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Abstract A contour integral method is developed for
computation of stress intensity and electric intensity
factors for cracks in continuously nonhomogeneous
piezoelectric body under a transient dynamic load. It is
shown that the asymptotic fields in the crack-tip vicin-
ity in a continuously nonhomogeneos medium is the
same as in a homogeneous one. A meshless method
based on the local Petrov-Galerkin approach is applied
for computation of physical fields occurring in the con-
tour integral expressions of intensity factors. A unit step
function is used as the test functions in the local weak-
form. This leads to local integral equations (LBIEs)
involving only contour-integrals on the surfaces of sub-
domains. The moving least-squares (MLS) method is
adopted for approximating the physical quantities in the
LBIEs. The accuracy of the present method for com-
puting the stress intensity factors (SIF) and electrical
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displacement intensity factors (EDIF) are discussed by
comparison with available analytical or numerical solu-
tions.
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1 Introduction

Functionally graded materials (FGMs) have demon-
strated that they have a potential to reduce the stress
concentration and increase the fracture toughness
(Suresh and Mortensen 1998; Paulino et al. 2003). Con-
sequently, the concept of FGMs can be extended to the
piezoelasticity to obtain piezoelectric materials with
high strength, high toughness, low thermal expansion
coefficient and low dielectric constant. Devices such
as actuators based on functionally graded piezoelec-
tric materials (FGPMs) were given by Zhu et al. (1995,
1999) and Han et al. (2006). The fracture of FGPMs
under a thermal load has been studied by Wang and
Noda (2001). An anti-plane crack problem is described
by relatively simpler governing equations than for in-
plane problems (Li and Weng 2002a). The problem
of a functionally piezoelectric graded material with
Yoffe-type moving crack of a constant-velocity is ana-
lyzed by Li and Weng (2002b). Recently, the in-plane
crack problem in FGPMs has been analyzed by
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Chen et al. (2003) and Ueda (2003). To the best of
the authors’ knowledge, only one paper (Chen et al.
2002) is devoted to three-dimensional (3D) electroelas-
tic fields in FGPMs.

The solution of the boundary value problems for
continuously nonhomogeneous piezoelectric solids
requires advanced numerical methods due to the high
mathematical complexity. The governing equations are
more complicated than in a homogeneous counterpart
and the electric and mechanical fields are coupled each
other. Therefore, a variety of different crack problems
in piezoelectric medium have been studied in homo-
geneous or multi-layered bodies. Pak (1990) obtained
the closed form solutions for an infinite piezoelectric
medium under an anti-plane loading by using a com-
plex variable method. Later, Park and Sun (1995)
obtained closed form solutions for all three fracture
modes for a crack in an infinite medium. They inves-
tigated the effects of the electric field on the fracture
of piezoelectric ceramics. Shindo et al. (1996, 1997)
used an integral transform method to analyze a crack
in an infinite strip. Yang and Lee (2001) applied the
same method for a penny shaped crack in a three-
dimensional piezoelectric strip under in-plane normal
loading. The dual integral equations approach used in
the above mentioned papers is restricted to problems
with a simple geometry and boundary conditions. Mod-
ern computational methods like the finite element
method (FEM) (Gruebner et al. 2003; Govorukha and
Kamlah 2004; Enderlein et al. 2005; Kuna 1998, 2006)
and the boundary element method (BEM) (Pan 1999;
Davi and Milazzo 2001; Gross et al. 2005; Garcia–
Sanchez et al. 2005, 2007; Sheng and Sze 2006) have
to be applied for general crack analyses in piezoelectric
solids.

In spite of the great success on these effective numer-
ical tools for the solution of boundary value problems
in piezoelectric solids, there is still a growing interest
in the development of new advanced methods. In recent
years, meshless formulations are becoming popular due
to their high adaptivity and low costs to prepare input
and output data for numerical analyses. A variety of
meshless methods has been proposed so far and some
of them also applied to piezoelectric problems (Ohs and
Aluru 2001; Liu et al. 2002). They can be derived either
from a weak-form formulation on the global domain or
a set of local subdomains. In the global formulation,
background cells are required for the integration of the
weak-form. In the methods based on the local weak-

form formulation no background cells are required and
therefore they are often referred to as truly meshless
methods. The meshless local Petrov-Galerkin (MLPG)
method is a fundamental base for the derivation of
many meshless formulations, since trial and test func-
tions can be chosen from different functional spaces.
Recently, the MLPG method with a Heaviside step
function as the test functions (Atluri et al. 2003, 2006;
Atluri 2004; Sladek et al. 2004) has been applied to
solve two-dimensional (2D) homogeneous piezoelec-
tric problems by the authors (Sladek et al. 2006). In the
present paper, the MLPG is extended to continuously
nonhomogeneous solids with cracks under a transient
dynamic load. The coupled governing partial differ-
ential equations are satisfied in a weak-form on small
fictitious subdomains. Nodal points are introduced and
spread on the analyzed domain and each node is sur-
rounded by a small circle for simplicity, but without
loss of generality. If the shape of subdomains has a
simple form, numerical integrations over them can be
easily carried out. The integral equations have a very
simple nonsingular form. The spatial variations of the
displacements and the electric potential are approxi-
mated by the Moving Least-Squares (MLS) scheme
(Belytschko et al. 1996; Zhu et al. 1998). After per-
forming the spatial integrations, a system of linear alge-
braic equations for unknown nodal values is obtained.
The boundary conditions on the global boundary are
satisfied by the collocation of the MLS-approximation
expressions for the displacements and the electric poten-
tial at the boundary nodal points. A contour integral
method is developed for the computation of the stress
intensity and electric intensity factors for cracks in con-
tinuously nonhomogeneous piezoelectric solids under
a transient dynamic load. It is shown that the asymptotic
fields in the crack tip vicinity in a continuously non-
homogeneos medium is the same as in a homogeneous
one.

