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Abstract In this paper we investigate the magne-
toelectroelastic behavior induced by a penny-shaped
crack in a magnetoelectroelastic material. The crack is
assumed to be magnetically dielectric. A closed-form
solution is derived by virtue of Hankel transform tech-
nique with the introduction of certain auxiliary func-
tions. Field intensity factors are obtained and analyzed.
The results indicate that the stress intensity factor
depends only on the mechanical loads. However, all
the other field intensity factors depend directly on both
the magnetic and dielectric permeabilities inside the
crack as well as on the applied magnetoelectromechan-
ical loads and the material properties of the magneto-
electroelastic material. Several special cases are further
discussed, with the reduced results being in agreement
with those from literature. Finally, according to the
maximum crack opening displacement (COD) crite-
rion, the effects of the magnetoelectromechanical loads
and the crack surface conditions on the crack propaga-
tion and growth are evaluated.
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1 Introduction

Materials possessing magnetoelectroelastic coupling
effects have found increasing applications in engineer-
ingstructures,particularly insmartmaterials/intelligent
structures. The effects of magnetoelectromechanical
coupling have been observed in single-phase materi-
als where simultaneous magnetic and electric order co-
exists, and in two-phase composites where the
participating phases are piezoelectric and piezomag-
netic (Avellaneda and Harshe 1994; Benvensite 1995;
Harshe et al. 1993; Huang and Kuo 1997; Kirchner
and Alshits 1996; Li and Dunn 1998; Nan 1994). In
recent years, an area of increasing interest is the fracture
mechanics of magnetoelectroelastic materials, which
combine the ferromagnetic and ferroelectric phases
(Liu et al. 2001; Song and Sih 2003; Gao et al. 2003;
Gao and Noda 2004; Wang and Mai 2004, 2007; Zhou
et al. 2004; Hu and Li 2005; Tian and Gabbert 2005;
Chue and Liu 2005; Feng et al. 2005; Hu et al. 2006;
Li and Kardomateas 2006; Niraula and Wang 2006;
Feng and Su 2006), where magnetoelectrically imper-
meable and/or permeable crack surface assumptions
are applied. The reason of making the assumptions is
perhaps that one can directly extend the two kinds of
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idealized electrical boundary condition of the crack-
faces, i.e., electrically impermeable crack (Pak 1990)
and permeable crack (Parton 1976) used for piezoelec-
tric ceramics to magnetoelectroelastic materials.

However, for piezoelectric ceramics, exact analyzes
of electroelastic fields for a slender hole (Dunn 1994;
Sosa and Khutoryansky 1996; Zhang et al. 1998; Gao
and Fan 1999) show that the electrically impermeable
assumption could introduce significant errors in deter-
mining electroelastic behavior, since the dielectric per-
mittivity of the crack interior is, in fact, present, even
though it is small. On the other hand, for an electrically
permeable crack, because the dielectric permittivity of
the opening crack interior, in fact, does not enter the
electric boundary conditions, the effects of the dielec-
tric of the opening crack interior are still neglected,
although an ideal crack has a zero separation between
two crack surfaces before crack opening. Therefore,
electrically permeable assumption also causes errors in
some extent. Hao and Shen (1994) proposed the follow-
ing expressions between the electric field and electric
displacement inside an opening crack

E (c) = − �φ

�uz
, D(c) = −ε(c) �φ

�uz
, (1)

where �φ and �uz denote the voltage and the crack
opening displacement (COD), ε(c) denotes the permit-
tivity of the crack interior. The crack surface assump-
tion is referred to the exact electric boundary condition
and the corresponding crack is called a dielectric crack.
The advantage of the exact electric boundary condition
over the impermeable and permeable conditions has
been shown by the finite-element analysis (McMeeking
1999). In the last few years, the electroelastic behavior
induced by a dielectric crack embedded in piezoelectric
materials were widely investigated for two-dimensional
crack problems (McMeeking 2001; Xu and Rajapakse
2001; Wang and Jiang 2002, 2004; Zhang et al. 2002;
Wang and Mai 2003) and for three-dimensional penny-
shaped crack problems (Li and Lee 2004).

For crack problems of magnetoelectroelastic mate-
rials, the crack-face magnetoelectric boundary condi-
tions ought to be one of the basic and important issues
on fracture analyzes. However, as pointed out before,
in most of these studies, the crack model was assumed
to be either magnetoelectrically impermeable or per-
meable. Based on the results of piezoelectric ceramics,
these assumptions will probably cause some errors in
a certain extent.

