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Abstract

This paper analyzes the dynamic magnetoelectroelastic behavior induced by a penny-shaped crack in a magnetoelectro-
elastic layer subjected to prescribed stress or prescribed displacement at the layer surfaces. Two kinds of crack surface con-
ditions, i.e., magnetoelectrically impermeable and permeable cracks, are adopted. The Laplace and Hankel transform
techniques are employed to reduce the problem to Fredholm integral equations. Field intensity factors are obtained
and discussed. Numerical results of the crack opening displacement (COD) intensity factors are presented and the effects
of magnetoelectromechanical loadings, crack surface conditions and crack configuration on crack propagation and growth
are examined. The results indicate that among others, the fracture behaviors of magnetoelectroelastic materials are affected
by the sizes and directions of the prescribed magnetic and/or electric fields, and the effects are strongly dependent on the
elastic boundary conditions.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Magnetoelectroelastic layer; Penny-shaped crack; Impact; COD intensity factor; Magnetoelectrically impermeable (permeable)
crack; Hankel transform; Laplace transform

1. Introduction

Materials possessing magnetoelectroelastic coupling effects have found increasing applications in engineer-
ing structures, particularly in smart materials/intelligent structures. The effects of magnetoelectromechanical
coupling have been observed in single-phase materials where simultaneous magnetic and electric ordering co-
exists, and in two-phase composites where the participating phases are piezoelectric and piezomagnetic (Ave-
llaneda and Harshe, 1994; Benveniste, 1995; Harshe et al., 1993; Huang and Kuo, 1997; Kirchner and Alshits,
1996; Li and Dunn, 1998; Nan, 1994). In recent years, an area of increasing interest is the fracture mechanics
of magnetoelectroelastic materials, which combine the ferromagnetic and ferroelectric phases, and most of the
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achievements are made on anti-plane problems (Zhou et al., 2004; Hu et al., 2006; Wang et al., 2006; Li and
Kardomateas, 2006) and two dimensional in-plane problems (Song and Sih, 2003; Gao et al., 2003; Tian and
Gabbert, 2004; Sih and Yu, 2005; Soh and Liu, 2005; Tian and Gabbert, 2005; Tian and Rajapakse, 2005;
Chue and Liu, 2005; Wang and Mai, 2007) under static deformation assumption. However, to date, the anal-
ysis of dynamic fracture problems of magnetoelectroelastic materials is very limited (Du et al., 2004; Feng and
Su, 2006; Su et al., 2007), not to mention that, all the progresses have been made only on anti-plane problems.

On the other hand, more recently, the penny-shaped crack in a magnetoelectroelastic material has been
considered. For example, Zhao et al. (2006) analyzed a penny-shaped crack in a magnetoelectroelastic med-
ium. Niraula and Wang (2006) derived an exact closed-form solution for a penny-shaped crack in a magneto-
electrothermoelastic material in a temperature field. However, all of the studies considered only static
problems and infinite magnetoelectroelastic body. To the best of our knowledge, the penny-shaped crack
problems under dynamic loads in the coupled magnetoelectroelastic material have not been addressed yet,
especially for a finite magnetoelectroelastic body.

In this paper, the transient response of a penny-shaped crack embedded in a magnetoelectroelastic layer of
finite thickness is considered. Two impact cases are studied, one corresponding to prescribed stress at the layer
surfaces and the other to prescribed displacement. The crack surface is assumed magnetoelectrically imperme-
able or permeable. By means of the Laplace and Hankel transform techniques, the problem is reduced to Fred-
holm integral equations with respect to unknown auxiliary functions in the Laplace domain. Field intensity
factors are obtained and discussed in detail. Numerical calculations are carried out and the effects of both
applied magnetic and electric fields on the COD intensity factors are presented graphically for various loading
and crack surface cases.

2. Statement of the problem

Consider a class of axisymmetric problems of a transversely isotropic magnetroelectroelastic layer of thick-
ness 2h with the poling direction along the z-axis and the isotropic plane as the xy-plane. The constitutive
equations within the framework of the theory of linear magnetoelectroelastic medium take the form
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where the field quantities are functions of r and z, independent of angle h; ur and uz are radial and axial com-
ponents of elastic displacements; / and w are electric potential and magnetic potential; rij, Di and Bi are stres-
ses, electric displacements and magnetic inductions; cij, eij, fij and gij are elastic, piezoelectric, piezomagnetic
and magnetoelectric constants; eij and lij are dielectric permittivities and magnetic permeabilities.

In the absence of body forces, electric and magnetic charge densities, stresses, electric displacements and
magnetic inductions satisfy the following equations:
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where q is the material density and t denotes time.
Substituting the constitutive Eq. (1) into the above equations yields the basic governing equations for the

elastic displacements ur and uz, electric potential /, and magnetic potential w as follows
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In what follows, special attention is focused on determining magnetoelectroelastic behaviors of a cracked
transversely isotropic magnetoelectroelastic layer under magnetoelectromechanical impact loadings. It is
assumed that a flat penny-shaped crack of radius a perpendicular to the poling axis is situated at the mid-plane
of the layer and occupies the region r 6 a, z = 0, as shown in Fig. 1. For convenience, two possible cases of
magnetoelectromechanical loadings applied to the layer surfaces are considered: one corresponding to the pre-
scribed impacts of elastic stress, electric field and magnetic field, and the other to the prescribed impacts of
elastic displacement, electric potential and magnetic potential. In other words,

