
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of the Mechanics and Physics of Solids

55 (2007) 2717–2734

New phenomena concerning a screw dislocation
interacting with two imperfect interfaces

X. Wanga,b, E. Pana,b,�, A.K. Royc

aDepartment of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA
bDepartment of Applied Mathematics, University of Akron, Akron, OH 44325-3905, USA

cAir Force Research Laboratory, AFRL/MLBCM, Building 654, 2941 Hobson Way,

Wright-Patterson AFB, OH 45433-7750, USA

Received 18 December 2006; received in revised form 24 March 2007; accepted 28 March 2007

Abstract

Dislocation mobility and stability in nanocrystals and electronic materials are influenced by the material

composition and interface conditions. Its mobility and stability then affect the mechanical behaviors of the

composites. In this paper, we first address, in detail, the problem of a screw dislocation located in an

annular coating layer which is imperfectly bonded to the inner circular inhomogeneity and to the outer

unbounded matrix. Both the inhomogeneity–coating interface and coating–matrix interface are modeled by

a linear spring with vanishing thickness to account for the possible damage occurring on the interface. An

analytic solution in series form is derived by means of complex variable method, with all the unknown

constants being determined explicitly. The solution is then applied to the study of the dislocation mobility

and stability due to its interaction with the two imperfect interfaces. The most interesting finding is that

when the middle coating layer is more compliant than both the inner inhomogeneity and the outer

unbounded matrix and when the interface rigidity parameters for the two imperfect interfaces are greater

than certain values, one stable and two unstable equilibrium positions can exist for the dislocation.

Furthermore, under certain conditions an equilibrium position, which can be either stable or unstable (i.e., a

saddle point), can exist, which has never been observed in previous studies. Results for a screw dislocation

interacting with two parallel straight imperfect interfaces are also presented as the limiting case where the

radius of the inner inhomogeneity approaches infinity while the thickness of the coating layer is fixed.
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1. Introduction

In semiconductor materials, dislocation formation and interaction can greatly influence
the strain field in the material system (Freund, 2000), and thus can affect both the
electronic and mechanical properties of the materials (Justo et al., 2001). However,
dislocation mobility and stability are complicated phenomena, depending upon many
factors, including size effects in nanocrystal case (Gryaznov et al., 1991), temperature (Abe
et al., 2003), composition and interface conditions (Penn and Banfield, 1998; Hurtado and
Freund, 1999). This paper concerns with the effect of composition and imperfect interface
on a screw dislocation. Interfacial imperfections could be due to interdiffusion and
interface vacancies (Twu and Ho, 2003), interface roughness and adhesion (Buehler et al.,
2006), or simply due to the weak mechanical behavior of the interfacial zone (Kattis and
Mavroyannis, 2006).
Effect of interfacial zone or imperfect interface on mechanical behavior is crucial in the

design of fiber-reinforced composites (e.g., Achenbach and Zhu, 1989; Ru, 1999).
Recently, the interaction of a screw dislocation with a coated circular inhomogeneity
(fiber) was investigated by Xiao and Chen (2000). One interesting finding by Xiao and
Chen (2000) on the equilibrium position of the image force of the dislocation is that if the
coating is thin enough and if the inhomogeneity is harder while the coating is softer than
the surrounding matrix, one unstable equilibrium position near the coating–matrix
interface can be found. On the other hand, if the coating is thin enough and if the
inhomogeneity is softer while the coating is harder than the surrounding matrix, one stable
equilibrium position near the coating–matrix interface can be found. A similar problem
was analyzed by Sudak (2003) where the coating layer with finite thickness was replaced by
a linear-spring layer of vanishing thickness. Sudak (2003) also found that when the
inhomogeneity is harder than the matrix, an unstable equilibrium position can be found.
Wang and Zhong (2003) considered the interaction of a screw dislocation with a
nonuniformly coated circular inhomogeneity. Their results show that two equilibrium
positions of different nature, one stable and the other unstable, may coexist when the inner
inhomogeneity–coating interface is nearly in contact with the outer coating–matrix
interface at one point.
The above investigations show that when a screw dislocation interacts with an imperfect

interface (a coating layer with finite thickness or a linear-spring model with vanishing
thickness), some equilibrium positions for the dislocation near the interface can be
observed. While these results based on only one imperfect interface are important to
composite design, fiber-reinforced composites could contain two or more interfaces (e.g.,
Lafdi, 2005; Nie and Basaran, 2005; Pan and Roy, 2006), with both being imperfect. In
other words, there is a need for understanding the interaction of a dislocation with two
imperfect interfaces as shown in Figs. 1 and 6. In this paper, we adopt the simple but
common linear-spring imperfect interface model for simulating the possible damage on the
interface (for more details see Benveniste and Miloh, 1986; Achenbach and Zhu, 1989;
Hashin, 1991; Ru and Schiavone, 1997; Chen, 2001; Wang and Shen, 2002; Fan and Wang,
2003; Benveniste, 2006; Sudak and Wang, 2006; Kattis and Mavroyannis, 2006). We want
to understand that, if there is a screw dislocation in the intermediate coating layer, what
would be the effect of the imperfect inner inhomogeneity–coating interface and the outer
coating–matrix interface on its mobility and stability. If the middle coating layer is thick
enough, then we can discuss the interaction of a screw dislocation with the inner imperfect
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inhomogeneity–coating interface and with the outer imperfect coating–matrix interface
separately. Under certain imperfect interface conditions, an unstable equilibrium position
could be found near the imperfect inhomogeneity–coating interface (Xiao and Chen, 2000;
Sudak, 2003). Similarly another unstable equilibrium position could exist near the
imperfect coating–matrix interface. Since the image force on the dislocation is continuous, a
stable equilibrium position should exist, which should be located between the two unstable
equilibrium positions. This hypothesis prompts us to investigate in detail the problem
of a screw dislocation lodged in an annulus coating layer which is imperfectly bonded to
the inner circular inhomogeneity and to the outer unbounded matrix (Fig. 1). As
shown in this paper, our study indeed confirms the co-existence of one stable and
two unstable equilibrium positions for the dislocation. Our results reveal further that
the situations concerning the equilibrium positions are rather complex and interesting.
For example a saddle point for the equilibrium position, which can be either stable or
unstable, can be also observed under certain conditions. To the best of the authors’
knowledge, this important finding has never been reported in any previous literature,
and could be important to our understanding of dislocation mobility and stability
phenomena.

