sλdλ (11c)

σθ z(r, θ, z) = c44

∑
m

∫ ∞

0

(
dUM

dz

∂S

r∂θ
− dUN

dz

∂S

∂r
+ 1

r
UL

∂S

∂θ

)
λdλ (11d)

σr z(r, θ, z) = c44

∑
m

∫ ∞

0

(
dUM

dz

∂S

∂r
+ dUN

dz

∂S

r∂θ
+ UL

∂S

∂r

)
λdλ (11e)

σrθ (r, θ, z) = c44

∑
m

∫ ∞

0

[
UM

(
2∂2 S

r∂r∂θ
− 2∂S

r 2∂θ

)
+ UN

(
∂2 S

r 2∂θ 2
− ∂2 S

∂r 2
+ ∂S

r∂r

)]
λdλ. (11f)

The relation of the expansion coefficients between T I and U I (I = L, M, N) can be found by comparing eqs (9) to (11c–e)

TL = −λ2c12UM + c11

dUL

dz
, (12a)

TM = c44

(
UL + dUM

dz

)
, (12b)

TN = c44

dUN

dz
. (12c)

Substituting the stress expansion (11) into the equilibrium eq. (1), we further find

dTL

dz
− λ2TM = 0, (13a)
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−λ2c11UM + c12

dUL

dz
+ dTM

dz
= 0, (13b)

dTN

dz
− λ2c44UN = φ. (13c)

Noticing that the N-type solution is dependent to the L&M-type solution, we introduce the following two sets of coefficient vectors

[E] = [UL , λUM , TL/λ, TM ]t (14a)

[EN (z)] = [UN (z), TN (z)/λ]t (14b)

then the homogeneous solution in each layer from eqs (12) and (13) are found to be

[E(z)] = [Z(z)][K] (15a)

[EN ] = [ZN (z)][KN ], (15b)

where [K] and [KN ] are column coefficient vectors of 4 × 1 and 2 × 1, respectively, with their elements to be determined by the interface

and/or boundary conditions. The matrices [Z(z)] and [ZN (z)] are the solution matrices given in Appendix A.

The propagating relations for the coefficient vectors [E] and [EN ] of kth layer at the z-level zk −1 and that at zk , are found to be

[E(zk−1)] = [ak][E(zk)], (16a)[
EN (zk−1)

] = [
aN

k

][
EN (zk)

]
, (16b)

where [ak] and [aN
k ] are the propagator matrices for the kth layer, with their elements given in Appendix A.

4 S O L U T I O N F O R C I RC U L A R S U R FA C E L OA D I N G

Assume that a uniform vertical surface load of magnitude q is applied within the circle of r = R (Fig. 1), then the traction boundary condition

on the surface z = 0 is expressed as:

σzz =
⎧⎨
⎩

−q r < R

0 r > R

σr z = σθ z = 0 0 ≤ r < ∞
. (17)

Therefore, the corresponding expansion coefficients in the cylindrical system of vector functions are:

TL (λ, 0) = −q R
√

2π

λ
J1(λR)

TM (λ, 0) = TN (λ, 0) = 0

. (18)

It is clear that the solution to the N-type is identically zero and therefore we need to solve the L&M-type problem (axisymmetric) only.

We now first solve the problem in the transformed domain (i.e. in terms of the expansion coefficients). Propagating the propagator matrix [ak]

from the top of the homogeneous half-space z = H to the surface z = 0, we find

[E(0)] = [G][Kp], (19)

where

[G] = [a1][a2] − − − [ap][Zp(H)]. (20)

The unknown coefficients [K p] are those in the half-space. As the solution in the half-space should be bounded, the first and third elements

in [K p] should be zero (see Appendix A for the general solution in each layer). The remaining two unknown coefficients can be determined

by the two boundary conditions on the surface z = 0 as given by eq. (18) (for the L- and M-components only).