Case A: rzzðr;�h; tÞ ¼ r0HðtÞ; urðr;�h; tÞ ¼ 0; r <1; ð4aÞ
Ezðr;�h; tÞ ¼ E0HðtÞ;H zðr;�h; tÞ ¼ H 0HðtÞ; r <1; ð4bÞ

y 

x

z

a

2h poling direction 
h

Fig. 1. Geometry of a magnetoelectroelastic layer with a horizontal, central, and penny-shaped crack.
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Case B: uzðr;�h; tÞ ¼ �uhHðtÞ; rrzðr;�h; tÞ ¼ 0; r <1; ð5aÞ
/ðr;�h; tÞ ¼ �/hHðtÞ;wðr;�h; tÞ ¼ �whHðtÞ; r <1; ð5bÞ

where r0, uh, E0, /h, B0 and wh are given constants, H(t) is the Heaviside function.
In this study, two kinds of magnetoelectric crack surface conditions are adopted, i.e., magnetoelectrically

impermeable and permeable. For simplicity, they are identically expressed as

rzzðr; 0; tÞ ¼ 0; rzrðr; 0; tÞ ¼ 0; Dzðr; 0; tÞ ¼ d0ðtÞ; Bzðr; 0; tÞ ¼ b0ðtÞ; r < a; ð6Þ
where for the magnetoelectrically impermeable crack case, both d0 and b0 vanish, whilst for the corresponding
permeable case, both d0 and b0 are unknown to be determined.

3. Magnetoelectrically impermeable cracks

3.1. Derivation of Fredholm integral equations

Because of the symmetry of the problem, it is sufficient to consider the upper-half space of the penny-
shaped crack. By introducing the Laplace transform, the boundary conditions in Laplace domain can be
expressed as

Case A: r�zzðr; h; pÞ ¼
r0

p
; u�r ðr; h; pÞ ¼ 0; E�z ðr; h; pÞ ¼
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p
; H �z ðr; h; pÞ ¼

H 0

p
; r <1; ð7Þ
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p
; r�rzðr; h; pÞ ¼ 0; /�ðr; h; pÞ ¼ �/h

p
; w�ðr; h; pÞ ¼ �wh

p
; r <1 ð8Þ

on the upper surface of the layer, and

r�zzðr; 0; pÞ ¼ 0; r�zrðr; 0; pÞ ¼ 0; D�z ðr; 0; pÞ ¼ d�0ðpÞ; B�z ðr; 0; pÞ ¼ b�0ðpÞ; r < a; ð9Þ
u�z ðr; 0; pÞ ¼ 0; r�zrðr; 0; pÞ ¼ 0; /�ðr; 0; pÞ ¼ 0; w�ðr; 0; pÞ ¼ 0; r P a ð10Þ

on the z = 0 plane (i.e., the crack plane). We remark that for the magneoelectrically impermeable crack, both
d�0ðpÞ and b�0ðpÞ vanish.

By further introducing the Hankel transform and considering the boundary conditions in Eq. (7) and/or
(8), the general expressions for the elastic displacements, electric potential and magnetic potential in terms
of unknown functions Aj and Bj (j = 1, 2, 3, 4) in the Laplace domain can be found as follows:
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where cj (j = 1, 2, 3, 4) and gij(i = 1, 2, 3, j = 1, 2, 3, 4) are material constants dependent on both the Laplace
and Hankel transform parameters. Other constants a0, b0 and c0 can easily be obtained from Eqs. (7) and (8)
as

a0 ¼ ðr0 þ e33E0 þ f33H 0Þ=c33; b0 ¼ E0; c0 ¼ H 0 ð12Þ

for Case A, and

a0 ¼ uh=h; b0 ¼ /h=h; c0 ¼ wh=h ð13Þ
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for Case B.
Substituting Eq. (11) into Eq. (3), it is found that cj satisfies the following characteristic equation:

detðMÞ ¼ 0; ð14Þ

and that gij(p/n) are known constants satisfying the following relations:
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It should be pointed out that Eq. (14) has eight roots for given material constants together with the Laplace
and Hankel transform parameters, and that if c(p/n) is a root, �c(p/n) is also a root of the equation. In other
words, only four of them are independent. Thus, in this paper, cj(p/n) are chosen such that Re(cj) are larger
than zero.

From the constitutive equations, the expressions for the stresses, electric displacement and magnetic induc-
tion in terms of Aj and Bj in the Laplace domain can also be obtained. They are
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where

b1jðp=nÞ ¼ ½c33g1jðp=nÞ þ e33g2jðp=nÞ þ f33g3jðp=nÞ�c2
j ðp=nÞ � c13; ð18aÞ

b2jðp=nÞ ¼ ½c44ð1þ g1jðp=nÞÞ þ e15g2jðp=nÞ þ f15g3jðp=nÞ�cjðp=nÞ; ð18bÞ

b3jðp=nÞ ¼ ðe33g1jðp=nÞ � e33g2jðp=nÞ � g33g3jðp=nÞÞc2
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Also in Eq. (17),

�r0 ¼ r0; ð19aÞ
�D0 ¼ e33E0 þ g33H 0 þ e33ðr0 þ e33E0 þ f33H 0Þ=c33; ð19bÞ
�B0 ¼ g33E0 þ l33H 0 þ f33ðr0 þ e33E0 þ f33H 0Þ=c33 ð19cÞ

for Case A, and

�r0 ¼ c33uh=h� e33/h=h� f33wh=h; ð20aÞ
�D0 ¼ e33uh=hþ e33/h=hþ g33wh=h; ð20bÞ
�B0 ¼ f33uh=hþ g33/h=hþ l33wh=h ð20cÞ
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for Case B.
In fact, from the basic fracture mechanics, the problem considered here is equivalent to the one where

��r0HðtÞ;��D0HðtÞ and ��B0HðtÞ are directly applied on the crack surfaces, and all the quantities on the
left-hand sides of Eq. (4) for Case A and Eq. (5) for Case B are equal to zero. Thus, for convenience, in this
study, ��r0;��D0 and ��B0 are called, respectively, as mechanical, electrical and magnetic loadings applied on
the crack surfaces.

