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This paper investigates the magnetoelectroelastic responses of multiferroic fibrous composites with imper-
fectly bonded interface under longitudinal shear. The proposed imperfect interface model is a natural gener-
alization of the shear lag �or the spring layer� model. By virtue of the complex variable method, we first
consider the case where an isolated circular multiferroic fiber is imperfectly bonded to an infinite multiferroic
matrix. Very concise expressions for the complex field potentials characterizing the magnetoelectroelastic fields
inside and outside the circular fiber are obtained when the matrix is subjected to the remote uniform magne-
toelectroelastic loading. The Mori-Tanaka mean-field method is then employed to derive the effective moduli
of the multiferroic fibrous composite made of randomly distributed fibers reinforced to the matrix. Particularly
we demonstrate that the interfacial imperfection in elasticity, electricity, and magnetism will always cause a
significant reduction in the magnetoelectric coefficient of the BaTiO3-CoFe2O4 fibrous composite.
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I. INTRODUCTION

The magnetoelectric �ME� effect, which is defined as the
induction of an electric polarization by a magnetic field or
the induction of a magnetization by an electric field in mul-
tiferroic composites composed of ferroelectric and ferromag-
netic phases, is a focus research topic, both theoretically1–10

and experimentally.11–13 The multiferroic composite can be
laminated composite �2-2 connectivity�,1–6 fibrous composite
�1-3 or 3-1 connectivity�,7–10 or composite with 0-3 or 3-0
connectivity,1 or 2-1 connectivity.12 A comprehensive review
of recent research activities on the linear ME effect was pre-
sented by Fiebig.14 Generally speaking the ME effect in the
multiferroic composite is achieved through the product prop-
erty: a magnetic field applied to the multiferroic composite
will induce strain in the ferromagnetic phase which is passed
through the interface to the ferroelectric phase, where it in-
duces an electric polarization.7,14 Therefore the interface is
critical in achieving the ME effect. In earlier investigation
the interface between the ferroelectric and ferromagnetic
constituents was primarily assumed to be perfect or ideal
coupling,1,2,6–10 resulting in large deviations between theory
and experiment. An improvement was made by Bichurin et
al.4 who introduced an interface coupling parameter k that
defines the degree to which the deformation of the piezoelec-
tric layer follows that of the magnetostrictive layer. Nan et
al.3 studied the influence of the interfacial bonding on the
ME effect in the multiferroic laminated composite of
Terfenol-D and PZT by means of the Green’s function tech-
nique. It is noted that these structure models are confined to
the multiferroic laminated composite.3,4 To the best of the
authors’ knowledge, however, the influence of the imper-
fectly bonded interface on the ME effect in multiferroic fi-
brous composite has not been investigated thoroughly.

This investigation is, therefore, concerned with the ME
effect in multiferroic fibrous composite with imperfect inter-
face under longitudinal shear. Both the fiber and matrix are
assumed to be transversely isotropic �6 mm material symme-
try about the fiber axis�. The imperfect interface proposed is
a natural extension of the shear lag model �or the spring layer

model�:15–21 �i� tractions are continuous but displacements
are discontinuous across the imperfect interface. The jumps
in displacement components are further assumed to be pro-
portional, in terms of the “spring-factor-type” interface pa-
rameters, to their respective interface traction components;
�ii� the normal electric displacement is continuous but the
electric potential is discontinuous across the interface. The
jump in the electric potential is proportional to the normal
electric displacement; �iii� the normal magnetic flux is con-
tinuous but the magnetic potential is discontinuous across the
interface. The jump in the magnetic potential is proportional
to the normal magnetic flux. This general imperfect interface,
which could model various interfacial damages �e.g., deb-
onding, sliding and/or cracking across the interface� and
could also simulate the thin glue layer between any two ad-
jacent phases, is termed the mechanically compliant, dielec-
trically and magnetically weakly conducting interface.20

This paper is organized as follows. In Sec. II, by means of
the complex variable method, an analytical solution is ob-
tained for an isolated circular cylindrical multiferroic fiber
embedded in an infinite multiferroic matrix.16,20 The Mori-
Tanaka mean-field approximation9,10,22–26 is then adopted in
Sec. III to analyze the overall magnetoelectroelastic behav-
iors of the multiferroic composite with finite fiber concentra-
tions. In Sec. IV, as an important application, we discuss the
ME effect of the BaTiO3-CoFe2O4 multiferroic fibrous com-
posite with imperfectly bonded interface. Conclusions are
drawn in Sec. V.