After the unknown coefficients in [K p] are determined, the expansion coefficients at any depth (e.g. in the kth layer with zk −1 ≤ z ≤ zk)

can be obtained exactly as:

[E(z)] = [ak(z − zk−1)][ak+1] − − − [ap][Zp(H)][Kp]. (21)

In general, direct multiplication of the propagator matrix [ak] can be carried out in order to propagate the transformed domain solution

from one layer to the next. However, as discussed in Pan (1997), Yue & Yin (1998), and more recently by Fukahata & Matsu’ura (2005),

overflow may occur from multiplication of matrices in eqs (20) and (21). Fortunately, this can be overcome by factoring out the exponentially

growing factor in the elements of the propagator matrix. The resulting modified propagator matrices have no element growing exponentially,

and therefore there will be no overflow problem for a multilayered half-space having any number of layers (no matter what the thickness of

each layer).

After solving the problem in the transformed domain, the displacement and stress solutions at any location in the physical domain can

be expressed (independent of θ because of symmetry) as:

ur (r, z) = − 1√
2π

∫ ∞

0

(λUM )J1(λr )λdλ (22a)
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uθ (r, z) = 0 (22b)

uz(r, z) = 1√
2π

∫ ∞

0

(UL )J0(λr )λdλ (22c)

σr z(r, z) = − 1√
2π

∫ ∞

0

(TM )J1(λr )λ2dλ (23a)

σθ z(r, z) = σrθ (r, z) = 0 (23b)

σzz(r, z) = 1√
2π

∫ ∞

0

(
TL

λ

)
J0(λr )λ2dλ (23c)

σrr (r, z) = ν

1 − ν
σzz + 2c44√

2π

∫ ∞

0

(λUM )

[
− 1

1 − ν
J0(λr )λ + J1(λr )

r

]
λdλ (23d)

σθθ (r, z) = 2ν

1 − ν
σzz − σrr − 1√

2π

E

(1 − ν)

∫ ∞

0

(λUM )J0(λr )λ2dλ, (23e)

where the expansion coefficients are functions of z and the transform variable λ.

Of particular interest is the displacement field on the surface, which, in geophysical context is often directly observable using GPS (Bevis

et al. 2004) or InSAR. For a uniform circular load, the horizontal (radial) and vertical displacements on the surface can be expressed as:

ur (r, 0) = q R

∫ ∞

0

D1

λ
J1(λR)J1(λr )dλ (24a)

uz(r, 0) = −q R

∫ ∞

0

D0

λ
J1(λR)J0(λr )dλ (24b)

where

D0 = G12G44 − G14G42

G32G44 − G34G42

; D1 = G22G44 − G24G42

G32G44 − G34G42

(24c)

with Gij being the elements of the matrix [G] in eq. (20). This matrix is a function of the transform variable λ, the elastic properties of the

layered half-space, and the thickness of each layer.

To find the physical domain solutions, the transformed-domain results need to be integrated numerically. It is further noted that the

integrands in the infinite integrals for the displacements involve products of Bessel functions that are oscillatory and go to zero slowly as

their argument approaches infinity. Thus, the common numerical integration methods, such as the trapezoidal rule or Simpson’s rule, are not

suitable. While numerical integration of infinite integrals involving a single Bessel function has been discussed by Chave (1983) and Lucas &

Stone (1995), the corresponding numerical integration involving products of Bessel functions of different orders has been studied by Lucas

(1995) using adaptive Gaussian quadrature. We adopt this very accurate and efficient algorithm.

Base on this algorithm, the infinite integral is expressed as a summation of:∫ +∞

0

f (λ)Jm(λR)Jn(λr )dλ =
∫ rmax

0

f (λ)Jm(λR)Jn(λr )dλ +
∫ +∞

rmax

f (λ)Jm(λR)Jn(λr )dλ (25)

The finite and infinite integrations on the right-hand side of (25) are then calculated using the adaptive Gaussian quadrature (i.e. Chave

1983; Rice 1983). Furthermore, in applying the Gaussian quadrature, the mW transform and ε-algorithm are also introduced for handling

the oscillation feature of the integrands and for accelerating the calculation (Lucas 1995; Lucas & Stone 1995). In the numerical analysis

presented below, we have set the relative and absolute errors, respectively, at 10−4 and 10−5.

5 S E M I A L G O R I T H M F O R S U R FA C E D I S P L A C E M E N T F I E L D S

As can be observed from eq. (24), for different surface locations (stations), the surface displacements need to be calculated one by one, which

would involve substantial computation. This computational throughput problem motivates the development of the following SEMI algorithm.