In addition, for the three-dimensional crack analysis,
although some achievements for piezoelectric ceramics
are made (Wang 1992; Jiang and Sun 2001; Kogan et al.
1996; Chen and Shioya 1999; Karapetian et al. 2000;
Yang and Lee 2002, 2003; Li and Lee 2004), to the
best of the authors’ knowledge, only few results related
to the fracture behaviors of a crack in a three-dimen-
sional magnetoelectroelastic body have been reported
(Niraula and Wang 2006; Zhao et al. 2006; Feng et al.
2007). Among these studies, Niraula and Wang (2006)
derived an exact closed-form solution for a penny-
shaped crack in a magnetoelectrothermoelastic mater-
ial in a temperature field. Zhao et al. (2006) obtained
the solution for an ellipsoidal cavity in an infinite trans-
versely isotropic magnetoelectroelastic medium and
derived the exact solution for a penny-shaped crack
by setting the minor axis of the cavity approaching
zero. Feng et al. (2007) considered the dynamic fracture
problems of a penny-shaped crack in a finite magneto-
electroelastic layer. It should be pointed out that in the
work of both Niraula and Wang (2006) and Feng et al.
(2007), the crack surfaces are assumed to be magneto-
electrically impermeable or permeable.

In this paper, based on the more accurate crack sur-
face conditions, a magnetically dielectric penny-shaped
crack embedded in a magnetoelectroelastic space is
considered. Different from Zhao et al. (2006), a closed-
form solution is directly derived by means of the Han-
kel transform technique. The field intensity factors are
also obtained and discussed in detail. Some numerical
results of COD intensity factor are presented to predict
crack propagation and growth.

2 Statement of the problem

Consider a class of axisymmetric problems of a trans-
versely isotropic magnetoelectroelastic material with
the poling direction as the z-axis and the isotropic plane
as the xy-plane. The constitutive equations within the
framework of the theory of linear magnetoelectroelas-
tic medium take the form (Feng et al. 2007)

⎧
⎪⎪⎨

⎪⎪⎩

σrr

σθθ
σzz

σr z

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

c11 c12 c13 0
c12 c11 c13 0
c13 c13 c33 0
0 0 0 c44

⎤

⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ur
∂r
ur
r
∂uz
∂z

∂ur
∂z + ∂uz

∂r

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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+

⎡

⎢
⎢
⎣

0 e31

0 e31

0 e33

e15 0

⎤

⎥
⎥
⎦

{
∂φ
∂r
∂φ
∂z

}

+

⎡

⎢
⎢
⎣

0 f31

0 f31

0 f33

f15 0

⎤

⎥
⎥
⎦

×
{
∂ψ
∂r
∂ψ
∂z

}

, (2a)

{
Dr

Dz

}

=
[

0 0 0 e15

e31 e31 e33 0

]

⎧
⎪⎪⎪⎨
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∂ur
∂r
ur
r
∂uz
∂z

∂ur
∂z + ∂uz

∂r

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−
[
ε11 0
0 ε33

]{ ∂φ
∂r
∂φ
∂z

}

−
[

g11 0
0 g33

]

×
{
∂ψ
∂r
∂ψ
∂z

}

, (2b)

{
Br

Bz

}

=
[

0 0 0 f15

f31 f31 f33 0

]

⎧
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∂ur
∂r
ur
r
∂uz
∂z

∂ur
∂z + ∂uz
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⎫
⎪⎪⎪⎬
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−
[

g11 0
0 g33

]{
∂φ
∂r
∂φ
∂z

}

−
[
µ11 0
0 µ33

]

×
{
∂ψ
∂r
∂ψ
∂z

}

, (2c)

where corresponding components are functions of r
and z, independent of angle θ . ur and uz are radial and
axial components of the elastic displacements, respec-
tively; φ and ψ are electric and magnetic potentials,
respectively; σ , D, and B are stress, electric displace-
ment and magnetic induction, respectively; ci j , ei j , fi j ,
and gi j are elastic, piezoelectric, piezomagnetic, and
magnetoelectric constants, respectively; εi j andµi j are
dielectric permittivities and magnetic permeabilities,
respectively.