This paper is organized as follows. In Section 2 a general solution is derived for the
problem of a screw dislocation located within an annular coating layer, which is
imperfectly bonded to the inner circular cylindrical inhomogeneity and to the outer
unbounded matrix. The linear-spring model is utilized to simulate both the inhomogen-
eity–coating and coating–matrix interfaces. In Section 3 the image force on the
screw dislocation due to its interaction with the two imperfect interfaces are discussed in
detail. In this Section we also present the results for a screw dislocation interacting with
two parallel straight imperfect interfaces as a limiting case. We draw our conclusions in
Section 4.
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Fig. 1. A screw dislocation within an annular coating layer which is imperfectly bonded to a circular

inhomogeneity and the surrounding matrix.
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2. General solution

We first establish a Cartesian coordinate system (x, y) and a polar coordinate system
(r, y). As shown in Fig. 1, the inner circular region rpa (phase ‘‘1’’) is the inhomogeneity
with shear modulus m1; the intermediate annular region aprpb (phase ‘‘2’’) is the coating
layer with shear modulus m2; the outer unbounded region rXb (phase ‘‘3’’) is the matrix
with shear modulus m3. A screw dislocation with the Burgers vector b̂ is located at point
(d, 0), aodob, within the intermediate coating layer.
For the problem considered, the out-of-plane displacement w (i.e., uz), the stress

components szx, szy in the Cartesian coordinate system and the stress components
szr, szy in the polar coordinate system can be expressed in terms of a single analytic
function f(z) as

w ¼ Im f ðzÞ
� �

,

szy þ iszx ¼ mf 0ðzÞ,

szy þ iszr ¼ meiyf 0ðzÞ, ð1Þ

where z ¼ xþ iy ¼ reiy is the complex variable. In this paper, the superscripts (1), (2) and
(3) will be used to denote the physical quantities (such as stress components and out-of-
plane displacement) in phases 1, 2 and 3, respectively. The analytic functions defined in the
three phases 1, 2 and 3 will be denoted by f1(z), f2(z) and f3(z).
To account for the possible damage occurring on the interface, we assume that both the

inhomogeneity–coating interface and coating–matrix interface are imperfect and are
further described by a linear spring model. In other words, the continuity condition on the
inhomogeneity–coating interface r ¼ a is given by

sð1Þzr ¼ sð2Þzr ¼ k1ðw
ð2Þ � wð1ÞÞ; ðr ¼ aÞ, (2)

where k1 is the spring constant of the inhomogeneity–coating interface r ¼ a. It is obvious
that while k1 ¼ 0 corresponds to a completely debonded interface, k1-N describes a
perfectly bonded interface.
Similarly, the continuity condition on the coating–matrix interface r ¼ b is given by

sð2Þzr ¼ sð3Þzr ¼ k2ðw
ð3Þ � wð2ÞÞ; ðr ¼ bÞ, (3)

where k2 is the spring constant of the coating–matrix interface r ¼ b. It is apparent that
while k2 ¼ 0 corresponds to a completely debonded interface, k2-N describes a perfectly
bonded interface.
The continuity condition Eq. (2) on the interface r ¼ a can be equivalently expressed in

terms of the two analytic functions f1(z) and f2(z) as follows:

m1f
þ
1 ðzÞ þ m1f̄

�

1

a2

z

� �
¼ m2f

�
2 ðzÞ þ m2 f̄

þ

2

a2

z

� �
,

k1 f �2 ðzÞ � f̄
þ

2

a2

z

� �
� f þ1 ðzÞ þ f̄

�

1

a2

z

� �� �
¼

m1
a

zf 01
þ
ðzÞ �

a2

z
f̄ 01
� a2

z

� �� �
; ðjzj ¼ aÞ.

ð4Þ
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Then it follows from Eq. (4) that

f 2ðzÞ ¼
m1
m2

f̄ 1

a2

z

� �
þ

b̂

2p
lnðz� dÞ �

b̂

2p
ln

z� d1
z

� �
þ

b̂

2p

X1
n¼1

ðAnzn � a2nĀnz�nÞ,

f̄ 2

a2

z

� �
¼

m1
m2

f 1ðzÞ �
b̂

2p
lnðz� dÞ þ

b̂

2p
ln

z� d1
z

� �
�

b̂

2p

X1
n¼1

ðAnzn � a2nĀnz�nÞ, ð5Þ

where d1 ¼ a2=doa is in the inhomogeneity as shown in Fig. 1, and An (n ¼ 1, 2,y,+N)
are complex constants to be determined.