II. AN ISOLATED MULTIFERROIC FIBER

A. Basic formulation

Consider first an isolated multiferroic fiber with a circular
cross section �phase 2� of radius R embedded in an infinite
multiferroic matrix �phase 1�, as shown in Fig. 1. Both the
fiber and matrix are 6 mm material symmetry about the fiber
axis. At infinity, the matrix is subjected to the anti-plane
shear stresses �zx

� ,�zy
� , and the in-plane electric displace-

ments Dx
� ,Dy

� and magnetic fluxes Bx
� ,By

�. Thus the two-
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phase composite system is in a state of anti-plane deforma-
tion described by

ux = uy = 0, uz = w�x,y� ,

� = ��x,y�, � = ��x,y� , �1�

where ux, uy, uz, denote the displacement components in the
x, y, and z directions, respectively; � and � are the electric
and magnetic potentials.

The constitutive equations become

�zx = c44
�w

�x
+ e15

��

�x
+ q15

��

�x
,

Dx = e15
�w

�x
− �11

��

�x
− �11

��

�x
,

Bx = q15
�w

�x
− �11

��

�x
− 	11

��

�x
, �2a�

�zy = c44
�w

�y
+ e15

��

�y
+ q15

��

�y
,

Dy = e15
�w

�y
− �11

��

�y
− �11

��

�y
,

By = q15
�w

�y
− �11

��

�y
− 	11

��

�y
, �2b�

where �kz, Dk, Bk, �k=x ,y�, c44, e15, q15, �11, �11, 	11 are the
stresses, electric displacements, magnetic fluxes, elastic
modulus, piezoelectric coefficient, piezomagnetic coefficient,
dielectric permittivity, ME coefficient, and the magnetic per-
meability, respectively.

Under this antiplane deformation, the governing equations
are simplified to

c44�
2w + e15�

2� + q15�
2� = 0,

e15�
2w − �11�

2� − �11�
2� = 0,

q15�
2w − �11�

2� − 	11�
2� = 0, �3�

where �2= �2

�x2 + �2

�y2 is the two-dimensional Laplace operator.
Next we introduce the generalized displacement vector

U= �w � ��T and the generalized stress function vector 
,
which is related to the stresses, electric displacements, and
magnetic fluxes through the following relations:

��zy

Dy

By
� = 
,x, ��zx

Dx

Bx
� = − 
,y . �4�

In addition we define the generalized stiffness matrix L as

L = �c44 e15 q15

e15 − �11 − �11

q15 − �11 − 	11
� , �5�

which is real and symmetric but not positive definite.
It can be shown that the generalized displacement and

stress function vectors can be concisely expressed in terms of
an analytic function vector f�z� of a single complex variable
z=x+ iy=r exp�i�� as20

U = Im�f�z��, 
 = L Re�f�z�� . �6�

Furthermore, the strains, stresses, electric fields, electric dis-
placements, magnetic fields, and magnetic fluxes can also be
concisely expressed in terms of f�z� as follows:

� �zy + i�zx

− Ey − iEx

− Hy − iHx
� = f��z�, ��zy + i�zx

Dy + iDx

By + iBx
� = L�f��z� , �7�

where the strains �zx and �zy, the electric fields Ex and Ey, the
magnetic fields Hx and Hy are related to w, �, and � through

�zx = wx, �zy = wy ,

Ex = − �x, Ey = − �y ,

Hx = − �x, Hy = − �y . �8�

B. The generalized shear lag model for the imperfect
fiber-matrix interface

In order to model various possible damages occurring on
the fiber-matrix interface and to simulate the thin glue layer
existing between two adjacent phases, we adopt the follow-
ing generalized shear lag model,15–21 which can be teamed as
the mechanically compliant, dielectrically and magnetically
weakly conducting interface:21

�zr
�1� = �zr

�2�, w�1� − w�2� = ��zr
�2�,

RRRR

Multiferroic MatrixMultiferroic MatrixMultiferroic MatrixMultiferroic Matrix
(Phase 1)(Phase 1)(Phase 1)(Phase 1)