3.1.1. Case A

We first consider Case A. For convenience, we denote the components of stress, electric displacement and
magnetic induction on the crack plane (z = 0) as r�zzðr; pÞ ¼ r�zzðr; 0; pÞ, D�z ðr; pÞ ¼ D�z ðr; 0; pÞ,
B�z ðr; pÞ ¼ B�z ðr; 0; pÞ, respectively. Similarly, the components of the elastic displacement, electric potential
and magnetic potential on the crack plane are denoted as u�z ðr; pÞ, /*(r,p) and w*(r,p), respectively.

Substituting Eqs. (17a), (11a), (11c) and (11d) into Eq. (7) leads to

�
X4

j¼1

Z 1

0

b1jn½Ajðn; pÞ sinhðcjnhÞ þ Bjðn; pÞ coshðcjnhÞ�J 0ðnrÞdn ¼ 0; ð21aÞ

X4

j¼1

Z 1

0

½Ajðn; pÞ sinhðcjnhÞ þ Bjðn; pÞ coshðcjnhÞ�J 1ðnrÞdn ¼ 0; ð21bÞ

�
X4

j¼1

Z 1

0

g2jc
2
j n½Ajðn; pÞ sinhðcjnhÞ þ Bjðn; pÞ coshðcjnhÞ�J 0ðnrÞdn ¼ 0; ð21cÞ

�
X4

j¼1

Z 1

0

g3jc
2
j n½Ajðn; pÞ sinhðcjnhÞ þ Bjðn; pÞ coshðcjnhÞ�J 0ðnrÞdn ¼ 0: ð21dÞ

It is easily verified that the system has a unique solution

Bjðn; pÞ ¼ �Ajðn; pÞ tanhðcjnhÞ; j ¼ 1; 2; 3; 4: ð22Þ

On the other hand, from Eqs. (11b), (11c) and (11d), the displacement, electric potential and magnetic
potential on the crack plane can be written as

u�z ðr; pÞ ¼ �
X4

j¼1

Z 1

0

g1jcjAjðn; pÞJ 0ðnrÞdn; ð23aÞ

/�ðr; pÞ ¼ �
X4

j¼1

Z 1

0

g2jcjAjðn; pÞJ 0ðnrÞdn; ð23bÞ

w�ðr; pÞ ¼ �
X4

j¼1

Z 1

0

g3jcjAjðn; pÞJ 0ðnrÞdn: ð23cÞ

To transform the mixed boundary value problem into integral equations, three new unknown functions
U(r,p), U(r,p) and W (r,p) are introduced, which satisfy the following equations:

X4

j¼1

g1jcjAjðn; pÞ ¼ �
Z a

0

Uðs; pÞ sinðnsÞds; ð24aÞ

X4

j¼1

g2jcjAjðn; pÞ ¼ �
Z a

0

Uðs; pÞ sinðnsÞds; ð24bÞ

X4

j¼1

g3jcjAjðn; pÞ ¼ �
Z a

0

Wðs; pÞ sinðnsÞds: ð24cÞ
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Substituting Eq. (24) into Eq. (23), recalling the following known result (Abramowitz and Stegun, 1965)Z 1

0

J 0ðnrÞ sinðnsÞdn ¼ Hðs� rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2
p ; ð25Þ

we find that the boundary conditions in Eqs. (101), (103) and (104) are automatically satisfied. Moreover, the
displacement, electric potential and magnetic potential on the crack plane can be expressed in terms of the
introduced unknown functions as

u�z ðr; pÞ ¼
Z a

r

Uðs; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2
p ds; /�ðr; pÞ ¼

Z a

r

Uðs; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2
p ds; w�ðr; pÞ ¼

Z a

r

Wðs; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2
p ds; r < a: ð26Þ

Next, Eq. (24) in connection with the application of Eqs. (92), (102) and (17b) form a system of linear alge-
braic equations for Aj(j = 1, 2, 3, 4), from which we obtain

Ajðn; pÞ ¼ �a1jðp=nÞ
Z a

0

Uðs; pÞ sinðnsÞds� a2jðp=nÞ
Z a

0

Uðs; pÞ sinðnsÞds� a3jðp=nÞ
Z a

0

WðsÞ sinðnsÞds;

ð27Þ

where

aij ¼ �Qij= detðQÞ; i ¼ 1; 2; 3; j ¼ 1; 2; 3; 4; ð28Þ

and Q is a 4 · 4 matrix with its elements being

Qijðp=nÞ ¼ gijðp=nÞcjðp=nÞ; i ¼ 1; 2; 3; j ¼ 1; 2; 3; 4; ð29aÞ

X4jðp=nÞ ¼ b2jðp=nÞ; j ¼ 1; 2; 3; 4; ð29bÞ

and �Qijðp=nÞ are the corresponding algebraic cofactors of Qij. Inserting Eq. (27) into Eq. (22) and then into
Eqs. (17a), (17c) and (17d) yields

r�zzðr; pÞ ¼ �
Z a

0

Z 1

0

½m_11Uðs; pÞ þ m
_

12Uðs; pÞ þ m
_

13Wðs; pÞ�n sinðnsÞJ 0ðnrÞdndsþ �r0=p; ð30aÞ

D�z ðr; pÞ ¼ �
Z a

0

Z 1

0

½m_21Uðs; pÞ þ m
_

22Uðs; pÞ þ m
_

23Wðs; pÞ�n sinðnsÞJ 0ðnrÞdndsþ �D0=p; ð30bÞ

B�z ðr; pÞ ¼ �
Z a

0

Z 1

0

½m_31Uðs; pÞ þ m
_

32Uðs; pÞ þ m
_

33Wðs; pÞ�n sinðnsÞJ 0ðnrÞdndsþ �B0=p; ð30cÞ

where

m
_

1lðn; pÞ ¼
X4

j¼1

b1jðp=nÞaljðp=nÞ tanhðcjnhÞ; l ¼ 1; 2; 3; ð31aÞ

m
_

klðn; pÞ ¼
X4

j¼1

bðkþ1Þjðp=nÞaljðp=nÞ tanhðcjnhÞ; k ¼ 2; 3; l ¼ 1; 2; 3: ð31bÞ

Making use of the boundary conditions in Eqs. (91), (93), (94), we further obtain the following equations:Z a