2 Asymptotic fields in the crack tip vicinity
in FGM

The governing equations for continuously nonhomo-
geneous piezoelectric solids are given by the equations
of motion for the mechanical displacements and by the
first Maxwell equation for the vector of electric dis-
placements (Parton and Kudryavtsev 1988)

σi j, j + Xi = ρüi , (1)
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D j, j − R = 0, (2)

where üi , σi j , Di , Xi , R and ρ denote the acceler-
ation, stress tensor, electric displacement, body force
vector, volume density of free charges and mass den-
sity, respectively.

The constitutive relations represent the coupling of
the mechanical and the electrical fields. They can be
obtained as derivatives of the electric enthalpy density
W = W (εi j , Ei , xi ) (Parton and Kudryavtsev 1988) in
the following manner

W (εi j , Ei , x) = 1

2
ci jkl(x)εi j (x)εkl(x)

−eikl(x)Ei (x)εkl(x)

−1

2
hi j (x)Ei (x)E j (x), (3)

σi j (x) = ∂W

∂εi j
= ci jkl(x)εkl(x)− eki j (x)Ek(x), (4)

D j (x) = − ∂W

∂E j
= e jkl(x)εkl(x)+ h jk(x)Ek(x), (5)

where ci jkl(x), e jkl(x)and h jk(x)are the elastic, piezo-
electric and dielectric material tensors in a continuously
nonhomogeneous piezoelectric medium, respectively.
The strain tensor εi j and the electric field vector E j are
related to the displacements ui and the electric potential
ψ by

εi j = 1

2

(
ui, j + u j,i

)
, (6)

E j = −ψ, j . (7)

In this analysis, we assume that the piezoelectric solids
are transversely isotropic with ε33 = ε31 = ε32 =
E3 = 0 (i.e., we apply the plane strain conditions). In
such a case, the constitutive Eqs. 4 and 5 are reduced
to (Sheng and Sze 2006)
⎡

⎣
σ11

σ22

σ12

⎤

⎦ =
⎡

⎣
c11 c12 0
c12 c22 0
0 0 c44

⎤

⎦

⎡

⎣
ε11

ε22

2ε12

⎤

⎦−
⎡

⎣
0 e21

0 e22

e15 0

⎤

⎦

×
[

E1

E2

]
= C(x)

⎡

⎣
ε11

ε22

2ε12

⎤

⎦− L(x)
[

E1

E2

]
,

(8)

[
D1

D2

]
=
[

0 0 e15

e21 e22 0

]⎡

⎣
ε11

ε22

2ε12

⎤

⎦+
[

h11 0
0 h22

]

×
[

E1

E2

]
= G(x)

⎡

⎣
ε11

ε22

2ε12

⎤

⎦+ H(x)
[

E1

E2

]
.(9)

Let us extract the crack tip values of the material
parameters as

ci jkl(x) = c0
i jkl + c̃i jkl(x),

eki j (x) = e0
ki j + ẽki j (x),

hi j (x) = h0
i j + h̃i j (x). (10)

Then, the perturbations, denoted by wave, behave like
O(r), where r is the distance of the observation point x
from the crack tip.

The governing equations involve the gradients of
stresses and electrical displacements which are given
in a medium with continuously varying material prop-
erties as

σi j, j = ci jkluk,l j − eki j Ek, j + ci jkl, j uk,l − eki j, j Ek,

D j, j = e jkluk,l j + h ji Ei, j + e jkl, j uk,l + h ji, j Ei .

(11)

For analyzing the asymptotic fields in the crack tip
vicinity, the body forces and volume charges are
assumed to be zero. Utilizing Eq. 10 in a quasi-static
case, one obtains from (1) and (2)

c0
i jkluk,l j− e0

ki j Ek, j + c̃i jkluk,l j − ẽki j Ek, j

+ci jkl, j uk,l − eki j, j Ek = 0, (12)

e0
ikluk,l j +h0

j i Ei, j + ẽikluk,l j + h̃ j i Ei, j

+e jkl, j uk,l + h ji, j Ei = 0. (13)