Multiferroic FiberMultiferroic FiberMultiferroic FiberMultiferroic Fiber
(Phase 2)(Phase 2)(Phase 2)(Phase 2)

xxxx

yyyy

θθθθ

rrrr

Imperfectly Bonded InterfaceImperfectly Bonded InterfaceImperfectly Bonded InterfaceImperfectly Bonded Interface

FIG. 1. �Color online� A multiferroic circular cylindrical fiber of
radius R imperfectly bonded to an infinite multiferroic matrix. The
polarization and magnetization directions are along the fiber axis.
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Dr
�1� = Dr

�2�, ��1� − ��2� = − Dr
�2�,

Br
�1� = Br

�2�, ��1� − ��2� = − �Br
�2�, on r = R , �9�

where �, , and � are three non-negative parameters. It is
noted that �==�=0 corresponds to a perfect interface
studied previously,8–10 whereas � , ,�→� describes a com-
pletely debonded and charge-free interface.

C. The field potentials

The imperfect interface conditions in Eq. �9� can also be
expressed in terms of two analytic function vectors f1�z� de-
fined in the matrix and f2�z� defined in the fiber, as follows:

L2f2
+�z� + L2f̄2

−	R2

z

 = L1f1

−�z� + L1f̄1
+	R2

z

 ,

f1
−�z� − f̄1

+	R2

z

 − f2

+�z� + f̄2
−	R2

z



= �L2�zf2�
+�z� −

R2

z
f̄2�

−	R2

z

� �z = R� , �10�

where

� =
1

R�� 0 0

0 −  0

0 0 − �
� . �11�

It follows from Eq. �10� that

f1�z� = L1
−1L2f̄2	R2

z

 + L1

−1kz − L1
−1k̄R2z−1,

f̄1	R2

z

 = L1

−1L2f2�z� − L1
−1kz + L1

−1k̄R2z−1, �12�

where the vector k is related to the remote loading as

k = ��zy
� + i�zx

�

Dy
� + iDx

�

By
� + iBx

� � . �13�

Substituting Eq. �12� into Eq. �10� and eliminating f1
−�z�

and f̄1
+� R2

z
�, we finally arrive at

�I + L1
−1L2�f̄2

−	R2

z

 + �L2

R2

z
f̄2�

−	R2

z

 − 2L1

−1k̄R2z−1

= �I + L1
−1L2�f2

+�z� + �L2zf2�
+�z� − 2L1

−1kz �z = R� .

�14�

Apparently the left-hand side of the above expression is
analytic outside the fiber including the point at infinity,
whilst the right-hand side of the above expression is analytic
within the fiber. Consequently we arrive at the following set
of differential equations:

�I + L1
−1L2�f2�z� + �L2zf2��z� = 2L1

−1kz �z � R� �15�

with its solution expediently given by

f2�z� = 2L2
−1�L1

−1 + L2
−1 + ��−1L1

−1kz �z � R� . �16�

In view of Eqs. �12� and �16�, the expression of f1�z� is
then given by

f1�z� = �2L1
−1�L1

−1 + L2
−1 + ��−1 − I�L1

−1k̄R2z−1 + L1
−1kz

�17�

�z � R� .

Once the two analytic function vectors f1�z� and f2�z� are
known, it is easy to obtain the magnetoelectroelastic field in
and outside the circular cylindrical fiber by using Eqs. �6�
and �7�. For example, it is easy to find that the mechanical
strains, the electric and magnetic fields are all uniform inside
the circular fiber with their values being given by

� �zy + i�zx

− Ey − iEx

− Hy − iHx
� = 2L2

−1�L1
−1 + L2

−1 + ��−1L1
−1k, r � R .

�18�

However, outside the fiber, i.e., in the matrix, they are space
dependent and distributed as

� �zy + i�zx

− Ey − iEx

− Hy − iHx
� = L1

−1k − 	R

r

2

exp�− 2i���2L1
−1

��L1
−1 + L2

−1 + ��−1 − I�L1
−1k̄, r � R .

�19�

The results obtained in this section will be employed in the
following section to obtain the overall magnetoelectroelastic
behaviors of multiferroic composites with finite inclusion
concentration.