Substituting Eq. (5) into Eq. (4) and eliminating f �2 ðzÞ and f̄
þ

2 ða
2=zÞ, we arrive at

wf þ1 ðzÞ þ zf 01
þ
ðzÞ �

wG1b̂

2p
lnðz� dÞ �

wG1b̂

2p

X1
n¼1

Anzn

¼ wf̄
�

1

a2

z

� �
þ

a2

z
f̄
0

1

� a2

z

� �
�

wG1b̂

2p
ln

z� d1
z

� �
�

wG1b̂

2p

X1
n¼1

a2nĀnz�n; ðjzj ¼ aÞ, ð6Þ

where the interface rigidity w for the inner interface r ¼ a and the dimensionless constant
G1, which is similar to the two dimensionless Dundurs constants (Dundurs, 1967, 1970) for
plane strain deformations, are defined by

w ¼ ak1
m1 þ m2
m1m2

; G1 ¼
2m2

m1 þ m2
. (7)

It is apparent that the left-hand side of Eq. (6) is analytic within the circle r ¼ a, whilst
the right-hand side is analytic outside the circle r ¼ a including the point at infinity.
Consequently, the continuity condition in Eq. (6) implies that the left- and right-hand sides
of Eq. (6) are identically zero within the domains on both sides of the interface r ¼ a. It
then follows that

wf 1ðzÞ þ zf 01ðzÞ ¼
wG1b̂

2p
lnðz� dÞ þ

X1
n¼1

Anzn

" #
; ðjzjpaÞ. (8)

Eq. (8) is a first-order inhomogeneous differential equation for f1(z) defined within the
circular inhomogeneity (i.e., phase 1). Its solution can be conveniently obtained by means
of the power series expansion method as

f 1ðzÞ ¼
wG1b̂

2p

X1
n¼1

An � n�1d�n

wþ n
zn; ðjzjpaÞ. (9)

Once f1(z) has been obtained, then it follows from Eq. (5) that

f 2ðzÞ ¼
b̂

2p
lnðz� dÞ �

b̂

2p
ln

z� d1
z

� �

þ
b̂

2p

X1
n¼1

Anzn þ
wð1� G1Þ � n½ �a2nĀn � wð2� G1Þn

�1dn
1

wþ n
z�n

� 	
,

ðapjzjpbÞ. ð10Þ
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Similarly the continuity condition Eq. (3) on the interface r ¼ b can be equivalently
expressed in terms of the two analytic functions f2(z) and f3(z) as follows:

m2f
þ
2 ðzÞ þ m2f̄

�

2

b2

z

� �
¼ m3f

�
3 ðzÞ þ m3 f̄

þ

3

b2

z

� �
,

k2 f �3 ðzÞ � f̄
þ

3

b2

z

� �
� f þ2 ðzÞ þ f̄

�

2

b2

z

� �� �

¼
m3
b

zf 03
�
ðzÞ �

b2

z
f̄ 03
þ b2

z

� �� �
; ðjzj ¼ bÞ. ð11Þ

It follows from Eq. (11) that

f 2ðzÞ ¼
m3
m2

f̄ 3

b2

z

� �
þ

b̂

2p
lnðz� dÞ �

b̂

2p
lnðz� d2Þ

þ
m3
m2

b̂

2p
ln zþ

b̂

2p

X1
n¼1

ðBnzn � b2nB̄nz�nÞ

f̄ 2

b2

z

� �
¼

m3
m2

f 3ðzÞ �
b̂

2p
lnðz� dÞ þ

b̂

2p
lnðz� d2Þ

�
m3
m2

b̂

2p
ln z�

b̂

2p

X1
n¼1

ðBnzn � b2nB̄nz�nÞ, ð12Þ

where d2 ¼ b2=d4b is in the matrix as shown in Fig. 1, and Bn (n ¼ 1, 2,y,+N) are
complex constants to be determined.
Substituting Eq. (12) into Eq. (11) and eliminating f þ2 ðzÞ and f̄

�

2 ðb
2=zÞ, we finally arrive

at

gf �3 ðzÞ � zf 03
�
ðzÞ � gG2

b̂

2p
lnðz� dÞ � gð1� G2Þ

b̂

2p
ln zþ

gG2b̂

2p

X1
n¼1

b2nB̄nz�n

¼ gf̄
þ

3

b2

z

� �
�

b2

z
f̄ 03
þ b2

z

� �
� gG2

b̂

2p
lnðz� d2Þ þ g

b̂

2p
ln z

þ
gG2b̂

2p

X1
n¼1

Bnzn; ðjzj ¼ bÞ, ð13Þ

where the interface rigidity g for the interface r ¼ b and the dimensionless constant G2 are
defined by

g ¼ bk2
m2 þ m3
m2m3

; G2 ¼
2m2

m2 þ m3
. (14)

It is apparent that the right-hand side of Eq. (13) is analytic within the circle r ¼ b,
whilst the left-hand side is analytic outside the circle including the point at infinity.
Consequently the continuity condition in Eq. (13) implies that the left- and right-hand
sides of Eq. (13) are identically zero outside and within the circle r ¼ b. It then follows that

gf 3ðzÞ � zf 03ðzÞ ¼
gG2b̂

2p
ln

z� d
z

� �
�
X1
n¼1

b2nB̄nz�n

" #
þ g

b̂

2p
ln z; ðjzjXbÞ. (15)
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Eq. (15) is a first-order inhomogeneous differential equation for f3(z) defined in the
unbounded matrix. Solution to this equation can also be easily obtained by means of
power series expansion method as

f 3ðzÞ ¼
b̂

2p
ln z�

gG2b̂

2p

X1
n¼1

b2nB̄n þ n�1dn

gþ n
z�n; ðjzjXbÞ. (16)