In the absence of body forces, free charges and elec-
tric current density, stresses, electric displacements and
magnetic inductions satisfy the following equilibrium
equations:

∂σrr

∂r
+ ∂σr z

∂z
+ σrr − σθθ

r
= 0, (3a)

∂σr z

∂r
+ ∂σzz

∂z
+ σr z

r
= 0, (3b)

∂Dr

∂r
+ ∂Dz

∂z
+ Dr

r
= 0, (3c)

∂Br

∂r
+ ∂Bz

∂z
+ Br

r
= 0. (3d)

Substituting the constitutive equations into the above
equations yields the basic governing equations for elas-
tic displacements, ur and uz , electric potential φ, and
magnetic potential ψ as follows

c11

(
∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

)

+ c44
∂2ur

∂z2

+ (c13 + c44)
∂2uz

∂r∂z
+ (e31 + e15)

∂2φ

∂r∂z

+ ( f31 + f15)
∂2ψ

∂r∂z
= 0, (4a)

c44

(
∂2uz

∂r2 + 1

r

∂uz

∂r

)

+ c33
∂2uz

∂z2

+ (c13 + c44)

(
∂2ur

∂r∂z
+ 1

r

∂ur

∂z

)

+e15

(
∂2φ

∂r2 + 1

r

∂φ

∂r

)

+ e33
∂2φ

∂z2

+ f15

(
∂2ψ

∂r2 + 1

r

∂ψ

∂r

)

+ f33
∂2ψ

∂z2 = 0, (4b)

(e31 + e15)

(
∂2ur

∂r∂z
+ 1

r

∂ur

∂z

)

+e15

(
∂2uz

∂r2 + 1

r

∂uz

∂r

)

+ e33
∂2uz

∂z2

−ε11

(
∂2φ

∂r2 + 1

r

∂φ

∂r

)

− ε33
∂2φ

∂z2

−g11

(
∂2ψ

∂r2 + 1

r

∂ψ

∂r

)

− g33
∂2ψ

∂z2 = 0, (4c)

( f31 + f15)

(
∂2ur

∂r∂z
+ 1

r

∂ur

∂z

)

+ f15

(
∂2uz

∂r2 + 1

r

∂uz

∂r

)

+ f33
∂2uz

∂z2

−g11

(
∂2φ

∂r2 + 1

r

∂φ

∂r

)

− g33
∂2φ

∂z2

−µ11

(
∂2ψ

∂r2 + 1

r

∂ψ

∂r

)

− µ33
∂2ψ

∂z2 = 0. (4d)

As shown in Fig. 1, a flat penny-shaped crack of
radius a perpendicular to the poling axis is situated in
a magnetoelectroelastic body and occupies the region
r ≤ a, z = 0. Suppose that the crack opens under the
applied magnetoelectromechanical loads. For simplic-
ity, only one kind of loading cases is considered, i.e.,

σzz (r,±∞) = σ0, σzr (r,±∞) = 0,

Ez (r,±∞) = E0, Hz (r,±∞) = H0, (5)
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Fig. 1 Geometry of a magnetoelectroelastic material with a
penny-shaped crack along with the corresponding coordinates

where σ0, E0, and H0 are given constants representing
the stress, electric field, and magnetic field applied at
infinity, respectively. At the crack plane, elastic, electric
and magnetic boundary conditions are given as follows

σzz(r, 0) = 0, σzr (r, 0) = 0, Dz (r, 0) = D(c),

Bz(r, 0) = B(c), r < a, (6)

where B(c) is the normal component of magnetic induc-
tion inside the crack, which is given as

B(c) = −µ(c) �ψ
�uz

, (7)

with µ(c) denoting the permeability of the crack inte-
rior, D(c) has been expressed in Eq. 1. In this paper,
for convenience, the crack satisfying Eqs. 6, 7, and 1 is
called magnetically dielectric crack.