III. THE EFFECTIVE MODULI

We assume that the aligned circular multiferroic fibers of
same radius are randomly distributed on the x-y plane and
that all the imperfect circular fiber-matrix interfaces are iden-
tical �i.e., the matrix � is the same for all the interfaces�,
then the fiber-reinforced multiferroic composite is also trans-
versely isotropic with the x-y plane being the isotropic plane.
By employing the Mori-Tanaka mean-field method,9,10,22–27

the effective moduli of the multiferroic fibrous composite
with the imperfectly bonded interface can be derived as

Lc = L1��1 + c2�L1 − 2c2�L1
−1 + L2

−1 + ��−1�−1��1 − c2�L1

+ 2c2�L1
−1 + L2

−1 + ��−1� , �20�

where c2 is the volume fraction of the multiferroic fibers.
Apparently the symmetric condition Lc=Lc

T is satisfied. In
Eq. �20� the effective moduli Lc are defined as
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���zy�
�Dy�
�By�

� = Lc� ��zy�
�− Ey�
�− Hy�

�, ���zx�
�Dx�
�Bx�

� = Lc� ��zx�
�− Ex�
�− Hx�

� , �21�

where �¯� stands for the average value. A detailed deriva-
tion of Eq. �20� is given in the Appendix.

It is obvious that if the interface is perfect, i.e., �=0, then
Eq. �20� reduces to

Lc = L1��1 + c2�L1 − 2c2�L1
−1 + L2

−1�−1�−1��1 − c2�L1

+ 2c2�L1
−1 + L2

−1�−1�

= L1��1 + c2�L1 + �1 − c2�L2�−1��1 − c2�L1 + �1 + c2�L2�

= L1��1 + c2�L1 + c1L2�−1�c1L1 + �1 + c2�L2� , �22�

where c1=1−c2 is the volume fraction of the multiferroic
matrix. Equation �22� is just the expression of the effective
moduli of the multiferroic composite with perfect interface
in the framework of composite cylinder assemblage �CCA�
derived by Benveniste.8 Therefore, it is of interest to notice
that the present prediction of Mori-Tanaka scheme coincides
with the CCA result. We further point out that Benveniste25

also derived the effective thermal conductivity of the com-
posite with spherical particles in the presence of thermal con-
tact resistance at interphase boundaries by using the general-
ized self-consistent scheme and the Mori-Tanaka theory, and
thus Eq. �20� for the case of fibrous system and the coupled
field with imperfect interfaces derived in this article can be
considered as the counterpart of Eq. �14� in Ref. 25. We
finally observe from Eq. �20� that the effective moduli for the
imperfect interface case are equivalent to those of a virtual
composite, where the circular fibers with the virtual moduli

L̂2= �L2
−1+��−1 are perfectly bonded to the matrix.

IV. APPLICATION: THE ME EFFECT OF BaTiO3-COFe2O4

FIBROUS COMPOSITE

In Sec. III we have obtained in Eq. �20� the effective
moduli Lc of the multiferroic fibrous composite with imper-
fectly bonded interface. Equation �20� demonstrates the pres-
ence of the ME coefficient �11 for the composite with piezo-
electric fibers reinforced in magnetostrictive matrix or
conversely magnetostrictive fibers reinforced in piezoelectric
matrix �It is noted that in either piezoelectric or magneto-
strictive phase, there is no ME effect�. To show the influence
of the imperfect interface on the ME effect more clearly, we
consider two typical cases: �i� a composite consisting of the
magnetostrictive CoFe2O4 matrix reinforced by the piezo-
electric BaTiO3 fibers and �ii� a composite consisting of the
piezoelectric BaTiO3 matrix reinforced by the magnetostric-
tive CoFe2O4 fibers. The pertinent material properties of
BaTiO3 are c44=43�109 N /m2, e15=11.6 C /m2, �11=11.2
�10−9 C2 /N m2, 	11=5�10−6 Ns2 /C2; while those of
CoFe2O4 are c44=45.3�109 N /m2, q15=550 m /A, �11
=0.08�10−9 C2 /N m2, 	11=590�10−6 N s2 /C2.