Once f3(z) is obtained, then it follows from Eq. (12) that

f 2ðzÞ ¼
b̂

2p
lnðz� dÞ �

b̂

2p
lnðz� d2Þ

þ
b̂

2p

X1
n¼1

gðG2 � 1Þ þ n½ �Bn � gð2� G2Þn
�1d�n

2

gþ n
zn � b2nB̄nz�n

� 	
,

ðapjzjpbÞ. ð17Þ

By enforcing the continuity condition Eq. (2) on the inner interface r ¼ a, we obtain the
expression Eq. (10) for f2(z); by enforcing the continuity condition Eq. (3) on the outer
interface r ¼ b, we obtain another expression Eq. (17) for f2(z). It follows that Eqs. (17)
and (10) should be the same to ensure the uniqueness of the displacement and stress fields
within the coating layer. Therefore, we arrive at the following set of linear algebraic
equations for the unknowns An, Bn (n ¼ 1, 2,y,+N)

a2n wð1� G1Þ � n½ �An þ b2n
ðwþ nÞBn ¼ dn

1 n�1wð1� G1Þ � 1

 �

,

ðgþ nÞAn � gðG2 � 1Þ þ n½ �Bn ¼ d�n
2 n�1gðG2 � 1Þ þ 1

 �

; ðn ¼ 1; 2; . . . ;þ1Þ. ð18Þ

These unknowns An, Bn (n ¼ 1, 2,y,+N) can be uniquely determined from Eq. (18) as

An ¼
gð1� G2Þ � n½ � dn

1 wð1� G1Þ � n½ � þ b2nd�n
2 ðwþ nÞ

� �
n a2n wð1� G1Þ � n½ � gð1� G2Þ � n½ � � b2n

ðwþ nÞðgþ nÞ
� � ,

Bn ¼
wðG1 � 1Þ þ n½ � dn

1ðgþ nÞ þ d�n
2 a2n gð1� G2Þ � n½ �

� �
n a2n wð1� G1Þ � n½ � gð1� G2Þ � n½ � � b2n

ðwþ nÞðgþ nÞ
� � ,
ðn ¼ 1; 2; . . . ;þ1Þ, ð19Þ

which indicates that An, Bn (n ¼ 1, 2,y,+N) are in fact real values.
In summary, the three analytic functions (f1(z)in the circular inhomogeneity |z|pa, f2(z)

in the coating ap|z|pb, and f3(z) in the unbounded matrix |z|Xb) have now been totally
determined. With these functions, the displacement and stress fields induced by the screw
dislocation can be obtained from Eq. (1) for the three phases. For example the stress
component szy on the real axis within the coating layer is obtained as follows

szy ¼
m2b̂
2p

1

x� d
�

m2b̂

2p
d1

xðx� d1Þ

þ
m2b̂

2p

X1
n¼1

nAnxn�1 þ
n wðG1 � 1Þ þ n½ �a2nAn þ wð2� G1Þd

n
1

wþ n
x�n�1

� 	
,

ðapxpbÞ, ð20Þ

which is essential when forming the singular integral equation for a radial crack in the
coating layer interacting with two imperfect interfaces.
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We remark that the solution developed can be easily extended to the remote uniform
shearing case (i.e., under s1zx and s1zy ). Actually, for this case, the three analytic functions
f1(z), f2(z) and f3(z) can be similarly derived as follows:

f 1ðzÞ ¼
RwgG1ð2� G2Þðs1zy þ is1zxÞ

m3 Rðwþ 1Þðgþ 1Þ � wðG1 � 1Þ þ 1½ � gðG2 � 1Þ þ 1½ �
� � z; ðjzjpaÞ, (21)

f 2ðzÞ ¼
gð2� G2Þ Rðwþ 1Þðs1zy þ is1zxÞz� b2 wðG1 � 1Þ þ 1½ �ðs1zy � is1zxÞz

�1
n o

m3 Rðwþ 1Þðgþ 1Þ � wðG1 � 1Þ þ 1½ � gðG2 � 1Þ þ 1½ �
� � ,

ðapjzjpbÞ, ð22Þ

f 3ðzÞ ¼
s1zy þ is1zx

m3
zþ

Rðwþ 1Þ gðG2 � 1Þ � 1½ � � ðg� 1Þ wðG1 � 1Þ þ 1½ �

Rðwþ 1Þðgþ 1Þ � wðG1 � 1Þ þ 1½ � gðG2 � 1Þ þ 1½ �

�
ðs1zy � is1zxÞ

m3
b2z�1; ðjzjXbÞ, ð23Þ

where

R ¼
b

a

� �2

. (24)

It is interesting that if the three-phase composite is only subjected to the remote uniform
loading, the stress field inside the circular inhomogeneity is still uniform and is explicitly
given by

szy þ iszx ¼
RwgG2ð2� G1Þðs1zy þ is1zxÞ

Rðwþ 1Þðgþ 1Þ � wðG1 � 1Þ þ 1½ � gðG2 � 1Þ þ 1½ �
; ðjzjpaÞ. (25)

Following the approach of Gong and Meguid (1992), the change of the elastic energy
DW in the body due to the introduction of the coated circular inhomogeneity can be
evaluated as

DW ¼
pb2

m3

ðg� 1Þ wðG1 � 1Þ þ 1½ � � Rðwþ 1Þ gðG2 � 1Þ � 1½ �

Rðwþ 1Þðgþ 1Þ � wðG1 � 1Þ þ 1½ � gðG2 � 1Þ þ 1½ �
ðs1zy Þ

2
þ ðs1zxÞ

2
h i

. (26)