Based on the form of the surface displacement components when considered as functions of r (as shown in Figs 2a,b and 3a,b for the

two typical layered models given in Tables 1 and 2; many other layered models have been tested with all of them showing features similar to

those seen in Figs 2 and 3), our SEMI algorithm divides the surface into three different sections: A near-field (from 0 to 2R), a middle-field

(2R to 40R), and a far-field (40R to, say, 100R) section. As can be observed from both Figs 2 and 3, in the near-field the displacement reaches

the largest magnitude with the most severe changes in its slope and high-order derivatives occurring at the boundary of the circle. In the

middle field, the variation of the displacement is very smooth and gentle. Finally in the far-field, the displacement asymptotically approaches

zero. Therefore, in these different sections one should use different interpolation schemes. After many testing runs, we decided to employ the

B-spline in physical domain for the near field, B-spline in nature logarithmic domain for the middle field, and the inverse (1/r) B-spline for

the far-field. We discuss these separately below.
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Surface deformation due to loading of a layered elastic half-space 17
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Figure 2. Comparison of the surface radial ur (a) and vertical uz (b) displacements for layered Model 1: Direct versus SEMI (based on Case II with 31

pre-calculation points).

5.1 Near- and middle-field pre-calculation with B-spline

Splines are piecewise polynomials of degree n joined together at control points with n-1 continuous derivatives. These control or break points

of splines are often called knots. If n ≥ 2, then the spline is smooth. In the B-spline algorithm, the targeted function, that is, u(r), is expressed

as (de Boor 1979; Rice 1983)

u(r ) =
N∑

j=1

a j B j (r ), (26)

where Bj = Bj,k,t denotes the jth B-spline of order k with respect to the knot sequence t, and the coefficients aj are solved from the following

equation using the function values at data points r i (i.e. requires that the B-spline passes exactly through each control point)

N∑
j=1

a j B j (ri ) = u(ri ). (27)

In B-spline, different orders using the knot sequence based upon the r-values of the data, that is, from order 2 (quadratic) through order

8, can be selected. In our algorithm, we fix the order at 3, and choose different number of control points to approximate both the near- and

middle-fields.
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Figure 3. Comparison of the surface radial ur (a) and vertical uz (b) displacements for layered Model 2: Direct versus SEMI (based on Case II with 31

pre-calculation points).

Table 1. Layered Model 1: Pressure q = 1 kPa and loading radius R = 1 km

Layer no. Thickness (km) Young’s modulus E (GPa) Poisson’s ratio ν

1 0.5 5.0 0.3

2 5 30.0 0.25

3 Infinite 150.0 0.2

Due to varying character of the surface displacement in the near- and middle-fields, different spline-based interpolation algorithms are

developed in each sector. In the near field from 0 to 2R, there is a well-known singular point in the surface stress at the edge of the circle r =
R. Such a singularity corresponds to the sharp slope (and second order derivative) changes in displacements which cannot be easily treated

even with the B-spline approximation. Therefore, we further separate the near field into three subsections: 0 to R − δ, R − δ to R + δ, and

R + δ to 2R. While the direct physical-domain B-spline is utilized to approximate the displacements in the first and third subsections, direct

calculation with linear interpolation is proposed for the middle subsections. After numerous testing runs, we have selected the optimal δ =
0.03R, whilst in the first and third B-spline domains graded distance is proposed to find the key point locations. For these two subsections, the

graded distance is chosen to be g = 1.5 with increasing r i, which means |r i+1 − r i| = 1.5|r i − r i−1|.
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Table 2. Layered Model 2: pressure q = 1 kPa and loading radius R = 1 km

Layer no. Thickness (km) Young’s modulus E (GPa) Poisson’s ratio ν

1 0.5 150.0 0.2

2 5 30.0 0.25

3 Infinite 5.0 0.3
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Figure 4. Variation of the surface radial and vertical displacements versus radial distance r for layered Model 1: In the physical domain (a) and in the nature

Ln domain (b).