Separation of variables method in polar coordinate sys-
tem is appropriate to solve Eqs. 12 and 13. Our aim is to
show that the asymptotic fields in continuously nonho-
mogeneous medium are the same as in a homogeneous
one. For this purpose we assume that in the near vicin-
ity of the crack tip, the mechanical displacement vari-
ation with the radial coordinate as ui ∼ rλ, where λ is
an unspecified positive parameter. From the governing
Eq. 2 and the constitutive Eq. 5, one can find directly
that the electric field behaves likeEi ∼ rλ−1. Then,
taking into account the asymptotic behaviour of the
material parameters in continuously non-homogeneous
medium in accordance with Eq. 10, we can rewrite Eqs.
12 and 13 into the form

c0
i jkluk,l j − e0

ki j Ek, j + O(rλ−1) = 0, (14)

e0
ikluk,l j + h0

j i Ei, j + O(rλ−1) = 0. (15)
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Thus, the leading singularity is determined by the fol-
lowing equations

c0
i jkluk,l j − e0

ki j Ek, j = 0, (16)

e0
ikluk,l j + h0

j i Ei, j = 0, (17)

which are valid for a homogeneous body with material
constants given by the crack tip values of the corre-
sponding material parameters in the considered nonho-
mogeneous medium. Similar approach has been used
by Jin and Noda (1994) to show the dominant crack-tip
singularity in a continuously nonhomogeneous body
in elasticity. The nature of the stress singularity is pre-
cisely the same as well-known form applicable to homo-
geneous materials (Eischen 1987).

For cracks in homogeneous piezoelectric media the
asymptotic behaviour of the field quantities has been
given by Sosa (1991) and Pak (1992). If polar coordi-
nates (r, θ)with the origin at the crack tip are used, the
electromechanical fields can be written as

σi j (r, θ) = 1√
2πr

4∑

N=1

KN f N
i j (θ),

(18)

Di (r, θ) = 1√
2πr

4∑

N=1

KN gN
i (θ)

ui (r, θ) =
√

2r

π

4∑

N=1

KN d N
i (θ),

(19)

ψ(r, θ) =
√

2r

π

4∑

N=1

KNν
N (θ),

where K I , K I I and K I I I denote the well-known
mechanical stress intensity factors (SIF) and K I V is
the electrical displacement intensity factor (EDIF). The
angular functions f N

i j (θ), gN
i (θ), d N

i (θ) and νN (θ) are
dependent on material properties only and given by

f N
i1 = −

4∑

α=1

Re

{
MiαNαN pα√

cos θ + pα sin θ

}
,

f N
i2 =

4∑

α=1

Re

{
MiαNαN√

cos θ + pα sin θ

}
,

gN
1 = −

4∑

α=1

Re

{
M4αNαN pα√

cos θ + pα sin θ

}
,

gN
2 =

4∑

α=1

Re

{
M4αNαN√

cos θ + pα sin θ

}
,

d N
i =

4∑

α=1

Re
{

AiαNαN
√

cos θ + pα sin θ
}
,

νN =
4∑

α=1

Re
{

A4αNαN
√

cos θ + pα sin θ
}
,

where pαare eigenvalues of the characteristic equations
for an anisotropic body and the matrices Aiα , Miαand
NαN are defined in the work (Park and Sun 1995). The
asymptotic expressions (18) and (19) are used in the
next paragraph as auxiliary fields. From Eq. 19 one can
derive expression for the mode-I SIF,K I , in terms of
the near-field displacement and the electrical potential
(Ricoeur and Kuna 2003)

K I = lim
r→0

√
π

2r

(
cT e2

cT κ + e2 u2 + cT κ

cT κ + e2ψ

)
, (20)

where cT , e and κ are the effective material constants
of the simplified Irwin matrix (Kuna 2006)

YM N = −
4∑

α=1

Re {AMαNαN }.

3 Evaluation of the intensity factors in FGM

The gradient of the electric enthalpy density (3) is given
as

W,m (εi j , En, xi ) = ∂W

∂εi j

∂εi j

∂xm
+ ∂W

∂En

∂En

∂xm

+
(
∂W

∂xm

)

exp l
, (21)

where the term for the “explicit” derivative of the
enthalpy density for non-homogeneous materials
becomes
(
∂W

∂xm

)

exp l
= 1

2
ci jkl,mεi jεkl − eikl,m Eiεkl

−1

2
hi j,m Ei E j . (22)

Then, utilizing Eqs. 4, 5 and 6, the gradient of the strain
energy density can be rewritten into the form

W,m = (σi j ui,m
)
, j −σi j, j ui,m − Dn En,m

+ (W,m)exp l . (23)

Bearing in mind Eq. 7, one can write the third term in
Eq. 23 as

Dn En,m = Dn Em,n = (Dn Em),n − Dn,n Em .
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Fig. 1 Integration paths and coordinate definitions

Then, the gradient of the electric enthalpy density is
given as
(
Wδ jm − σi j ui,m − D j Em

)
, j = (Xi − ρüi ) ui,m

−REm + (W,m)exp l . (24)

An integral form of Eq. 24 may be obtained upon appli-
cation of the divergence theorem. If  is a regular
bounded region enclosed by a surface � whose unit
outward normal vector is n, it follows that
∫

�

(
Wδ jm − σi j ui,m − D j Em

)
n j d�

=
∫



(Xi − ρüi ) ui,md−
∫



REmd

+
∫



(W,m)exp l d. (25)

The integral identity (25) is valid in a region where no
field irregularities prevail. In the presence of a crack, the
stresses at the crack-tip are singular and the displace-
ments are discontinuous across both crack-surfaces.
Therefore, a cut-off along the crack with a small region
at the vicinity of a crack-tipεhas to be excluded. This
region is surrounded by �ε as shown in Fig. 1.