0

Z 1

0

½m_11Uðs; pÞ þ m
_

12Uðs; pÞ þ m
_

13Wðs; pÞ�n sinðnsÞJ 0ðnrÞdnds ¼ �r0

p
; ð32aÞZ a

0

Z 1

0

½m_21Uðs; pÞ þ m
_

22Uðs; pÞ þ m
_

23Wðs; pÞ�n sinðnsÞJ 0ðnrÞdnds ¼
�D0

p
; ð32bÞZ a

0

Z 1

0

½m_31Uðs; pÞ þ m
_

32Uðs; pÞ þ m
_

33Wðs; pÞ�n sinðnsÞJ 0ðnrÞdnds ¼
�B0

p
: ð32cÞ

Multiplying r=ðx2 � r2Þ1=2 to two sides of Eqs. (32a), (32b) and (32c), integrating with respect to r from 0 to
x(x < a), respectively, and using the following identity (Abramowitz and Stegun, 1965)
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Z x

0

rJ 0ðnrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p dr ¼ sinðnxÞ

n
; ð33Þ

we finally obtainZ a

0

Z 1

0

½m_11Uðs; pÞ þ m
_

12Uðs; pÞ þ m
_

13Wðs; pÞ� sinðnsÞ sinðnxÞdnds ¼ �r0

p
x; x < a; ð34aÞ

Z a

0

Z 1

0

½m_21Uðs; pÞ þ m
_

22Uðs; pÞ þ m
_

23Wðs; pÞ� sinðnsÞ sinðnxÞdnds ¼
�D0

p
x; x < a; ð34bÞ

Z a

0

Z 1

0

½m_31Uðs; pÞ þ m
_

32Uðs; pÞ þ m
_

33Wðs; pÞ� sinðnsÞ sinðnxÞdnds ¼
�B0

p
x; x < a: ð34cÞ

Noting that

lim
n!1

m
_

klðn; pÞ ¼ �mkl; k ¼ 1; 2; 3; l ¼ 1; 2; 3; ð35Þ

and using the relation (Abramowitz and Stegun, 1965)Z 1

0

sinðnsÞ sinðnxÞdn ¼ p
2

dðs� xÞ; ð36Þ

with d(•) being the Dirac delta function, Eq. (34) can be rewritten as

�m11Uðx; pÞ þ �m12Uðx; pÞ þ �m13Wðx; pÞ þ
2

p

Z a

0

½RA
11ðs; x; pÞUðs; pÞ þ RA

12ðs; x; pÞUðs; pÞ

þ RA
13ðs; x; pÞWðs; pÞ�ds ¼ 2�r0

pp
x; x < a; ð37aÞ

�m21Uðx; pÞ þ �m22Uðx; pÞ þ �m23Wðx; pÞ þ
2

p

Z a

0

½RA
21ðs; x; pÞUðs; pÞ þ RA

22ðs; x; pÞUðs; pÞ

þ RA
23ðs; x; pÞWðs; pÞ�ds ¼ 2�D0

pp
x; x < a; ð37bÞ

�m31Uðx; pÞ þ �m32Uðx; pÞ þ �m33Wðx; pÞ þ
2

p

Z a

0

½RA
31ðs; x; pÞUðs; pÞ þ RA

32ðs; x; pÞUðs; pÞ

þ RA
33ðs; x; pÞWðs; pÞ�ds ¼ 2�B0

pp
x; x < a; ð37cÞ

where

RA
klðs; x; pÞ ¼

Z 1

0

ðm_kl � �mklÞ sinðntÞ sinðnxÞdn; k ¼ 1; 2; 3; l ¼ 1; 2; 3: ð38Þ

Hence, a system of coupled Fredholm integral equations for U(x,p), U(x,p) and W(x,p) has been derived.
Since the involved integrands in RA

klðs; x; pÞ decay exponentially as n!1, they are rapidly convergent and
can easily be evaluated by truncating them as finite integrals.

3.1.2. Case B

We now consider Case B. From the boundary conditions in Eq. (8), we have

Bjðn; pÞ ¼ �Ajðn; pÞ cothðcjnhÞ: ð39Þ

By an analogous treatment to the above, omitting the details, a system of coupled Fredholm integral equa-
tions for U(x,p), U(x,p) and W(x,p) in this case take the following form:
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�m11Uðx; pÞ þ �m12Uðx; pÞ þ �m13Wðx; pÞ þ
2