For the middle field from 2R to 40R, we also employ the B-spline approximation. However, instead of using the B-spline in the physical

domain directly, we use it in the nature logarithmic domain. Our B-spline interpolation scheme is based on the fact that the displacement

response in the nature logarithmic domain is smoother than that in the physical domain. This can be observed in Figs 4(a) and (b) for

the horizontal and vertical displacement distributions for Model 1 in the physical- (Fig. 4a) and nature Ln- (Fig. 4b) domains. Numerical

experiments based on different layered half-space structures have also validated our decision to work in the nature Ln-domain. Furthermore,

due to the smooth feature of the displacement in the nature Ln-domain, we use uniformly distributed control points in the Ln-domain [Ln(r)],

unlike the scheme we use in the near-field case where graded distance is chosen with increasing r in the physical domain.

5.2 Far-field pre-calculation using inverse B-spline

For r larger than 40R, the displacement field decays to zero, inversely proportional to the distance. Therefore, for a given circular load, the

magnitude of the displacements in the far-field would be small or very small as compared to those in the near- and middle-fields. However,

we can still include this far-field response from r = 40R all the way, say to r = 100R (if required, further extension to r = 1000R or even r =
5000R can be easily achieved by just adding a couple of more control points as for the r = 100R case discussed below). In this section, we
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Table 3. Number of points in different sectors (i.e. Cases I–IV) and the corresponding RMS relative errors (per

cent) between the direct and SEMI methods for Model 1.

Case I Case II

Sect pts RMSur RMSuz RMSmax pts RMSur RMSuz RMSmax

1 13 3.83 3.28 3.83 19 0.323 0.740 0.740

2 6 3.98 1.19 3.98 11 0.273 0.0779 0.273

3 3 0.0796 0.00154 0.0796 3 0.0796 0.00154 0.0796

Max 20 3.98 3.28 3.98 31 0.323 0.740 0.740

Case III Case IV

Sect pts RMSur RMSuz RMSmax pts RMSur RMSuz RMSmax

1 31 0.0433 0.173 0.173 55 0.00597 0.00938 0.00938

2 21 0.0191 0.00613 0.0191 41 0.00208 0.00067 0.00208

3 4 0.0395 0.00115 0.0395 5 0.0216 0.00084 0.0216

Max 54 0.0433 0.173 0.173 99 0.0216 0.00938 0.0216

propose the following B-spline in terms of the inverse distance x = 1/r for the displacement u (ur and uz) as

u(x) =
N∑

j=1

b j B j (x), (28)

where the coefficients bj are solved by using the function values at the predetermined control points xi (xi = 1/r i) in the interval of r =
40R−100R, similar to (27). We remark that, for a couple of special examples where the far-field displacement decays monotonically, a simple

asymptotical expansion may give slightly accurate results than the inverse B-spline. However, the inverse B-spline proposed here can be

applied to the general case.

6 D I R E C T V E R S U S S E M I M E T H O D S : N U M E R I C A L C O M PA R I S O N

In this section, two typical layered models listed in Tables 1 and 2 are selected to test our pre-calculation algorithm. While Model 1 corresponds

to the earth structure, Model 2 is the inverse layup of the Model 1 material properties, which is a typical layered pavement structure. Furthermore,

for each model, four different cases with different number of key points (Case I with 20 points, Case II with 31 points, Case III with 54 points,

and Case IV with 99 points) are studied (Table 3).

First, shown in Figs 2 and 3 are the comparison of the surface displacements based on both the direct and SEMI methods for both models

1 and 2 with 31 pre-calculation points for SEMI (i.e. Case II), with station points vary from 0 to 50R at an increment of 0.1R. The inserted

figures are the zoom-in results from 0 to 2R to show the rapid variation of the displacement fields in the near field. As can be observed from

these figures, our SEMI results agree well with those calculated directly.