A. A composite consisting of CoFe2O4 matrix reinforced by
BaTiO3 fibers

Figure 2 shows the ME coefficient �11 as a function of the
BaTiO3 volume fraction c2 and for different interfacial im-

perfections �only in elasticity� characterized by �= �̃R /c44
�2�

and =�=0 with �̃ being a dimensionless parameter. It is
found that the ME coefficient decreases as �̃ increases �i.e.,
the interface becomes more compliant�, a phenomenon simi-
lar to that observed in multiferroic laminated composites.3

Furthermore the optimal value of the BaTiO3 volume frac-
tion, at which the maximum ME coefficient occurs, de-
creases as the interface becomes more compliant. Figures 3
and 4 show the ME coefficient �11 as a function of the
BaTiO3 volume fraction c2: �1� for the interfacial imperfec-

tion �in dielectricity� characterized by = ̃R /�11
�2� and �=�

=0 with ̃ being a dimensionless parameter �Fig. 3� and �2�
for the interfacial imperfection �in magnetism� characterized
by �= �̃R /	11

�2� and �==0 with �̃ being a dimensionless

FIG. 2. Variation of the ME coefficient �11 vs. volume fraction
c2 of BaTiO3 for different interfacial imperfections in elasticity
characterized by �= �̃R /c44

�2� and =�=0 with �̃ being a dimension-
less parameter. CoFe2O4 matrix reinforced by BaTiO3 fiber.

FIG. 3. Variation of the ME coefficient �11 vs. volume fraction
c2 of BaTiO3 for different interfacial imperfections in dielectricity

characterized by = ̃R /�11
�2� and �=�=0 with ̃ being a dimen-

sionless parameter. CoFe2O4 matrix reinforced by BaTiO3 fiber.
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parameter �Fig. 4�. It is observed from Figs. 3 and 4 that the

ME coefficient decreases as ̃ or �̃ increases. In addition the
optimal value of the BaTiO3 volume fraction, at which the
maximum ME coefficient occurs, decreases significantly as

̃ increases �Fig. 3�; while its optimal fraction value basi-
cally remains the same as �̃ increases �Fig. 4�.

B. A composite consisting of BaTiO3 matrix reinforced by
CoFe2O4 fibers

Figure 5 shows the ME coefficient �11 as a function of the
CoFe2O4 volume fraction c2 and for the interfacial imperfec-
tion �only in elasticity� characterized by �= �̃R /c44

�2� and 
=�=0. Similarly, Figs. 6 and 7 illustrate �11 as a function of

the CoFe2O4 volume fraction c2: �1� for the interfacial im-

perfection �in dielectricity� characterized by = ̃R /�11
�2� and

�=�=0 �Fig. 6� and �2� for the interfacial imperfection �in
magnetism� characterized by �= �̃R /	11

�2� and �==0 �Fig.
7�. It is observed that when the interface is perfect ��=
=�=0�, the maximum ME coefficient ��11=5.92
�10−12 N s /VC when c2=0.835� for a composite consisting
of BaTiO3 matrix reinforced by CoFe2O4 fibers is smaller
than that ��11=7.03�10−12 N s /V C when c2=0.866� for a
composite consisting of CoFe2O4 matrix reinforced by
BaTiO3 fibers. Similar to the previous case, the imperfection
in elasticity, dielectricity and magnetism will always cause a
reduction in the ME effect. Different to the previous case,
however, the optimal value of the CoFe2O4 volume fraction,

FIG. 4. Variation of the ME coefficient �11 vs. volume fraction
c2 of BaTiO3 for different interfacial imperfections in magnetism
characterized by �= �̃R /	11

�2� and �==0 with �̃ being a dimen-
sionless parameter. CoFe2O4 matrix reinforced by BaTiO3 fiber.

FIG. 5. Variation of the ME coefficient �11 vs. volume fraction
c2 of CoFe2O4 for different interfacial imperfections in elasticity
characterized by �= �̃R /c44

�2� and =�=0 with �̃ being a dimension-
less parameter. BaTiO3 matrix reinforced by CoFe2O4 fiber.

FIG. 6. Variation of the ME coefficient �11 vs. volume fraction
c2 of CoFe2O4 for different interfacial imperfections in dielectricity

characterized by = ̃R /�11
�2� and �=�=0 with ̃ being a dimen-

sionless parameter. BaTiO3 matrix reinforced by CoFe2O4 fiber.