It should be emphasized that when the crack is
deformed under the applied magnetoelectromechani-
cal loads, the thickness of the magnetically dielectric
medium filling the crack will be changed. For a penny-
shaped crack under axisymmetric loads, the opening
crack profile should be an ellipsoid with a semi-major
axis a and semi-minor axis b (b � a), which means in
the cylinder coordinate system, the ellipsoidal surface
can be expressed as

r2/a2 + z2/b2 = 1. (8)

As demonstrated by Zhang et al. (2006) for penny-
shaped crack problems, both the normal electric dis-
placement and magnetic induction inside the crack full

of magnetically dielectric medium are uniform across
the thickness of the deformed crack under uniformly
magneoelectromechanical loads at infinity (see Eqs. 28
and 29 in Zhang et al. (2006)). And it has also been
proved to be correct for dielectric penny-shaped crack
problems (see e.g., Eq. 27 in Wang and Jiang (2004);
Eq. 48 in Li and Lee (2004)). In addition, we remark
that according to self-consistent method, the COD in
Eqs. 7 and/or 1 can approximately be replaced with
2b

√
1 − r2/a2 (see McMeeking 1999 and Wang and

Mai 2007 for piezoelectric crack problems, and Zhao
et al. 2006 for magnetoelectroelastic crack problems).

It should also be noted that either the magnetically
and/or electrically impermeable or permeable assump-
tions can be treated as two limiting cases of a magnet-
ically dielectric crack. For example, letting ε(c) → 0
(µ(c) → 0), D(c) = 0 (B(c) = 0) follows from Eq. 1
(Eq. 7), which is the premise of an electrically (mag-
netically) impermeable crack. On the other hand, if
letting ε(c) → ∞ (µ(c) → ∞), we get �φ = 0
(�ψ = 0), it is identical to an electrically (magnet-
ically) permeable crack. Moreover, the magnetoelec-
troelastic field corresponding to a magnetoelectrically
permeable crack is assumed to be identical to that of
a conducting crack with respect to both magnetic and
electric fields. By the way, the above analysis is based
on the consideration that a crack is permeable before
deformation, and that both the magnetic and electric
fields are exerted parallel to or perpendicular to the
poling axis.

Because of the symmetry of the problem, it is suf-
ficient to consider the upper-half plane of the penny-
shaped crack. According to superposition theorem, the
above-stated problem can be split up into two subprob-
lems: one relating to a uniform field in a magnetoelec-
troelastic body without crack, and the other relating to a
singular magnetoelectroelastic field due to the presence
of a crack. From the viewpoint of fracture mechanics, it
is sufficient to solve the corresponding problem posed
by the following magnetoelectromechanical boundary
conditions:

σzz(r,+∞) = 0, σzr (r,+∞) = 0,

Ez(r,+∞) = 0, Hz(r,+∞) = 0, (9)

and

σzz(r, 0) = −σ0, Dz(r, 0) = D(c) − D0,

Bz(r, 0) = B(c) − B0, r < a, (10a)
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uz (r, 0) = 0, φ (r, 0) = 0, ψ (r, 0) = 0, r ≥ a,

(10b)

σzr (r, 0) = 0, 0 ≤ r ≤ +∞, (10c)

where

σ0 = σ0, (11a)

D0 = 1

2c2
13 − (c11 + c12) c33

×
[
(2c13e31 − c11e33 − c12e33) σ0

+
(

2c2
13ε33 − 2c33e2

31− c11c33ε33 − c12c33ε33

−c11e2
33 − c12e2

33 + 4c13e31e33

)
E0

+
(

2c2
13g33 − 2c33e31 f31− c11c33g33

−c11e33 f33 − c12e33 f33 + 2c13e31 f33

+2c13e33 f31

)
H0

]
, (11b)

B0 = 1

2c2
13 − (c11 + c12) c33

×
[(

2c13 f31 − c11 f33 − c12 f33

)
σ0

+
(

2c2
13g33 − c11c33g33− c12c33g33

+2c13e31 f33 − c11e33 f33 − c12e33 f33

+2c13e33 f31 − 2c33e31 f31

)
E0

+
(

2c2
13µ33 − c11c33µ33 − c12c33µ33

+4c13 f31 f33 − c11 f 2
33 − c12 f 2

33

−2c33 f 2
31

)
H0

]
(11c)

For convenience, in what follows, σ0, D0, and B0

are respectively called the mechanical, electrical, and
magnetic loads equivalently applied on crack surfaces.