The global Cartesian coordinate system is defined
in such a way that the principal axes of the material
orthotropy are aligned with the global coordinates. All
fieldsσi j , ui , D j and E j are regular in the region−ε .
The contour � = �0 + �+

c − �ε + �−
c is a closed

integration path in the counter-clockwise direction. The
radius ε is considered to be very small and shrunk to
zero in the limiting process. The crack surfaces �+

c
and �−

c are assumed to be traction-free and electrically

insulating, i.e., ti = σi j n j = 0 and Dn = 0, and the
crack is parallel to the x1-axis of the local Cartesian
coordinate system. Then, Eq. 25 can be written as

lim
ε→0

∫

�ε

(
Wδ jm − σi j ui,m − D j Em

)
n j d�

=
∫

�0

(
Wδ jm − σi j ui,m − D j Em

)
n j d�

+
∫

�+
c

[
W + − W −]δ2md�

− lim
ε→0

∫

−ε
(Xi − ρüi ) ui,md

+ lim
ε→0

∫

−ε
REmd

− lim
ε→0

∫

−ε
(W,m)exp l d. (26)

The left hand side of Eq. 26 is identical to the definition
of the Ĵ -integral (Pak and Herrmann 1986) for m = 1,
which has the following form

J1 =
∫

�0

(
Wδ j1 − σi j ui,1 − D j E1

)
n j d�

− lim
ε→0

∫

−ε
(Xi − ρüi ) ui,1d

+ lim
ε→0

∫

−ε
RE1d

− lim
ε→0

∫

−ε
(W,1)exp l d. (27)

Consider two independent equilibrium states in an
orthotropic functionally graded material (Kim and
Paulino 2003). Let the state 1 corresponds to the actual
state specified by the prescribed boundary conditions,
and the state 2 corresponds to an auxiliary state. Super-
position of the actual and the auxiliary fields leads
to another equilibrium state (state—s) for which the
J-integral is given as
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J (s) =
∫

�0

[
1

2

(
σi j + σ

(2)
i j

) (
εi j + ε

(2)
i j

)
n1

−(σi j + σ
(2)
i j )n j (ui,1 + u(2)i,1 )

−
(

D j + D(2)
j

)
n j

(
E1 + E (2)1

)]
d�

− lim
ε→0

∫

−ε
(Xi − ρüi ) (ui,1+u(2)i,1 )d

+ lim
ε→0

∫

−ε
R
(

E1 + E (2)1

)
d

− lim
ε→0

∫

−ε

[
1

2
ci jkl,1

(
εi j+ε(2)i j

) (
εkl+ε(2)kl

)

−eikl,1

(
Ei + E (2)i

) (
εkl + ε

(2)
kl

)

−1

2
hi j,1

(
Ei + E (2)i

) (
E j + E (2)j

)]
d, (28)

which can be conveniently decomposed into

J (s) = J + J (2) + M, (29)

where

J (2) =
∫

�0

[
1

2
σ
(2)
i j ε

(2)
i j n1−σ (2)i j n j u

(2)
i,1 −D(2)

j n j E (2)1

]
d�

− lim
ε→0

∫

−ε

[
1

2
Ci jkl,1ε

(2)
kl ε

(2)
i j − eikl,1 E (2)i ε

(2)
kl

−1

2
hi j,1 E (2)i E (2)j

]
d. (30)

The interaction integral M is then given by

M =
∫

�0

[
1

2

(
σi jε

(2)
i j + σ

(2)
i j εi j

)
n1

−(σi j n j u
(2)
i,1 + σ

(2)
i j n j ui,1)

−D j n j E (2)1 − D(2)
j n j E1

]
d�

− lim
ε→0

∫

−ε
(Xi − ρüi ) u(2)i,1 d

+ lim
ε→0

∫

−ε
RE (2)1 d

− lim
ε→0

∫

−ε

[
1

2
ci jkl,1

(
εi jε

(2)
kl + ε

(2)
i j εkl

)

−eikl,1

(
Eiε

(2)
kl + E (2)i εkl

)

−1

2
hi j,1

(
Ei E (2)j + E (2)i E j

)]
d. (31)

The electromechanical J -integral can be expressed in
terms of the SIF and the EDIF (Pak 1990; Enderlein
et al. 2005)

J = 1

2
KM KN YM N . (32)

If the poling direction of the material and the mechan-
ical loading are perpendicular to the crack, only the
mode I and IV is occurring. Then, the Irwin matrix
YM N has a simple form and one can write (Enderlein
et al. 2005)

J = K I K I

cT
− K I V K I V

κ
+ K I K I V

e
. (33)

For two admissible fields (actual and auxiliary) one
obtains

J (s) = 1

cT

(
K I +K (2)