p

Z a

0

½RB
11ðs; x; pÞUðs; pÞ þ RB

12ðs; x; pÞUðs; pÞ

þ RB
13ðs; x; pÞWðs; pÞ�ds ¼ 2�r0

pp
x; x < a; ð40aÞ

�m21Uðx; pÞ þ �m22Uðx; pÞ þ �m23Wðx; pÞ þ
2

p

Z a

0

½RB
21ðs; x; pÞUðs; pÞ þ RB

22ðs; x; pÞUðs; pÞ

þ RB
23ðs; x; pÞWðs; pÞ�ds ¼ 2�D0

pp
x; x < a; ð40bÞ

�m31Uðx; pÞ þ �m32Uðx; pÞ þ �m33Wðx; pÞ þ
2

p

Z a

0

½RB
31ðs; x; pÞUðs; pÞ þ RB

32ðs; x; pÞUðs; pÞ

þ RB
33ðs; x; pÞWðs; pÞ�ds ¼ 2�B0

pp
x; x < a; ð40cÞ

where

RB
klðs; x; pÞ ¼

Z 1

0

ðm^kl � �mklÞ sinðnsÞ sinðnxÞdn; k ¼ 1; 2; 3; l ¼ 1; 2; 3; ð41Þ

m
^

1lðn; pÞ ¼
X4

j¼1

b1jðp=nÞaljðp=nÞ cothðcjnhÞ; l ¼ 1; 2; 3; ð42aÞ

m
^

klðn; pÞ ¼
X4

j¼1

bðkþ1Þjðp=nÞaljðp=nÞ cothðcjnhÞ; k ¼ 2; 3; l ¼ 1; 2; 3: ð42bÞ

3.2. Analysis on field intensity factors

Of interest to us is the magnetoelectroelastic behaviors induced by a penny-shaped crack, in particular in
the vicinity of the crack fronts. Generally speaking, a closed-form solution of the resulting Fredholm integral
equation for U(x,p), U(x,p) and W(x,p) seems to be impossible due to the complexity of the involved kernels.

Because the integrands in Eq. (30) for Case A and in a similar equation (omitted here) for Case B are finite
and continuous for any given values of n, the divergence of the integrals at the crack frontier must be due to
the asymptotic behavior as n!1. Carrying out the expansion for large n, and evaluating the integrals with
respect to s by parts, we can, respectively, obtain the lower-order singular terms of the stress, electric displace-
ment and magnetic induction on the crack plane. They are

r�zzðr; pÞ ¼
Z 1

0

½�m11Uða; pÞ þ �m12Uða; pÞ þ �m13Wða; pÞ� cosðnaÞJ 0ðnrÞdnþOð1Þ; ð43aÞ

D�z ðr; pÞ ¼
Z 1

0

½�m21Uða; pÞ þ �m22Uða; pÞ þ �m23Wða; pÞ� cosðnaÞJ 0ðnrÞdnþOð1Þ; ð43bÞ

B�z ðr; pÞ ¼
Z 1

0

½�m31Uða; pÞ þ �m32Uða; pÞ þ �m33Wða; pÞ� cosðnaÞJ 0ðnrÞdnþOð1Þ ð43cÞ

for both Case A and Case B.
Defining the field intensity factors in the Laplace domain as follows

K�qðpÞ ¼ lim
r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr� aÞ

p
qðr; pÞ; ð44Þ

where q(r,p) � q(r, 0,p) stands for r�zz, D�z and B�z , respectively, and also noting that (Abramowitz and Stegun,
1965)Z 1

0

cosðnaÞJ 0ðnrÞdn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2
p ; r > a; ð45Þ
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we then find that the intensity factors of stress, electric displacement and magnetic induction in the Laplace
domain can be expressed as

K�rðpÞ ¼
�m11Uða; pÞ þ �m12Uða; pÞ þ �m13Wða; pÞ

a

ffiffiffiffiffiffi
pa
p

; ð46aÞ

K�DðpÞ ¼
�m21Uða; pÞ þ �m22Uða; pÞ þ �m23Wða; pÞ

a

ffiffiffiffiffiffi
pa
p

; ð46bÞ

K�BðpÞ ¼
�m31Uða; pÞ þ �m32Uða; pÞ þ �m33Wða; pÞ

a

ffiffiffiffiffiffi
pa
p

: ð46cÞ

Similarly, in the Laplace domain, the field intensity factors associated with the crack opening displacement
u�z ðr; pÞ, electric potential /*(r,p) and magnetic potential w*(r,p) across the crack near the crack front are
defined and easily derived from Eq. (26) as

K�CODðpÞ¼
D

lim
r!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ða� rÞ

r
u�z ðr; pÞ ¼

ffiffiffiffiffiffi
pa
p Uða; pÞ

a
; ð47aÞ

K�/ðpÞ¼
D

lim
r!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ða� rÞ

r
/�ðr; pÞ ¼

ffiffiffiffiffiffi
pa
p Uða; pÞ

a
; ð47bÞ

K�wðpÞ¼
D

lim
r!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ða� rÞ

r
w�ðr; pÞ ¼

ffiffiffiffiffiffi
pa
p Wða; pÞ

a
: ð47cÞ

The intensity factors in the time domain can then be obtained by

KqðtÞ ¼
1

2pi

Z
Br

K�qðpÞeptdp; q ¼ r;D;B;COD;/;w; ð48Þ

where Br denotes Bromwich path of integration.
Eqs. (46) and (47) together with Eq. (37) or (40) indicate that all the field intensity factors depend directly

on the material constants, the thickness of the layer, and the mangnetoelectromechanical impact loadings
applied on the crack surfaces.

It should be noted that the above results can easily be reduced to those corresponding to the static case,
which in fact have not been reported before. In this case, the stress, electric displacement and magnetic induc-
tion on the crack plane become

rzzðrÞ ¼ �
Z a

0

Z 1

0

½m11UðsÞ þ m12UðsÞ þ m13WðsÞ�n sinðnsÞJ 0ðnrÞdnds; ð49aÞ

DzðrÞ ¼ �
Z a

0

Z 1

0

½m21UðsÞ þ m22UðsÞ þ m23WðsÞ�n sinðnsÞJ 0ðnrÞdnds; ð49bÞ

BzðrÞ ¼ �
Z a

0

Z 1

0

½m31UðsÞ þ m32UðsÞ þ m33WðsÞ�n sinðnsÞJ 0ðnrÞdnds; ð49cÞ

where

m1l ¼
X4

j¼1

b1jð0Þaljð0Þ tanhðcjnhÞ; l ¼ 1; 2; 3; ð50aÞ

mklðnÞ ¼
X4

j¼1

bðkþ1Þjð0Þaljð0Þ tanhðcjnhÞ; k ¼ 2; 3; l ¼ 1; 2; 3 ð50bÞ

for Case A, and

m1l ¼
X4

j¼1

b1jð0Þaljð0Þ cothðcjnhÞ; l ¼ 1; 2; 3; ð51aÞ
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mklðnÞ ¼
X4