It follows that if the inhomogeneity and coating layer are of the same material, i.e.,
G1 ¼ 1, and the two interfaces are perfect, i.e., w, g-N, then Eq. (26) reduces to

DW ¼
pb2

m3
ð1� G2Þ ðs1zy Þ

2
þ ðs1zxÞ

2
h i

, (27)

which is just the result derived by Gong and Meguid (1992) for a perfectly bonded circular
inhomogeneity.
The coated inhomogeneity is termed stealth if the uniform stress field in the matrix is not

disturbed by the introduction of the coated inhomogeneity (Honein et al., 1994). It follows
from Eq. (23) that the coated inhomogeneity will be stealth if the following condition is
satisfied

R ¼
b

a

� �2

¼
ðg� 1Þ wðG1 � 1Þ þ 1½ �

ðwþ 1Þ gðG2 � 1Þ � 1½ �
41. (28)
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It is obvious that if the two interfaces are perfect, i.e., w, g-N, then the above condition
becomes

R ¼
b

a

� �2

¼
G1 � 1

G2 � 1
41, (29)

which is just the result derived by Honein et al. (1994). It follows from Eqs. (26) and (28)
that if the coated inhomogeneity is stealth, then it will not cause any change of elastic
energy, i.e., DW ¼ 0.

We finally remark that Eqs. (21)–(23) for the three analytic functions fi(z) (i ¼ 1, 2, 3) are
very useful in predicting the effective shear modulus of the fiber-reinforced composite
(Chen and Chiang, 1997; Pan and Roy, 2006). This will be pursued as a separate endeavor.

3. Image force on the dislocation

3.1. Image force on the screw dislocation interacting with two concentric circular imperfect

interfaces

Here we are interested in the mobility and stability of the screw dislocation due to its
interaction with the two imperfect interfaces r ¼ a and b. Particularly we will concentrate
on the existence of the equilibrium position for the dislocation. By using the
Peach–Koehler formula (Hirth and Lothe, 1982), the image force acting on the dislocation
due to its interaction with the two imperfectly bonded interfaces can be derived to be

~Fx ¼
X1
n¼1

~d
�2n�1

Rnðgþ nÞ wðG1 � 1Þ þ n½ � � ~d
2n�1
ðwþ nÞ gðG2 � 1Þ þ n½ �

wðG1 � 1Þ þ n½ � gðG2 � 1Þ þ n½ � � Rnðwþ nÞðgþ nÞ
, (30)

where R is defined by Eq. (24), and

~Fx ¼
2pa

m2b̂
2

Fx; ~d ¼
d
a
, (31)

with Fx being the x-component of the image force (the y-component of the image force on
the dislocation is zero). It is observed from Eq. (30) that the value of ~Fx depends on the
two dimensionless parameters G1 and G2 (more precisely on the two mismatch parameters
G1�1 and G2�1), the two interface rigidity parameters w and g, and the two geometric
parameters ~d and R. Based on their different combinations, we consider the following
special cases.

(i) When G1 ¼ G2 ¼ G and w ¼ g ¼ l, Eq. (30) reduces to

~F x ¼
X1
n¼1

ðlþ nÞ lðG� 1Þ þ n½ �ð~d
�2n�1

Rn � ~d
2n�1
Þ

lðG� 1Þ þ n½ �
2
� Rnðlþ nÞ2

. (32)

It is found from the above expression that d ¼
ffiffiffiffiffi
ab
p

is always an equilibrium position,
i.e., ~Fx ¼ 0 when d ¼

ffiffiffiffiffi
ab
p

. In other words if G1 ¼ G2 ¼ G and w ¼ g ¼ l, the
equilibrium position d ¼

ffiffiffiffiffi
ab
p

is independent of G and l.
(ii) When the coating layer and matrix are of the same material, and the coating–

matrix interface is a perfect one, i.e., G2 ¼ 1 and g-N, then Eq. (30)
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reduces to

~F x ¼ �
X1
n¼1

wðG1 � 1Þ þ n

~d
2nþ1
ðwþ nÞ

, (33)

which is just the result derived by Sudak (2003) for a screw dislocation located in the
matrix interacting with an imperfectly bonded circular inhomogeneity.

(iii) When the inhomogeneity and coating layer are of the same material, and the
inhomogeneity–coating interface is a perfect one, i.e., G1 ¼ 1 and w-N, then Eq. (30)
reduces to

~F x ¼
X1
n¼1

~d
2n�1

gðG2 � 1Þ þ n½ �

Rnðgþ nÞ
, (34)

which is the result for a screw dislocation inside an imperfectly bonded inhomogeneity.
(iv) When both the inhomogeneity–coating and coating–matrix interfaces are completely

debonded, i.e., w, g-0, then Eq. (30) reduces to

~F x ¼
X1
n¼1

~d
�2n�1

Rn � ~d
2n�1

1� Rn , (35)

which is the image force on a screw dislocation in an annular ring aprpb whose two
surfaces r ¼ a and b are traction-free.

(v) When both the inhomogeneity–coating and coating–matrix interfaces are perfect, i.e.,
w, g-N, then Eq. (30) reduces to

~F x ¼
X1
n¼1

~d
�2n�1

RnðG1 � 1Þ � ~d
2n�1
ðG2 � 1Þ

ðG1 � 1ÞðG2 � 1Þ � Rn , (36)

which will reduce to Eq. (35) by letting m1, m3-0 or equivalently G1 ¼ G2 ¼ 2.
(vi) It can be deduced from Eq. (30) that for fixed values a and b, if d ¼ dc is an

equilibrium position for a set of four parameters G1 ¼ G1c, G2 ¼ G2c, w ¼ wc and
g ¼ gc, then d ¼ (ab/dc) is also an equilibrium position for another set of four
parameters G1 ¼ G2c, G2 ¼ G1c, w ¼ gc and g ¼ wc.