I

)2 +1

e

(
K I +K (2)

I

)(
K I V +K (2)

I V

)

+ 1

κ

(
K I V + K (2)

I V

)2 = J + J (2) + M,

where

J (2) = 1

cT

(
K (2)

I

)2 + 1

e
K (2)

I K (2)
I V + 1

κ

(
K (2)

I V

)2
,

and

M = 2

cT
K I K (2)

I + 1

e

(
K I K (2)

I V + K (2)
I K I V

)

+ 2

κ
K I V K (2)

I V . (34)

The mode-I and the mode-IV intensity factors are eval-
uated by solving the following system of linear alge-
braic equations

2

cT
K I + 1

e
K I V = M I , (35)

1

e
K I + 2

κ
K I V = M I V , (36)

resulting from Eq. 34 by taking K (2)
I = 1, K (2)

I V = 0 for

M I , and K (2)
I = 0, K (2)

I V = 1 for M I V , respectively.
The values M I and M I V are computed numerically by
Eq. 31 with an adequate choice of the auxiliary solu-
tions according to Eq. 19.

4 Local boundary integral equations for 2D
problems

Let us consider a linear transient dynamic piezoelectric
problem in a continuously nonhomogeneous domain
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 bounded by the boundary � and described by the
governing Eqs. 1 and 2 within the quasi-static approxi-
mation for the electrical field. The following boundary
and initial conditions are assumed for the mechanical
quantities

ui (x, t) = ũi (x, t) on �u,

ti (x, t) = t̃i (x, t) on �t ,

ui (x, t)|t=0 = ui (x, 0) and

u̇i (x, t)|t=0 = u̇i (x, 0) in ,

and for electrical ones

ψ(x) = ψ̃(x) on �p,

ni Di (x) = Q̃(x) on �q ,

where �u is the part of the global boundary with pre-
scribed displacements, and on �t , �p and �q the trac-
tion vector, the electric potential and the surface density
of free charge are prescribed, respectively. It is noted
that �u + �t = �p + �q .

Applying the Laplace-transform to the governing
equations we obtain

σ̄i j, j (x, p)− ρ(x)p2ūi (x, p) = −F̄i (x, p), (37)

where p is the Laplace-transform parameter, and

F̄i (x, p) = X̄i (x, p)+ pui (x, 0)+ u̇i (x, 0).

Instead of writing the global weak-form for the above
governing equations, we apply the MLPG method to
construct a weak-form over the local fictitious subdo-
mains such ass , which is a small region taken for each
node inside the global domain (Atluri 2004). The local
subdomains overlap each other, and cover the whole
global domain . The local subdomains could be of
any geometrical shape and size. In the present paper,
the local subdomains are taken to be of circular shape.
The local weak-form of the governing Eq. 37 can be
written as
∫

s

[
σ̄i j, j (x, p)− ρ(x)p2ūi (x, p)+ F̄i (x, p)

]

× u∗
ik(x)d = 0, (38)

where u∗
ik(x)is a test function.

Using

σ̄i j, j u
∗
ik = (σ̄i j u

∗
ik

)
, j − σ̄i j u

∗
ik, j

and applying the Gauss divergence theorem one can
write
∫

∂s

σ̄i j (x, p)n j (x)u∗
ik(x)d�

−
∫

s

σ̄i j (x, p)u∗
ik, j (x)d

+
∫

s

[
F̄i (x, p)− ρ(x)p2ūi (x, p)

]

u∗
ik(x)d = 0, (39)

where ∂s is the boundary of the local subdomain
which consists of three parts ∂s = Ls ∪ �st ∪ �su

(Atluri 2004). It is noted that Ls is the local boundary
that is totally inside the global domain,�st is the part of
the local boundary which coincides with the global trac-
tion boundary, i.e., �st = ∂s ∩ �t , and similarly �su

is the part of the local boundary that coincides with the
global displacement boundary, i.e., �su = ∂s ∩ �u .

By choosing a Heaviside step function as the test
function u∗

ik(x) in each subdomain

u∗
ik(x) =

{
δik at x ∈ s

0 at x /∈ s

the local weak-form (39) is then converted into the fol-
lowing local boundary-domain integral equations
∫

Ls+�su

t̄i (x, p)d� −
∫

s

ρ(x)p2ūi (x, p)d

= −
∫

�st

˜̄ti (x, p)d� −
∫

s

F̄i (x, p)d. (40)

Note that the local integral Eq. 40 is valid for both
homogeneous and nonhomogeneous linear piezoelelec-
tric solids. Nonhomogeneous material properties are
included in Eq. 40 through the elastic and the piezo-
electric tensors of material coefficients in the traction
components.

Similarly, the local weak-form of the governing Eq. 2
in the Laplace transformed domain is given by
∫

s

[
D̄ j, j (x, p)− R̄(x, p)

]
v∗(x)d = 0, (41)

where v∗(x) is a test function.
Applying the Gauss divergence theorem to the local

weak-form and considering the Heaviside step function
for the test function u∗(x), one obtains
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∫

Ls+�sp

Q̄(x, p)d� = −
∫

�sq

˜̄Q(x, p)d�

+
∫

s

R̄(x, p)d, (42)

where

Q̄(x, p) = D̄ j (x, p)n j = [e jkl ūk,l(x, p)

−h jkψ̄,k(x, p)
]

n j .