j¼1

bðkþ1Þjð0Þaljð0Þ cothðcjnhÞ; k ¼ 2; 3; l ¼ 1; 2; 3 ð51bÞ

for Case B. Thus, the field intensity factors can finally be given as

Kr ¼
�m11UðaÞ þ �m12UðaÞ þ �m13WðaÞ

a

ffiffiffiffiffiffi
pa
p

; ð52aÞ

KD ¼
�m21UðaÞ þ �m22UðaÞ þ �m23WðaÞ

a

ffiffiffiffiffiffi
pa
p

; ð52bÞ

KB ¼
�m31UðaÞ þ �m32UðaÞ þ �m33WðaÞ

a

ffiffiffiffiffiffi
pa
p

; ð52cÞ

and

KCOD ¼
UðaÞ

a

ffiffiffiffiffiffi
pa
p

; K/ ¼
UðaÞ

a

ffiffiffiffiffiffi
pa
p

; Kw ¼
WðaÞ

a

ffiffiffiffiffiffi
pa
p

; ð53Þ

where U(x), U(x) and W(x) satisfy the following equations:

�m11UðxÞ þ �m12UðxÞ þ �m13WðxÞ þ
2

p

Z a

0

½R11ðs; xÞUðsÞ þ R12ðs; xÞUðsÞ þ R13ðs; xÞWðsÞ�ds

¼ 2�r0

p
x; x < a; ð54aÞ

�m21UðxÞ þ �m22UðxÞ þ �m23WðxÞ þ
2

p

Z a

0

½R21ðs; xÞUðsÞ þ R22ðs; xÞUðsÞ þ R23ðs; xÞWðsÞ�ds

¼ 2�D0

p
x; x < a; ð54bÞ

�m31UðxÞ þ �m32UðxÞ þ �m33WðxÞ þ
2

p

Z a

0

½R31ðs; xÞUðsÞ þ R32ðs; xÞUðsÞ þ R33ðs; xÞWðsÞ�ds

¼ 2�B0

p
x; x < a; ð54cÞ

with Rij(s,x) referring to RA
ijðs; x; 0Þ for Case A and to RB

ijðs; x; 0Þ for Case B.
Eqs. (52) and (53) together with Eqs. (54) imply that, similar to the dynamic impact problem, all the field

intensity factors under static loadings are also related to the material constants, thickness of the layer and the
magnetoelectromechanical loadings applied on the crack surfaces.

From Eq. (54), it is further observed that for the limiting case of an infinite magnetoelectroelastic space,
Rkl(s,x)! 0 follows h!1. Thus, the governing Fredholm integral equations can be transformed into a sys-
tem of linear algebraic equations, from which the unknown functions U(x), U(x) and W(x) can be solved
directly. Further substituting the obtained U(a), U(a) and W(a) into Eqs. (52) and (53) yields

Kr ¼
2

p

ffiffiffiffiffiffi
pa
p

�r0; KD ¼
2

p

ffiffiffiffiffiffi
pa
p

�D0; KB ¼
2

p

ffiffiffiffiffiffi
pa
p

�B0: ð55Þ

The results given by Eq. (55) are very simple and interesting, which shows that for an infinite magnetoelec-
troelastic medium with a magnetoelectrically impermeable penny-shaped crack, the stress, electric displace-
ment and magnetic induction intensity factors depend respectively on the mechanical loading, electric
displace and magnetic induction applied on the crack surfaces. This is quite different to the case of finite layer
even in the static case.

4. Magnetoelectrically permeable cracks

It is noted that for the magnetoelectrically permeable crack case, both electric and magnetic potentials are
continuous across the crack surfaces. Thus, by a similar method to the magnetoelectrically impermeable case,
the problem can be reduced to the following Fredhom integral equation

W.J. Feng et al. / International Journal of Solids and Structures 44 (2007) 7955–7974 7965



Author's personal copy

�m11Uðx; pÞ þ 2

p

Z a

0

R11ðs; x; pÞUðs; pÞds ¼ 2�r0

pp
x; x < a; ð56Þ

with R11(s,x,p) referring to RA
11ðs; x; pÞ for Case A and to RB

11ðs; x; pÞ for Case B. The electric displacement and
magnetic induction on the crack surfaces in the Laplace domain can be derived as

D�z ðr; pÞ ¼ �
Z a

0

Z 1

0

m̂21Uðs; pÞn sinðnsÞJ 0ðnrÞdndsþ
�D0

p
; ð57aÞ

B�z ðr; pÞ ¼ �
Z a

0

Z 1

0

m̂31Uðs; pÞn sinðnsÞJ 0ðnrÞdndsþ
�B0

p
; ð57bÞ

where

m̂21 ¼
m_

21; Case A;

m
^

21; Case B:

�
ð58Þ

The field intensity factors in the time domain can finally be expressed as

KCODðtÞ ¼
Uða; tÞ

a

ffiffiffiffiffiffi
pa
p

; K/ðtÞ ¼ 0; KwðtÞ ¼ 0; ð59aÞ

KrðtÞ ¼ �m11KCODðtÞ; KDðtÞ ¼ �m21KCODðtÞ; KBðtÞ ¼ �m31KCODðtÞ: ð59bÞ

Eq. (59) indicates that the four field intensity factors of COD, stress, electric displacement and magnetic induc-
tion are dependent on each other through material constants and thickness of the layer. This phenomenon has
been partially observed for the 2D static problem in an infinite magnetoelectroelastic medium (Gao et al.,
2003). In addition, both �D0 and �B0 have no effects on these field intensity factors. Moreover, as shown in
(59a), both electric and magnetic potential intensity factors vanish.