In the following we present some numerical examples based on our solutions to
investigate the dependence of the equilibrium position for the dislocation on the involved
parameters. In our numerical calculation we truncate the series in Eq. (30) at n ¼ 300 in
order to obtain the result with a relative error less than 0.01%.
First we show in Fig. 2 the variation of the image force ~Fx on the dislocation within the

coating layer as a function of ~d for different values of interface rigidity l ¼ w ¼ g with
G1 ¼ G2 ¼ 1/3 (m1 ¼ m3 ¼ 5m2) and R ¼ 2.25 (b ¼ 1.5a). In this configuration, the
inhomogeneity and matrix are both stiffer than the coating. It is observed from Fig. 2
that when lp6.14, there is one common unstable equilibrium position d ¼

ffiffiffiffiffi
ab
p
� 1:22a

for the dislocation. When l46.14, however, there exist three equilibrium positions for the
dislocation: two unstable near the two interfaces r ¼ a, b and one stable at
d ¼

ffiffiffiffiffi
ab
p
� 1:22a. It is verified that, independent of l, d ¼

ffiffiffiffiffi
ab
p
� 1:22a is always an

equilibrium position as predicted above. However, the nature of this equilibrium position
is determined by l (i.e., whether l is greater or smaller than the critical lc ¼ 6.14). In fact
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the critical value lc is dependent on G1 ¼ G2 ¼ G, as listed in Table 1 for G varying from
zero to 1 with fixed R ¼ 2.25. It’s found from Table 1 that lc is an increasing function of G
and approaches infinity when G ¼ 1.

Fig. 3 then shows the variation of the image force ~Fx on the dislocation within the
coating layer as a function of ~d, for different values of G2 with G1 ¼ 1/3 (m1 ¼ 5m2) in
Fig. 3a, and for different values of G1 with G2 ¼ 1/3 (m3 ¼ 5m2) in Fig. 3b. Other fixed
parameters are w ¼ g ¼ 40 and R ¼ 2.25 (b ¼ 1.5a). It’s observed from Fig. 3a that when
G2o0.72108 there are three equilibrium positions for the dislocation: two are unstable near
the two interfaces and one is stable between the unstable ones. When G2 ¼ 0.72108 there
are only two equilibrium positions at d ¼ 1.013a and 1.396a. The equilibrium position
d ¼ 1.013a is an unstable one whilst d ¼ 1.396a is a saddle point (i.e., if there is a small
perturbation from this equilibrium position, the image force on the dislocation is always
positive). When G240.72108 there is only one unstable equilibrium position dE1.01a,
which is very close to the inner interface r ¼ a. Similarly, it’s found from Fig. 3b that when
G1o0.72108 there are three equilibrium positions for the dislocation: two are unstable near
the two interfaces and one is stable between the unstable ones. When G1 ¼ 0.72108 there
are two equilibrium positions d ¼ 1.074a and 1.480a. While d ¼ 1.480a is an unstable one,
d ¼ 1.074a is a saddle point (i.e., if there is a small perturbation from this equilibrium
position, the image force on the dislocation is always negative). When G140.72108 there is
only one unstable equilibrium position dE1.48a which is very close to the outer interface
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Fig. 2. Variation of the image force ~Fx on the dislocation within the annular coating layer as a function of ~d for

different interface rigidity l (l ¼ w ¼ g) with G1 ¼ G2 ¼ 1/3 (m1 ¼ m3 ¼ 5m2) and R ¼ 2.25 (b ¼ 1.5a).

Table 1

Critical value lc vs. dimensionless constant G (from 0 to 1) with R ¼ 2.25

G 0 0.1 0.2 1/3 0.4 0.5 0.6 0.7 0.8 0.9 1

lc 3.85 4.35 4.99 6.14 6.93 8.50 10.8 13.4 23.1 47.8 N
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r ¼ b. The results shown in Figs. 3a and b are in agreement with the special feature (v) of
the equilibrium position for the image force on the dislocation as discussed above. In
addition it should be mentioned that the new kind of equilibrium position for the
dislocation, namely the saddle point, has never been reported in any open literature.
Fig. 4 demonstrates the variation of the image force ~F x on the dislocation within the

coating layer as a function of ~d for different values of interface rigidity l ¼ w ¼ g, with
G1 ¼ 1/3, G2 ¼ 0.1 (m1 ¼ 5m2, m3 ¼ 19m2) in Fig. 4a, and G1 ¼ 0.1, G2 ¼ 1/3 (m1 ¼ 19m2,
m3 ¼ 5m2) in Fig. 4b. The other fixed parameter is R ¼ 2.25 (b ¼ 1.5a). It is noted that for
the results in Fig. 4a, the matrix is the hardest, the coating layer is the softest, whilst the
stiffness of the inhomogeneity is between them. For the results in Fig. 4b, on the other
hand, the inhomogeneity is the hardest, the coating is the softest, whilst the stiffness of the
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Fig. 3. Variation of the image force ~F x on the dislocation within the annular coating layer as a function of ~d for

fixed parameters w ¼ g ¼ 40 and R ¼ 2.25 (b ¼ 1.5a). Results for different G2 with fixed G1 ¼ 1/3 (m1 ¼ 5m2) in (a),

and for different G1 with fixed G2 ¼ 1/3 (m3 ¼ 5m2) in (b).