In the MLPG method the test and the trial functions are
not necessarily from the same functional spaces. For
internal nodes, the test function is chosen as the Heav-
iside step function with its support on the local subdo-
main. The trial functions, on the other hand, are chosen
to be the moving least-squares (MLS) approximation
over a number of nodes spread within the domain of
influence. The approximated functions for the Laplace
transforms of the mechanical displacements and the
electric potential can be written as (Atluri 2004)

ūh(x, p) = �T (x) · û(p) =
n∑

a=1

φa(x)ûa(p),

ψ̄h(x, p) =
n∑

a=1

φa(x)ψ̂a(p), (43)

where the nodal values ûa(p) and ψ̂a(p) are fictitious
parameters for the displacements and the electric poten-
tial, respectively and φa(x) is the shape function asso-
ciated with the node a. The number of nodes n used for
the approximation is determined by the weight func-
tion wa(x). A 4th order spline-type weight function is
applied in the present work

wa(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 6
(

da

ra

)2 + 8
(

da

ra

)3

−3
(

da

ra

)4
0 ≤ da ≤ ra

0, da ≥ ra

, (44)

where da = ‖x − xa‖ and ra is the size of the support
domain. It is seen that the C1-continuity is ensured over
the entire domain, therefore the continuity conditions
of the tractions and the electric charge are satisfied.

The Laplace transform of the traction vectors t̄i (x, p)
at a boundary point x ∈ ∂s are approximated in terms
of the same nodal values ûa

(p) as

t̄h
(x, p) = N(x)C(x)

n∑

a=1

Ba(x)ûa
(p)

+N(x)L(x)
n∑

a=1

Pa(x)ψ̂a(p), (45)

where the matrix N(x) is related to the normal vector
n(x) on ∂s by

N(x) =
[

n1 0 n2

0 n2 n1

]
,

and the matrices Ba and Pa are represented by the
gradients of the shape functions as

Ba(x) =
⎡

⎣
φa
,1 0

0 φa
,2

φa
,2 φa

,1

⎤

⎦ , Pa(x) =
[
φa
,1
φa
,2

]
.

Similarly the Laplace transform of the electrical charge
Q̄(x, p) can be approximated by

Q̄h(x, p) = N1(x)G(x)
n∑

a=1

Ba(x)ûa(p)

−N1(x)H(x)
n∑

a=1

Pa(x)ψ̂a(p), (46)

where the matrices G and H are defined in Eq. 9 and

N1(x) = [ n1 n2
]
.

Obeying the boundary conditions at those nodal points
on the global boundary, where the displacements and
the electrical potential are prescribed, and making use
of the approximation formula (43), one obtains the dis-
cretized form of the boundary conditions as

n∑

a=1

φa(ζ )ûa(p)= ˜̄u(ζ , p) for ζ ∈ �u, (47)

n∑

a=1

φa(ζ )ψ̂a(p) = ˜̄ψ(ζ , p) for ζ ∈ �p. (48)

Furthermore, in view of the MLS-approximation (45)
and (46) for the unknown quantities in the local
boundary-domain integral Eqs. 40 and 42, we obtain
their discretized forms as

n∑

a=1

⎛

⎜
⎝
∫

Ls+�su

N(x)C(x)Ba(x)d�

−ρ(x)p2
∫

s

φa(x)d

⎞

⎟
⎠ ûa(p)

+
n∑

a=1

⎛

⎜
⎝
∫

Ls+�su

N(x)L(x)Pa(x)d�

⎞

⎟
⎠ ψ̂a(p)

= −
∫

�st

˜̄t(x, p)d� −
∫

s

F̄(x, p)d, (49)
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n∑

a=1

⎛

⎜
⎝
∫

Ls+�sp

N1(x)G(x)Ba(x)d�

⎞

⎟
⎠ ûa(p)

−
n∑

a=1

⎛

⎜
⎝
∫

Ls+�sp

N1(x)H(x)Pa(x)d�

⎞

⎟
⎠ ψ̂a(p)

= −
∫

�sq

˜̄Q(x, p)d� +
∫

s

R̄(x, p)d, (50)

which are considered on the sub-domains adjacent to
interior nodes as well as to the boundary nodes on �st

and �sq .

5 Numerical examples

5.1 A central crack in a finite homogeneous strip

In the first example a straight central crack in a homo-
geneous finite strip under a uniform pure mechanical
and/or electrical displacement is analyzed (Fig. 2). The
strip is subjected to an impact load with Heaviside
time variation and the intensityσ0 = 1 Pa for a pure
mechanical load and D0 = 1 Cm−2 for a pure electrical
load, respectively. Homogeneous material properties
are selected to test the present computational method.
The material coefficients of the strip correspond to the
PZT-4 material and they are given by

c11 = 13.9 · 1010 Nm−2, c12 = 7.43 · 1010 Nm−2,

c22 = 11.5 · 1010 Nm−2, c44 = 2.56 · 1010 Nm−2,

e15 = 12.7 Cm−2, e21 = −5.2 Cm−2,

e22 = 15.1 Cm−2,

h11 = 6.46 · 10−9 C(Vm)−1,

h22 = 5.62 · 10−9 C(Vm)−1, ρ = 7, 500 kg/m3.