Secondly, to quantitatively evaluate the accuracy of the proposed SEMI algorithm, we have also estimated relative errors (Figs 5 and 6)

and the RMS relative errors (Table 3) between the direct and SEMI approaches. Listed in Table 3 are the SEMI results as compared to the

direct calculation for Model 1 from r = 0 to r = 100R for the four Cases I to IV in terms of the RMS relative errors. In this table, ‘Sect’ stands

for the three different sections (1 for near-field, 2 for middle-field, and 3 for far-field); ‘Max’ stands for the total number of control points (pts

in the table) used in the SEMI approach; RMSur and RMSuz are the RMS relative errors in the radial and vertical displacements as compared

to the direct results, with the maximum between these two being RMSmax. For these four sets of control points (corresponding to Cases I–IV),

we have further plotted the detailed relative errors between the SEMI and the direct methods as the function of r, as presented in Figs 5(a) and

(b) for the radial and vertical displacements for Model 1 and in Figs 6(a) and (b) for Model 2. Figs 5 and 6 show clearly that as the number of

control points increases the relative errors in the SEMI solutions decline rapidly.

Thirdly, we have also studied the decay behaviour of the RMS relative error in displacements as a function of the number M of control

points. The RMS relative error is determined by comparing the approximate solutions obtained using the SEMI method with those obtained

(far more slowly) via direct evaluation (i.e. the same approach used to compute the displacements at the M control points). The rapid decay

trend can be observed in Table 3 for the maximum RMS relative errors and can even be expressed approximately in proportion to 1/Mn, with

n being larger than 3 for the whole domain from 0 to 100R. Such a fast decay feature is also shown in Fig. 7 where the RMS relative errors in

the displacements ur and uz for Model 1 as a function of the total number M , along with their corresponding fitting curves are plotted. The

fitted curves for the RMS relative ur and uz are, respectively, 27 762/M3.1867 and 11 6561/M3.4912.

Finally, for fixed RMS relative errors (i.e. Cases I–IV), we have compared the CPU times based on both the direct and SEMI methods.

Listed in Table 4 are the CPU times for the two layered models for four values of M . As can be observed, our SEMI is much faster than the

direct method, in particular when the station number is very large. More specifically, for 500 surface stations, our SEMI algorithm is about

25 times faster than the direct method, and for 100 000 points, our algorithm is at least 1200 times faster than the direct method (when M is

54). Furthermore, there is virtually no difference in CPU time based on the SEMI approach when the number of the control points increases

from 20 (Case I corresponding to RMSmax ≤ 4 per cent) to 54 (Case III corresponding to RMSmax ≤ 0.2 per cent). Even for Case IV which
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Figure 5. Relative errors in surface displacements ur (a) and uz (b) for Model 1 for the four SEMI Cases with different number of pre-calculation points.

corresponds to the more accurate result (i.e. RMSmax ≤ 0.03 per cent) with M = 99, our SEMI is still about 700 times faster than the direct

method.

7 D I S C U S S I O N

We have developed a rapid numerical method for the calculation of surface displacement fields due to a uniform circular loading on the surface

of the layered Cartesian half-space. High accuracy solutions can be obtained by combining a cylindrical system of vector functions with the

propagator matrix method. Instead of evaluating these solutions at every station of interest, which would be computationally expensive due to

the presence of slowly converging integrals, we perform these calculations only at a limited number of control points, and then estimate the

displacements at intervening points via interpolation. By varying the number of control points used, one can trade off computational speed

and numerical accuracy according to the needs of the application. In another paper (Bevis et al., in preparation, 2007) we will provide a variety

of examples that illustrate how the SEMI method provides a practical basis for calculating the surface response due to any spatial distribution

of surface loading by approximating the laterally varying load using large numbers of circular loading elements.
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Figure 6. Relative errors in surface displacements ur (a) and uz (b) for Model 2 for the four SEMI Cases with different number of pre-calculation points.

There are probably many ways in which the second (interpolation) stage of the SEMI method can be realized, and we presented only

one such strategy in this paper, though it is a composite strategy. The surface, that is, the r-axis, is divided into three sections (near-, middle-,

and far-fields) with certain number of pre-selected control points in each section. Due to the different character of the displacement function

in these sections, three different approaches have been developed for interpolating between the control points. For a half-space composed

of two-layers over a uniform half-space, computing the loading response at 100 000 different surface locations is achieved more than 1200

time faster if we use the SEMI approach rather than the direct method, and the RMS relative error in displacement is everywhere less than

0.2 per cent. For maximum RMS relative error less than 0.03 per cent, our SEMI approach is still about 700 times faster than the direct

method.