Fig. 4. Variation of the image force ~F x on the dislocation within the annular coating layer as a function of ~d for

different interface rigidity l (l ¼ w ¼ g) and fixed R ¼ 2.25 (b ¼ 1.5a). Results for G1 ¼ 1/3, G2 ¼ 0.1 (m1 ¼ 5m2,
m3 ¼ 19m2) in (a), and for G1 ¼ 0.1, G2 ¼ 1/3 (m1 ¼ 19m2, m3 ¼ 5m2) in (b).
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matrix is between them. It is observed from Fig. 4a that the curves for different values of
the interface rigidity all pass through one common point below the zero-force axis. When
l49.64 there are three equilibrium positions for the dislocation: two unstable and one
stable. When l49.64 there are two equilibrium positions d ¼ 1.114a and 1.438a. The
equilibrium position d ¼ 1.438a is an unstable one whilst d ¼ 1.114a is a saddle point.
When lo9.64 there is only one unstable equilibrium position. On the other hand, it is
observed from Fig. 4b that the curves for different values of the interface rigidity also pass
through one common point but above the zero-force axis. Similarly, when l49.64 there
are three equilibrium positions for the dislocation: two unstable and one stable. When
l ¼ 9.64 there are two equilibrium positions at d ¼ 1.043a and 1.347a. The equilibrium
position d ¼ 1.043a is an unstable one whilst d ¼ 1.347a is a saddle point. When lo9.64
there is only one unstable equilibrium position. Again, the results in Figs. 4a and b are also
in agreement with the special feature (v) as discussed above.

As we have demonstrated in Figs. 3 and 4 that a special new kind of equilibrium
position, which is either stable or unstable (i.e., a saddle point), can be observed for certain
combinations of the two dimensionless constants G1, G2 and the two interface rigidity
parameters w, g. In order to understand more clearly this new phenomenon, we plot in
Fig. 5 the phase diagrams for the equilibrium position for different combinations of G1 ¼ G1c,
G2 ¼ G2c with R ¼ 2.25. While Fig. 5a is for w ¼ g ¼ l ¼ lc, Fig. 5b is for the unequal
interface rigidity case w ¼ 4g. It is important that from Fig. 5a we can easily determine the
stable and unstable feature of the equilibrium positions for a fixed value of l ¼ lc:

(1) if the pair (G1, G2) lies within the closed curve formed by (G1c, G2c), the G1-axis and the
G2-axis, there are three equilibrium positions for the dislocation: two unstable and one
stable with the latter being between the two unstable ones;

(2) if the pair (G1, G2) lies outside the closed curve, there is only one unstable equilibrium
position for the dislocation;
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Fig. 5. Phase diagram of equilibrium positions for possible combinations of G1 and G2 with R ¼ 2.25 (b ¼ 1.5a).

l ¼ w ¼ g in (a), and w ¼ 4g in (b).
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(3) if the pair (G1, G2) just lies on the curve formed by (G1c, G2c), there are two equilibrium
positions for the dislocation: one unstable and one saddle point. More precisely if (G1,
G2) lies above the diagonal straight dash line, the unstable equilibrium position is on
the left-hand side of the other equilibrium position; if (G1, G2) lies below the dash line,
the unstable equilibrium position is on the right-hand side of the other equilibrium
position; if (G1, G2) also lies on the dash line, there is only one unstable equilibrium
position (in this special case the unstable equilibrium position and the saddle point
converge to one single unstable equilibrium position).

It should be pointed out that the curves in Fig. 5a will shrink to the origin G1 ¼ 0,
G2 ¼ 0 when l ¼ 3.85 (see Table 1). In other words if lp3.85, there is only one
unstable equilibrium position for the dislocation independent of the dimensionless
constants G1 and G2.
As for Fig. 5b, since an unequal interface rigidity parameter w ¼ 4g is used, the dash

line in Fig. 5b is not straight and does not pass through the origin. The curves in
Fig. 5b will finally shrink to the point G1 ¼ 0.59, G2 ¼ 0 when w ¼ 4g ¼ 13.04. The
overall trend for the phase diagram in Fig. 5b is similar to that in Fig. 5a. It can be
also found from Figs. 5a and 5b that the sufficient and necessary conditions for the
existence of three equilibrium positions for the dislocation within the intermediate
coating layer is that the intermediate coating layer should be softer than both the
inhomogeneity and the matrix, i.e., G1, G2o1, and the interface rigidity parameters
must be greater than certain values. If the two interface rigidity parameters are lower than
certain values (e.g., w ¼ gp3.85 and w ¼ 4gp13.04 for R ¼ 2.25), there will be only one
unstable equilibrium position for the dislocation no matter what values of G1 and G2 are
taken.

3.2. Image force on the screw dislocation interacting with two parallel straight imperfect

interfaces

If we let the inhomogeneity radius a approach infinity and keep the thickness h ¼ b�a

fixed, then our results can be used to investigate the interaction of a screw dislocation with
two parallel straight imperfect interfaces, as illustrated in Fig. 6. In Fig. 6 a new coordinate
system (x1, y) is established by translating the origin of the original coordinate system (x, y)
to the right intersection point between the inner circle and the horizontal axis, i.e.,
x1 ¼ x�a. As a result the screw dislocation in the new coordinate system is located at
x1 ¼ d�a and y ¼ 0.
For the case of two straight interfaces, we redefine the two interface rigidity parameters

w and g as

w ¼ hk1
m1 þ m2
m1m2

; g ¼ hk2
m2 þ m3
m2m3

. (37)

We also redefine the normalized image force on the dislocation ~Fx and the dimensionless
dislocation position ~d as

~F x ¼
2ph

m2b̂
2

F x; ~d ¼
d� a

h
. (38)
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In the following we present the results for a screw dislocation interacting with two
parallel straight imperfect interfaces. In our calculation for this case, we set a ¼ 200h with
the series in Eq. (30) being truncated at n ¼ 2000 for a relative error less than 0.01%.