Similarly, further analysis on static or infinite cases can easily be carried out as well. For example, for an
infinite magnetoelectroelastic medium under static loadings, the field intensity factors can be reduced to

KCOD ¼
2

p�m11

ffiffiffiffiffiffi
pa
p

�r0; K/ ¼ 0; Kw ¼ 0; ð60aÞ

Kr ¼ �m11KCOD; KD ¼ �m21KCOD; KB ¼ �m31KCOD; ð60bÞ

which indicates that for a magnetoelectrically permeable crack embedded in an infinite magnetoelectroelastic
body, unlike the stress intensity factor, the COD intensity factor depends directly on both the material prop-
erty and the corresponding mechanical loading applied on the crack surfaces. This, in some extent, implies the
COD intensity factor could be more reasonable than stress intensity factor as a fracture parameter.

5. Numerical results

According to the classical COD fracture criterion for a three-dimensional elastic body, crack starts to grow
when the COD intensity factor exceeds the critical value under the applied loading. For a magnetoelectroelas-
tic material, not only mechanical loading but also magnetic and electrical loadings can cause a crack to open
and even to propagate. In this section, some numerical results are given to examine the effects of the crack
surface conditions, layer thickness and applied magnetic and/or electric fields on the COD intensity factors
near the crack front.

Numerical calculations are carried out for a penny-shaped crack in a BaTiO3–CoFe2O4 composite. The
density of the composite is taken as q = 5.5 · 103 kg/m3 and the other material properties are taken from
Wang and Mai (2007).

Without loss of generality, in all our numerical examples, it is assumed that r0 = 4.2 · 106 N/m2 for Case A
and rh = 4.2 · 106 N/m2 for Case B, where rh = c33 uh/h represents the average stress in the absence of both
applied magnetic and electric fields in Case B. Numerical results are plotted in Figs. 2–7, where K0 represents
the static COD intensity factor for an infinite magnetoelectroelastic solid under mechanical loading only (i.e.,
r0H(t) or r0 for Case A, rhH(t) or rh for Case B, respectively) in the case of magnetoelectrically impermeable
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crack surface. For Case A, the loading combination parameters kH and kE are determined as kH ¼ f33H 0=r0

and kE ¼ e33E0=r0, which are used to reflect the corresponding loading combinations between magnetic and
mechanical loadings, and between electrical and mechanical loadings, respectively. Similarly, in Case B, the
loading combination parameters kH ¼ f33wh=ðc33uhÞ and kE ¼ e33/h=ðc33uhÞ are respectively introduced to
reflect the loading combinations between magnetic and mechanical loadings, and between electrical and
mechanical loadings. For the impact problem, the time is normalized by cTt/a, where cT is the shear wave
velocity in magnetoelectroelastic body, i.e.,

cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c44 þ ðe11f 2

15 � 2e15f15g11 þ l11e2
15Þ=ðl11e11 � g2

11Þ½ �=q
q

: ð61Þ

The Laplace inversion is carried out by the numerical method proposed by Miller and Guy (1966), with the
detail being listed in Appendix A for the sake of easy reference. It should be pointed out that the parameters b,
d and N are selected such that the physical quantities in the time domain can be best described within a
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Fig. 2. Variation of normalized dynamic COD intensity factors with normalized time for magnetoelectrically impermeable and permeable
cracks as h/a = 2.0: (a) Case A, (b) Case B.

W.J. Feng et al. / International Journal of Solids and Structures 44 (2007) 7955–7974 7967



Author's personal copy

particular period of time, and in the present study, the optimal parameters b, d and N are selected to be 0, 250
and 9, respectively.

Fig. 2 compares the normalized dynamic KCOD between magnetoelectrically impermeable and permeable
cracks for h/a = 2.0 in the absence of magnetoelectrical loadings (i.e., kH = kE = 0). The peak values corre-
sponding to the magnetoelectrically impermeable crack are smaller than those corresponding to the permeable
crack for both Cases A and B (This phenomenon is further demonstrated in Fig. 3). There is no other distinct
difference between the two kinds of crack surface conditions. As pointed out before, for the magnetoelectri-
cally permeable crack, both magnetic and electrical loadings have no contributions to KCOD for Case A. How-
ever, it is easily seen that, different from Case A, for Case B, both the magnetic and electric fields have great
effects on the normalized KCOD, and in fact, the COD intensity factor under the applied magnetic and electri-
cal loadings can be expressed as KPer;caseB;k

COD ¼ ð1� kH � kEÞKPer;caseB;k;0
COD , where KPer;caseB;k;0

COD is the corresponding
COD intensity factor under mechanical displacement impact only.

Fig. 3 shows the effect of the layer thickness on the static KCOD. It is interesting that the COD intensity
factors for Case A and Case B tend to the ones in the corresponding infinite magnetoelectroelastic body with
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increasing h/a; on the other hand, the KCOD decreases monotonically for Case A and increases monotonically
for Case B . In addition, the KCOD is faster to approach the corresponding value in the unbounded medium for
Case A than for Case B. From Fig. 3, it is also observed that for the impermeable cracks, the normalized KCOD

in fact tends to one, which in a certain sense implies our results are correct.
Figs. 4 and 5 show the effects of the magnetic and electrical impacts on the normalized dynamic KCOD for

the magnetoelectrically impermeable crack. As shown in Fig. 4(a) and (b), within the ranges of our calculation,
both negative magnetic and electrical loadings inhibit crack propagation and growth for Case A, whilst both
positive magnetic and electrical loadings enhance crack propagation. The effect of the electrical loading on
KCOD for the magnetoelectroelastic body is in agreement with the corresponding experimental result for pie-
zoelectric ceramic (Park and Sun, 1995). However, it is found, from Fig. 5(a) and (b), that the trends are
reversed for the prescribed displacement case, i.e., both the applied positive magnetic and electric fields can
hinder crack growth, and either negative magnetic or electric field promotes crack growth. This trend was also
identified in previous research (Wang and Singh, 1997; Shindo et al., 2002; Li and Lee, 2004). Figs. 4 and 5
further indicate that both the magnetic and electrical loadings nearly have no effects on the time to reach the
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corresponding peak values of KCOD. However, by comparing Fig. 4 with Fig. 5, one can further note that the
peak value of KCOD generally appears at cTt/a � 1.50 for Case A and at cTt/a � 1.0 for Case B, which implies
that the time to reach the peak values is different for the two kinds of boundary conditions (Cases A and B).