While detailed applications of the SEMI approach to any polygonal load is discussed in a future paper, we remark that our SEMI algorithm

has also been verified and validated by other direct codes for layered elastic half-spaces. For instance (Han 2006), for a uniform load over a

rectangle of 1000 m × 2000 m which is over a three-layered half-space, we calculated the displacements along different lines on the surface

using our SEMI with 20 × 40 circular elements and compared the results with those by Yue & Xiao (2005, private communication) using the

direct numerical integration formulation. It is found that the RMS relative error of all the surface displacements between the SEMI and Yue

& Xiao is at most 4 per cent. Furthermore, this error can be reduced if more circular elements are used (Han 2006).
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Figure 7. RMS relative errors of surface displacements ur and uz versus number of pre-calculation points for Model 1.

Table 4. Comparison of CPU times between direct and SEMI methods.

500 points 1000 points 10 000 points 100 000 points

Model 1 Direct 24s 48s 8m6s 80m37s

SEMI I <1s <1s 1s 3s

II <1s <1s 1s 3s

III <2s <2s 2s 4s

IV <4s <4s 4s 7s

Model 2 Direct 25s 51s 8m32s 84m37s

SEMI I <1s <1s 1s 3s

II <1s 1s 2s 3s

III <2s 2s 3s 4s

IV <4s 4s 5s 7s

Computer configuration: Dell Workstation PWS650, Xeon CPU 3.06 GHz, 2.0GB RAM.
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A P P E N D I X A

(1) The elements of the solution matrix [Z(z)] in each layer:

Z11 = c1eλz ; Z12 = c1e−λz ; Z13 =
(

c2

λ
+ c1z

)
eλz ; Z14 =

(
− c2

λ
+ c1z

)
e−λz,

Z21 = c1eλz ; Z22 = −c1e−λz ; Z23 =
(

c3

λ
+ c1z

)
eλz ; Z24 =

(
c3

λ
− c1z

)
e−λz,

Z31 = eλz ; Z32 = −e−λz ; Z33 =
(

− 1

λ
+ z

)
eλz ; Z34 =

(
− 1

λ
− z

)
e−λz,

Z41 = eλz ; Z42 = e−λz ; Z43 = zeλz ; Z44 = ze−λz, (A1)

where ci (i = 1, 2, 3) are the material coefficients in the layer and are related to the Young’s modulus E and Poisson’s ratio ν as

c1 = 1 + ν

E
= 1

2c44

c2 = −2(1 + ν)(1 − ν)

E
= −(1 − ν)

c44

c3 = (1 + ν)(1 − 2ν)

E
= (1 − 2ν)

2c44

.

(A2)

(2) The solution matrix [ZN(z)] in each layer is

[Z N (z)] =
[

eλz e−λz

c44eλz −c44e−λz

]
. (A3)

(3) The propagator matrix [ak] in layer k can be expressed as

[ak] = −
(

1

c2

)
[bk], (A4)

where the elements of the matrix [bk] are (omitting the subscript k)

b11 = b33 = −c2 cosh(λh) − λhc1 sinh(λh)

b12 = −b43 = −(c1 + c2) sinh(λh) − λhc1 cosh(λh)

b13 = c1(c1 + 2c2) sinh(λh) + λhc2
1 cosh(λh)

b14 = −b23 = λhc2
1 sinh(λh)

b21 = −b34 = c3 sinh(λh) + λhc1 cosh(λh)

b22 = b44 = (c1 + c3) cosh(λh) + λhc1 sinh(λh)

b24 = −c1(c1 + 2c3) sinh(λh) − λhc2
1 cosh(λh)

b31 = − sinh(λh) + λh cosh(λh)

b32 = −b41 = λh sinh(λh)

b42 = − sinh(λh) − λh cosh(λh)

. (A5)

(4) The propagator matrix [aN
k ] in layer k can be expressed as (omitting the subscript k)

[aN
k ] =

[
cosh(λh) − sinh(λh)/c44

−c44 sinh(λh) cosh(λh)

]
. (A6)
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