FIG. 7. Variation of the ME coefficient �11 vs volume fraction
c2 of CoFe2O4 for different interfacial imperfections in magnetism
characterized by �= �̃R /	11

�2� and �==0 with �̃ being a dimen-
sionless parameter. BaTiO3 matrix reinforced by CoFe2O4 fiber.
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at which the maximum ME effect occurs, decreases signifi-
cantly as �̃ increases �Fig. 7�, whilst its value basically re-

mains the same as ̃ increases �Fig. 6�.

V. CONCLUSIONS

A theoretical model incorporating the interfacial imper-
fection has been established for studying the ME effect in
multiferroic fibrous composites. The generalized shear lag
model for the imperfect interface is introduced in Eq. �9� to
account for possible interfacial damage and to simulate the
thin glue layer between the two phases. A compact matrix
expression for the effective moduli of the multiferroic fibrous
composite with imperfect interface is obtained �Eq. �20��.
Numerical results demonstrate that the interfacial imperfec-
tion in elasticity, electricity and magnetism will all cause a
significant reduction in the �ME� effect. Therefore, the influ-
ence of the interfacial imperfection on the ME effect is im-
portant and cannot be ignored in general.
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APPENDIX: A DETAILED DERIVATION OF Eq. (20)

In order to describe the overall behavior of the multifer-
roic composite, we focus on a representative volume element
�RVE�. In addition we assume that the RVE is subjected to
the loadings �zy

� , Dy
�, and By

�. The volume-averaged values
within the RVE can be proved to be25–27

���zy�
�Dy�
�By�

� = �1 − c2����zy�1

�Dy�1

�By�1
� + c2���zy�2

�Dy�2

�By�2
� ,

� ��zy�
�− Ey�
�− Hy�

� = �1 − c2�� ��zy�1

�− Ey�1

�− Hy�1
� + c2� ��zy�2

�− Ey�2

�− Hy�2
�

+
c2

�R2�
l �

�w�1� − w�2��
���1� − ��2��
���1� − ��2��

�n̂2dl , �A1�

where �¯�1 and �¯�2 refer to the averages over volumes of
the matrix and fiber respectively, the line integral is taken
along the perimeter l of a typical fiber and n̂2 the y compo-
nent of the unit normal vector on the interface in the outward
direction with respect to the fiber. In addition ��zy�=�zy

� ,
�Dy�=Dy

�, �By�=By
�.

By employing the results of Eq. �18� in Sec. II, it is found
that

���zy�2

�Dy�2

�By�2
� = 2�L1

−1 + L2
−1 + ��−1L1

−1���zy�1

�Dy�1

�By�1
� . �A2�

Substituting the above into Eq. �A1�, we obtain

���zy�1

�Dy�1

�By�1
� = �2c2�L1

−1 + L2
−1 + ��−1L1

−1 + �1 − c2�I�−1��zy
�

Dy
�

By
� � .

�A3�

In addition we have

� ��zy�1

�− Ey�1

�− Hy�1
� = L1

−1���zy�1

�Dy�1

�By�1
� ,

� ��zy�2

�− Ey�2

�− Hy�2
� = L2

−1���zy�2

�Dy�2

�By�2
� , �A4�

1

�R2�
l �

�w�1� − w�2��
���1� − ��2��
���1� − ��2��

�n̂2dl = ����zy�2

�Dy�2

�By�2
� .

In view of Eqs. �A3� and �A4�, Eq. �A1� can be finally ex-
pressed as

� ��zy�
�− Ey�
�− Hy�

� = L1
−1��1 + c2�L1

− 2c2�L1
−1 + L2

−1 + ��−1���1 − c2�L1

+ 2c2�L1
−1 + L2

−1 + ��−1�−1��zy
�

Dy
�

By
� � . �A5�

Comparison of Eq. �A5� with Eq. �21� will immediately lead
to the effective moduli as

Lc = Lc
T

= ��1 − c2�L1 + 2c2�L1
−1 + L2

−1 + ��−1���1 + c2�L1

− 2c2�L1
−1 + L2

−1 + ��−1�−1L1 = L1��1 + c2�L1 − 2c2�L1
−1

+ L2
−1 + ��−1�−1��1 − c2�L1 + 2c2�L1

−1 + L2
−1 + ��−1� .

�A6�
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