Figs. 6 and 7 further show the effect of both magnetic and electrical loadings on the static KCOD for Case A
and Case B, respectively. Comparing Figs. 4 with 6, and/or Figs. 5 with 7, it is found that, as expected, the
dynamic KCOD indeed tends the corresponding static one. In addition, Fig. 6 also shows that for Case A,
for a fixed value of h/a, there is a negative critical value under both magnetic and electrical loadings. For a
given kE (or kH), when kH (or kE) is less than the corresponding critical value, the calculated KCOD is less than
zero. It perhaps should be explained that the crack is actually closed at this moment. Similarly, as shown in
Fig. 7, there are corresponding critical loadings for Case B as well. However, for Case B, the critical loadings
corresponding to both magnetic and electrical loadings are positive. In addition, Figs. 6(a) and 7(a) also indi-
cate that for the material considered here, the layer thickness has neglected effect on the magnetic critical load-
ings for both Case A and Case B, and the absolute-valued magnetic critical loadings are almost identical, i.e.,
kH(cr) � �2.0 for Case A and kH(cr) � 2.0 for Case B. However, different from the magnetic critical loading
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Fig. 5. Variation of normalized dynamic COD intensity factors with normalized time for magnetoelectrically impermeable cracks in Case
B as h/a = 2.0 under magnetic impacts in (a) and under electrical impacts in (b).
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case, as shown in Figs. 6(b) and 7(b), the layer thickness has significant influence on the electrical critical load-
ing. In general, observation of Figs. 4–7 suggests that except for the crack surface condition, magnetoelectro-
elastic boundary conditions also play a significant role on the crack propagation in magnetoelectroelastic
materials.

We finally point out that our formulations have been verified to be correct, and in particular, for the
reduced simple case, our solutions are the same as previously known results. For example, for the static
COD intensity factors of an electrically impermeable penny-shaped crack situated in piezoelectric ceramic
layer (PZT-5H) for Case A, i.e., at the layer surfaces, we have

rzzðr; hÞ ¼ r0; urðr; hÞ ¼ 0; Ezðr; hÞ ¼ E0; r <1: ð62Þ
The material properties of PZT-5H are listed in Li and Lee (2004). For the sake of comparison, the COD
intensity factors are normalized by K* corresponding the value of KCOD under E0 = 0. The normalized
COD intensity factor curvers are given in Fig. 8, which are the same as those in Fig. 3 of Li and Lee
(2004). This is one of the numerical examples that we used to verify our formulations.
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6. Conclusions

In this paper, a penny-shaped crack in a magnetoelectroelastic layer is investigated. Two kinds of impact
loadings, i.e., the prescribed extended stress and displacement impacts, are considered. Two kinds of crack
surface conditions, i.e., the magnetoelectrically impermeable and permeable cracks, are adopted. From our
analysis and the corresponding numerical results, the following conclusions can be drawn:

(1) The dynamic COD intensity factors exist peak values for both Case A and Case B, and both the mag-
netic and electrical impact loadings have no obvious effects on the time to reach the corresponding peak
values. However, for Case A, the normalized time of reaching the peak value is slightly larger than the
one for Case B.

(2) For the material considered here, under only mechanical loadings (i.e., r0 for Case A and rh for Case B),
the COD intensity factors of the magnetoelectrically permeable crack are generally larger than those cor-
responding to the impermeable crack for both Case A and Case B.
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(3) For the magnetoelectrically impermeable crack, according to the maximum COD criterion, for Case A,
both positive magnetic and electrical loadings always enhance the crack propagation, and both negative
magnetic and electric fields impede crack propagation. For Case B, both magnetic and electrical loadings
have quite reversed effects on the crack propagation and growth.

(4) For the magnetoelectrically permeable crack, both magnetic and electric fields have no apparent effects
on the COD intensity factors for Case A. However, for Case B, except for mechanical loading (rh), the
COD depends strongly on both the magnetic and electrical loadings. We also notice that in order to keep
the crack open, the combination loadings applied on the layer should satisfy the condition kH + kE < 1.0.

(5) For the given mechanical loadings, with increasing layer thickness, the COD intensity factors monoton-
ically decrease for Case A and monotonically increase for Case B. Finally, they all approach the limiting
values corresponding to the infinite magnetoelectroelastic body.
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Appendix A

According to Miller and Guy (1966), if the Laplace transform of the time-domain function f(t) is f*(p), then
the Laplace variable p can be evaluated at the following points

p ¼ dðbþ 1þ nÞ; n ¼ 1; 2; 	 	 	 : ðA:1Þ

If we further determine the coefficients Cm from the following set of equations:

df �ðdðbþ 1þ nÞÞ ¼
Xn

m¼0

Cmn!

ðbþ nþ 1Þðbþ nþ 2Þ 	 	 	 ðbþ nþ 1þ mÞðn� mÞ! ; ðA:2Þ

where d > 0 and b > �1.0. Then, the time-domain functionf(t)can be approximately expressed by
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f ðtÞ ¼
XN�1

m¼0

CmP ð0;bÞm ð2e�dt � 1Þ; ðA:3Þ

where P ð0;bÞm ðxÞ is a Jacobi polynomial and N is the number of terms employed.
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