The strip widthw = 1.25a, crack length 2a = 1.0 m
and height of the strip h = 1.2w are considered. Due
to the symmetry of the problem with respect to the
crack line, only a quarter of the specimen is numeri-
cally analyzed. The mechanical displacement and the
electrical potential fields in the quarter of the specimen
are approximated by using 930 (31×30) nodes equidis-
tantly distributed. The local subdomains are considered
to be circular with a radius rloc = 0.028 m. The inte-
gration path �0 for the evaluation of the M-integrals

31

930

1

900

Q=0

,

Ψ=0

x1

x2

t H(t-0)
2
=σ0

t =t =01 2

u = =01 2t

32 62

Q=0

Q=D H(t-0)0

Q=0 u = =02 1ta
w

t =01

Fig. 2 Central crack in a finite homogeneous strip

has a rectangular shape with a size 0.75 × 0.75 m and
the crack-tip being at the centre of this area. To test the
accuracy of the proposed method, an additional inte-
gration path with a size 0.9 × 0.9 m has also been used
for evaluating the fracture parameters. The discrepan-
cies of the numerical values obtained for these fracture
parameters from the two paths were less than 1%.

The normalized stress intensity factor K I /K stat
I and

electrical displacement factor �K I V /K stat
I are com-

pared with FEM results in Figs. 3 and 4, where K stat
I =

1.4 Pa · m1/2 for the considered geometry and load,
and � = e22/h22. FEM results are obtained by the
ANSYS-code with 8,037 quadratic (8-node) elements
(plane223) and 2,000 time steps.

One can observe a quite good agreement of FEM
and present results in both figures. The dynamic value
of the SIF is approximately doubled with respect to the
static one. The electrical displacement intensity factor
for a pure static mechanical load is vanishing (Sladek
et al. 2007). Contrary to the static case the EDIF is
not vanishing in the dynamic case with a finite veloc-
ity of wave propagation for a pure mechanical load
(Fig. 4).

The SIF and the EDIF for a pure electrical displace-
ment load are presented in Fig. 5. Intensity factors are
normalized by the same way like in the previous fig-
ures. Also in this case, contrary to the static case, the
SIF is not vanishing. From the Maxwell‘s equations, it
is known that the velocity of electromagnetic waves is
equal to the speed of light, which is much greater than
the velocity of elastic waves. Hence, the use of quasi-
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Fig. 3 Normalized stress intensity factor for a central crack in a
strip under a pure mechanical load σ0
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Fig. 4 Normalized electrical displacement intensity factor for a
central crack in a strip under a pure mechanical load σ0

static approximation in Eqs. 1 and 2 is justified for
the interaction of electrical and mechanical fields. The
response of the electric fields is immediate, while that
of the elastic ones is taken as finite because of the finite
velocity of elastic waves. On the other hand, in a static
case, the response of both the mechanical (strain, stress)
and electrical fields is immediate. Thus, the SIF is van-
ishing in such a case since the stressesσ22are zero ahead
the crack tip on the crack line because of the immediate
electromechanical interaction. In the dynamic case the
stress field is coupled not only to the immediate electric
field, but also to inertia forces (Enderlein et al. 2005).
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Fig. 5 Normalized intensity factors for a central crack in a strip
under a pure electrical displacement load D0
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cij0

c exp( x )ij0                     1γ

x1
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2h

Fig. 6 An edge crack in a finite strip with graded material prop-
erties in x1

5.2 An edge crack in a finite FGPM strip

An edge crack in a finite strip is analyzed in the second
example. The sample geometry is given in Fig. 6 with
following values: a = 0.5, a/w = 0.4 and h/w = 1.2.
Due to the symmetry with respect to x1only a half of the
specimen is modeled. We have used 930 nodes equidis-
tantly distributed for the MLS approximation of phys-
ical fields. On the top of the strip a uniform impact
tension σ0and electrical displacement D0(Heaviside
time variation) are applied, respectively.

Functionally graded material properties in x1 coor-
dinate are considered. An exponential variation for the
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Fig. 7 Influence of the material gradation on the stress intensity
factor in a cracked strip under a pure mechanical impact load
σ0 H(t − 0)

elastic, piezoelectric and dielectric tensors is used

ci jkl(x) = ci jkl0 exp(γ x1),

ei jk(x) = ei jk0 exp(γ x1)

hi j (x) = hi j0 exp(γ x1), (51)

where ci jkl0, ei jk0 and hi j0 correspond to parameters
used in the previous example.

The influence of the material gradation on the stress
intensity factor and electrical displacement intensity
factor is analyzed. The temporal variation of the SIF
and the EDIF in the cracked strip under a pure mechan-
ical load is presented in Figs. 7 and 8, respectively. The
static stress intensity factor for the considered load and
geometry is equal to K stat

I = 2.642 Pa · m1/2. Numer-
ical results for a homogeneous strip are compared with
FEM ones, and a quite good agreement is observed.