Fig. 7 demonstrates the variation of the image force ~Fx on the dislocation as a function
of ~d for different values of interface rigidity l ¼ w ¼ g, with G1 ¼ G2 ¼ 1/3 (m1 ¼ m3 ¼ 5m2)
in Fig. 7a and G1 ¼ 1/3, G2 ¼ 0.1 (m1 ¼ 5m2, m3 ¼ 19m2) in Fig. 7b. It’s observed from
Fig. 7a that the image force for fixed l is anti-symmetric with respect to the midpoint ~d ¼ 1

2
,

which is always an equilibrium position. This is expected since the shear moduli of the
inhomogeneity ‘‘1’’ and the matrix ‘‘3’’ are the same, and the two interface rigidity
parameters w and g are also the same. Furthermore, it is noted that (Fig. 7a) when lp2.43
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Fig. 6. A screw dislocation within a coating layer interacting with two parallel straight imperfect interfaces.

Fig. 7. Variation of the image force ~F x on the dislocation within the coating layer as a function of ~d for different

interface rigidity l (l ¼ w ¼ g). Results for G1 ¼ G2 ¼ 1/3 (m1 ¼ m3 ¼ 5m2) in (a), and G1 ¼ 1/3, G2 ¼ 0.1 (m1 ¼ 5m2,
m3 ¼ 19m2) in (b).
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there is only one unstable equilibrium position at the midpoint. When l42.43, however,
there are three equilibrium positions: two unstable ones close to the two imperfect
interfaces, and one stable at the midpoint. The nature of the equilibrium position
at the midpoint depends on the critical value lc for G1 ¼ G2 ¼ G. Table 2 lists the values of
lc when G is increased from zero to 1. Similar to the discussion for the annulus coating
case, lc is an increasing function of G and approaches infinity when G ¼ 1. As for Fig. 7b,
it is observed that the image forces for different values of the interface rigidity all pass
through one common point below the zero-force axis, which is similar to Fig. 4a: (1) when
lo4.5, there is only one unstable equilibrium position; (2) when l ¼ 4.5, there are two
equilibrium positions at ~d ¼ 0:232 and 0.916. While ~d ¼ 0:916 is an unstable one, ~d ¼ 0:232
is a saddle point; (3) when l44.5, there are two unstable and one stable equilibrium
positions.
Finally, Fig. 8 shows the variation of the image force ~Fx on the dislocation as a function

of ~d for different values of G2 with G1 ¼ 1/3 (m1 ¼ 5m2) and w ¼ g ¼ 40. It is found that
Fig. 8 is similar to Fig. 3a: (1) when G2o0.81 there exist three equilibrium positions for the
screw dislocation: two unstable near the two interfaces and one stable between the two
unstable ones; (2) when G2 ¼ 0.81 there are two equilibrium positions at ~d ¼ 0:0096 and
0.886. While ~d ¼ 0:0096 is an unstable one, ~d ¼ 0:886 is a saddle point; (3) when G240.81
there exists only one unstable equilibrium position very close to the inhomogeneity–coat-
ing interface.
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Table 2

Critical value lc vs. dimensionless constant G (from 0 to 1)

G 0 0.1 0.2 1/3 0.4 0.5 0.6 0.7 0.8 0.9 1

lc 1.44 1.68 1.95 2.43 2.74 3.39 4.35 5.98 9.28 19.2 N

Fig. 8. Variation of the image force ~Fx on the dislocation within the coating layer as a function of ~d for different

G2 with G1 ¼ 1/3 (m1 ¼ 5m2) and w ¼ g ¼ 40.
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4. Concluding remarks

The problem of a screw dislocation interacting with two concentric circular imperfect
interfaces (or with two parallel straight imperfect interfaces in the limiting case) is
addressed in detail, with an emphasis on the dislocation mobility and stability phenomena.
Our results show that when the inhomogeneity–coating and coating–matrix interfaces are
imperfect, there are three types of equilibrium positions for the image force applied on the
dislocation within the coating layer: (1) one single unstable equilibrium position; (2) two
equilibrium positions: one is unstable and the other one is either stable or unstable (i.e., the
saddle point); (3) three equilibrium positions: two are unstable and one is stable. The
conditions for determining the three types of equilibrium positions are also presented. It is
further found that when the two interfaces are imperfect, there always exists at least one
equilibrium position for the dislocation. The results in this paper further demonstrate that
the situation in which the screw dislocation interacts with two imperfect interfaces can be
quite different to and more complex than the one in which a screw dislocation interacting
with only one imperfect interface. We also point out that while the far-field loading
solution (Eqs. (21)–(23)) can be applied to investigate the effect of the imperfect interfaces
on the effective material property, the screw-dislocation solution can be extended to the
study of the interaction of a crack with the two imperfect interfaces. Furthermore, since
material properties of a composite can be strongly influenced by the dislocation behaviors
in the material system (e.g., Leonard and Haataja, 2005), it is expected that results
presented in this paper could be used as guidance for future numerical analysis of
dislocation mobility and stability in multiphase systems with multiple imperfect interfaces.
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