3 Method of solution

3.1 General solution of the governing equations

As usual, it is convenient to employ the Hankel trans-
form technique to solve axisymmtric problems. In this
study, we introduce a potential function by Hankel
transform of the zeroth order

F(r, z) = −
∞∫

0

1

ξ
A(ξ) exp(γ ξ z)

×J0(ξr)dξ, z ≥ 0, (12)

and set

ur (r, z) = ∂F

∂r
, uz(r, z) = η1

∂F

∂z
, φ(r, z) = η2

∂F

∂z
,

ψ(r, z) = η3
∂F

∂z
. (13)

where A, γ , and ηi (i = 1, 2, 3) are, respectively, an
unknown function and material constants to be deter-
mined, After substituting Eq. 13 together with 12 into
Eq. 4, we obtain the general expressions for elastic dis-
placements, electric potential and magnetic potential in
terms of unknown function A j as follows:

ur (r, z) =
4∑

j=1

∞∫

0

A j (ξ) exp(γ jξ z)

×J1(ξr)dξ, (14a)

uz(r, z) = −
4∑

j=1

η1 jγ j

∞∫

0

A j (ξ) exp
(
γ jξ z

)

×J0(ξr)dξ, (14b)

φ(r, z) = −
4∑

j=1

η2 jγ j

∞∫

0

A j (ξ) exp
(
γ jξ z

)

×J0(ξr)dξ, (14c)

ψ(r, z) = −
4∑

j=1

η3 jγ j

∞∫

0

A j (ξ) exp
(
γ jξ z

)

×J0(ξr)dξ, (14d)

where γ j ( j = 1, 2, 3, 4) are chosen such that Re
(
γ j

)

are less than zero, which satisfy the following charac-
teristic equation:

det (Ξ) = 0, (15)

with

Ξ =⎡

⎢
⎢
⎢
⎣

c11−c44γ
2
j (c11+c44) γ j (e31+e15) γ j ( f31+ f15) γ j

(c11+c44) γ j c33γ
2
j −c44 e33γ

2
j −e15 f33γ

2
j − f15

(e31+e15) γ j e33γ
2
j −e15 ε11−ε33γ

2
j g11−g33γ

2
j

( f31+ f15) γ j f33γ
2
j − f15 g11−g33γ

2
j µ11−µ33γ

2
j

⎤

⎥
⎥
⎥
⎦
,

(16)

and η1 j , η2 j , and η3 j satisfy the following equations:

Ξ
{

1 −η1 jγ j −η2 jγ j −η3 jγ j
}T = 0. (17)

From the constitutive equations, the expressions for
stresses, electric displacement, and magnetic induction
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for z ≥ 0 can easily be obtained in terms of A j as fol-
lows

σzz(r, z) =
4∑

j=1

β1 j

∞∫

0

ξ A j (ξ) exp
(
γ jξ z

)

×J0(ξr)dξ, (18a)

σr z(r, z) =
4∑

j=1

β2 j

∞∫

0

ξ A j (ξ) exp
(
γ jξ z

)

×J1(ξr)dξ, (18b)

Dz(r, z) =
4∑

j=1

β3 j

∞∫

0

ξ A j (ξ) exp
(
γ jξ z

)

×J0(ξr)dξ, (18c)

Bz(r, z) =
4∑

j=1

β4 j

∞∫

0

ξ A j (ξ) exp
(
γ jξ z

)

×J0(ξr)dξ, (18d)

where

β1 j = c13 − (
c33η1 j + e33η2 j + f33η3 j

)
γ 2

j , (19a)

β2 j = [
c44

(
1 + η1 j

) + e15η2 j + f15η3 j
]
γ j , (19b)

β3 j = e31 − (
e33η1 j − ε33η2 j − g33η3 j

)
γ 2

j , (19c)

β4 j = f31 − (
f33η1 j − g33η2 j − µ33η3 j

)
γ 2

j . (19d)

3.2 Derivation of algebra equations and solution

For convenience, we denote the components of elastic
displacement, electric potential, and magnetic potential
in the crack plane as uz(r) = uz(r, 0), φ(r) = φ(r, 0),
and ψ(r) = ψ(r, 0), respectively. Similarly, the com-
ponents of stress, electric displacement, and magnetic
induction in the crack plane are denoted as σzz(r),
Dz(r), Bz(r), respectively. Thus, we can obtain from
Eq. 14

uz(r) = −
4∑

j=1

η1 jγ j

∞∫

0

A j (ξ)J0(ξr)dξ, (20a)

φ(r) = −
4∑

j=1

η2 jγ j

∞∫

0

A j (ξ)J0(ξr)dξ, (20b)

ψ(r) = −
4∑

j=1

η3 jγ j

∞∫

0

A j (ξ)J0(ξr)dξ . (20c)

We now introduce three unknown auxiliary func-
tions U (r),�(r), and(r), which satisfy the following
equations:

4∑

j=1

η1 jγ j A j (ξ) = −
a∫

0

U (t) sin (ξ t) dt, (21a)

4∑

j=1

η2 jγ j A j (ξ) = −
a∫

0

�(t) sin (ξ t) dt, (21b)

4∑

j=1

η3 jγ j A j (ξ) = −
a∫

0

(t) sin (ξ t) dt . (21c)

Substituting Eq. 21 into Eq. 20 and recalling the known
result
∞∫

0

J0(ξr) sin (ξ t) dξ = H (t − r)√
t2 − r2

, (22)

where H(•) is the Heaviside step function, we find that
the boundary conditions in Eq. 10b are automatically
satisfied. Moreover, the displacement, electric poten-
tial, and magnetic potential at the crack face can be
expressed as

uz(r) =
a∫

r

U (t)√
t2 − r2

dt, φ(r) =
a∫

r

�(t)√
t2 − r2

dt,

ψ(r) =
a∫

r

(t)√
t2 − r2

dt, r < a. (23)

Equation 21 in connection with the application of
Eqs. 10c and 18b forms a system of linear algebraic
equations for A j ( j = 1, 2, 3, 4), from which we get

A j (ξ) = −α1 j

a∫

0

U (t) sin(ξ t)dt

−α2 j

a∫

0

�(t) sin(ξ t)dt

−α3 j

a∫

0

(t) sin(ξ t)dt, (24)
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where

αi j = Q̄i j/det(Q), i = 1, 2, 3, j = 1, 2, 3, 4, (25)

and Q is a 4 × 4 matrix, the elements of which are

Qi j = ηi jγ j , i = 1, 2, 3,

�4 j = β2 j , j = 1, 2, 3, 4, (26)

and Q̄i j are the corresponding algebraic cofactors of
Qi j .

Substituting Eq. 24 into Eqs. 18a, 18c, and 18d for
the crack plane z = 0, and making use of the boundary
conditions in Eq. 10a yield

4∑

j=1

β1 j

a∫

0

[
α1 jU (t)+ α2 j�(t)+ α3 j(t)

]

×
∞∫

0

ξ sin(ξ t)J0(ξr)dξdt = σ0, r < a, (27a)

4∑

j=1

β3 j

a∫

0

[
α1 jU (t)+ α2 j�(t)+ α3 j(t)

]

×
∞∫

0

ξ sin(ξ t)J0(ξr)dξdt = D0 − D(c), r < a,

(27b)

4∑

j=1

β4 j

a∫

0

[
α1 jU (t)+ α2 j�(t)+ α3 j(t)

]

×
∞∫

0

ξ sin(ξ t)J0(ξr)dξdt = B0 − B(c), r < a.

(27c)

Multiplying r/
(
x2 − r2

)1/2
to two sides of Eqs. 27a,

27b, and 27c, and then integrating with respect to r
from 0 to x (x < a), respectively, we finally obtain

m11U (x)+m12�(x)+m13(x)= 2

π
σ0x, x<a,

(28a)

m21U (x)+ m22�(x)+ m23(x)

= 2

π

(
D0 − D(c)

)
x, x < a, (28b)

m31U (x)+ m32�(x)+ m33(x)

= 2

π

(
B0 − B(c)

)
x, x < a, (28c)

where

m1l =
4∑

j=1

β1 jαl j , l = 1, 2, 3,

mkl =
4∑

j=1

β(k+1) jαl j , k = 2, 3, l = 1, 2, 3. (29)

In the procedure of deriving Eq. 28, the following rela-
tions

x∫

0

r J0(ξr)√
x2 − r2

dr = sin (ξ x)

ξ
, (30)

∞∫

0

sin(ξ t) sin (ξ x) dξ = π

2
δ (x − t), (31)

with δ(•) being the Dirac delta function, have been
applied.