For a gradation of mechanical material properties
with x1 coordinate and a uniform mass density, the
wave propagation is growing with x1. Therefore, the
peak value of the SIF is reached in a shorter time instant
in FGPM strip than in a homogeneous one. The max-
imum value of the SIF is only slightly reduced for the
FGPM cracked strip.

Next, the cracked strip under a pure electrical dis-
placement impact load is analyzed. Since static SIF
and EDIF are uncoupled it has to valid K stat

I V = K stat
I .

The temporal variation of the EDIF is given in Fig. 9.
The EDIF is significantly reduced for a cracked FGPM
compared to a homogeneous strip. The oscillation of
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Fig. 8 Influence of the material gradation on the EDIF in the
cracked strip under a pure mechanical impact load σ0 H(t − 0)
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Fig. 9 Temporal variation of the EDIF in the cracked strip under
a pure electrical displacement impact load D0 H(t − 0)

amplitudes for EDIF is again faster in an FGPM strip.
Similar phenomena are observed for SIF in Fig. 10.

The influence of the specimen height on the nor-
malized dynamic stress intensity factor in a homoge-
neous cracked strip under a pure mechanical impact
load is observed in Fig. 11. For a larger specimen height
a reduced oscillation of the stress intensity factor is
occurred. A longer sleeping time of the SIF for a larger
specimen is due to larger distance from the applied
place to the crack tip.

When cracks in piezoelectric solids are investigated,
an important question is how to prescribe electric bound-
ary conditions on the crack-surfaces. For completely
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Fig. 10 Temporal variation of the SIF in the cracked strip under
a pure electrical displacement impact load D0 H(t − 0)
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Fig. 11 Influence of the specimen height on the SIF in a homo-
geneous cracked strip under a pure mechanical impact load
σ0 H(t − 0)

permeable conditions

ψ+ = ψ−, D+
n = D−

n ,

the crack is not visible for the electric field. Contrary,
completely impermeable boundary conditions lead to
vanishing electrical displacements

D+
n = D−

n = 0.

Realistic electrical boundary conditions are between
the above mentioned two extreme cases. The dielectric
property of the medium inside the crack is described by
constants h = hr ·h0, where h0is the permittivity of the
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Fig. 12 Time variation of the normalized dynamic stress inten-
sity factor

vacuum inside the crack and hr is a relative permittivity.
The dielectric law gives

D+
n = D−

n = −h
ψ+ − ψ−

u+
n − u−

n
.

Since the mechanical displacements and the electric
potential are dependent on the electric displacement,
an iterative solution procedure is needed to handle this
kind of electrical boundary conditions (Kuna 2006). We
have used the two extreme electrical boundary condi-
tions on the crack-surfaces. Numerical results for the
normalized dynamic SIF and the normalized dynamic
EDIF are given in Figs. 12 and 13, respectively. The
normalized dynamic SIF remains almost the same for
both the permeable and the impermeable boundary con-
ditions in homogeneous and continuously nonhomoge-
neous piezoelectric solids. The variation of the normal-
ized dynamic EDIF for permeable electrical boundary
conditions is similar to the variation of the normalized
dynamic SIF.

For a positive value of the gradation parameter γ of
the mechanical material properties in the x1-direction
and a uniform mass density, the wave propagation
velocity is growing with x1-coordinate. Therefore, the
first peak value of the dynamic SIF is reached at a
shorter time instant in FGPM strip than in a homo-
geneous one. The maximum value of the dynamic SIF
is only slightly reduced for the cracked FGPM strip
compared to that of the cracked homogeneous strip.
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Fig. 13 Time variation of the normalized dynamic electrical
displacement intensity factor

6 Conclusions

Growing application of functionally graded piezoelec-
tric materials in many engineering structures with safety
integrity put a requirement to analyze crack problems
in such materials. Since problems under a transient
dynamic load are unsolved in literature the first attempt
is given in the present paper. For this purpose a mesh-
less local Petrov-Galerkin method (MLPG) is devel-
oped in continuously nonhomogeneous bodies under a
transient dynamic load. The analyzed 2-D domain is
divided into small overlapping circular subdomains. A
unit step function is used as the test functions in the
local weak-form. The derived local boundary-domain
integral equations are nonsingular. The moving least-
squares (MLS) scheme is adopted for approximating
the physical quantities. The proposed method is a truly
meshless method, which requires neither domain ele-
ments nor background cells in either the interpolation
or the integration. It is shown that the asymptotic fields
in the crack-tip vicinity in a continuously nonhomoge-
neos medium is the same as in a homogeneous one. A
contour integral method is developed for the computa-
tion of stress and electric intensity factors. The results
in numerical examples show a strong dependence of
the stress intensity factor and electrical displacement
intensity factor even such dynamical cases where no
coupling is observed for a static load. An impact load
is leading to a dynamic overshoot of the static intensity

factors. A gradation of material properties affects both
intensity factors.
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