By directly solving Eq. 28, we have

U = 2x

π

m̄11σ0 +m̄21
(
D0 − D(c)

)+m̄31
(
B0 − B(c)

)

det(m)
,

(32a)

�= 2x

π

m̄12σ0 +m̄22
(
D0 − D(c)

)+m̄32
(
B0 − B(c)

)

det(m)
,

(32b)

= 2x

π

m̄13σ0 +m̄23
(
D0 − D(c)

)+m̄33
(
B0 − B(c)

)

det(m)
,

(32c)

where m = [
mi j

]
, and m̄i j , as pointed out before, are

the algebraic cofactors of mi j .
From Eqs. 1, 7, and 23, it is easily found that D(c)

and B(c) can be evaluated by the following nonlinear
algebraic equations:

D(c)

= − ε(c)
m̄12σ0+m̄22

(
D0−D(c)

)+m̄32
(
B0−B(c)

)

m̄11σ0+m̄21
(
D0−D(c)

)+m̄31
(
B0−B(c)

) ,

(33a)

B(c)

= − µ(c)
m̄13σ0+m̄23

(
D0−D(c)

)+m̄33
(
B0−B(c)

)

m̄11σ0+m̄21
(
D0−D(c)

)+m̄31
(
B0−B(c)

) .

(33b)
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By carrying out a simple manipulation, a linear triple-
equation with unknown D(c) or B(c) can be obtained.
Thus, D(c) and B(c) can easily be solved (see Appen-
dix A). As shown in Appendix A, for a general mag-
netically dielectric crack full of µ(c) and ε(c), there
exists three roots for both D(c) and B(c). Therefore,
there are two superfluous roots for either D(c) or B(c).
From the physical argument, a reasonable D(c) and/or
B(c) should be selected to avoid overlapping of crack
surfaces, i.e., satisfying the crack opening condition
uz(x) ≥ 0.

3.3 Electric displacement and magnetic induction
inside the crack under special crack surface
assumptions

From Eq. 33, it is easily seen that apart from the mater-
ial properties of the magnetoelectroelastic body, either
D(c) or B(c) is also dependent on electric permittivity
ε(c) and magnetic permeability µ(c) of the interior of
the opening crack, and dependent on mechanical, elec-
trical, and magnetic loads equivalently applied on the
crack surfaces, i.e., σ0, D0, and B0.

Particularly, for four special crack surface boundary
conditions, i.e., (i) magnetically impermeable and elec-
trically impermeable, (ii) magnetically impermeable
and electrically permeable, (iii) magnetically perme-
able and electrically impermeable and (iv) magneti-
cally permeable and electrically permeable, simple
expressions for D(c) and B(c) may directly be derived
from Eq. 33 as well. They are, respectively,

(i) for a magnetoelectrically impermeable crack(
ε(c) = 0, µ(c) = 0

)
,

D(c) = 0, B(c) = 0; (34)

(ii) for a magnetically impermeable and electrically
permeable crack

(
ε(c) = ∞, µ(c) = 0

)
,

D(c) = m21m33 − m23m31

m13m31 − m11m33
σ0 + D0

+m11m23 − m13m21

m13m31 − m11m33
B0,

B(c) = 0; (35)

(iii) for a magnetically permeable and electrically
impermeable crack

(
ε(c) = 0, µ(c) = ∞ )

,

D(c) = 0, B(c) = m22m31 − m21m32

m12m21 − m11m22
σ0

+m11m32 − m12m31

m12m21 − m11m22
D0 + B0; (36)

(iv) for a magnetoelectrically conducting crack(
ε(c) = ∞, µ(c) = ∞)

D(c) = D0 − m21

m11
σ0, B(c) = B0 − m31

m11
σ0.

(37)

4 Analysis on the field quantities and field intensity
factors

Once B(c) and D(c) are sought, the solution of U (x),
�(x) and (x) are readily obtained by Eq. 32. Evalu-
ating the integrals in Eq. 23, the COD, electric poten-
tial difference and magnetic potential difference at the
crack surface can be obtained as follows

uz(r) = 2

π

m̄11σ0 +m̄21
(
D0 − D(c)

)+m̄31
(
B0 − B(c)

)

det(m)

×
√

a2 −r2, (38a)

φ(r) = 2

π

m̄12σ0 +m̄22
(
D0 − D(c)

)+m̄32
(
B0 − B(c)

)

det(m)

×
√

a2 −r2, (38b)

ψ(r) = 2

π

m̄13σ0 +m̄23
(
D0 − D(c)

)+m̄33
(
B0 − B(c)

)

det(m)

×
√

a2 −r2. (38c)

Substituting Eq. 32 into Eq. 24 and then into Eqs. 18a,
18c, and 18d for the crack plane z = 0, it is found that

σzz(r) = −2σ0

π

a∫

0

t

∞∫

0

ξ sin(ξ t)J0(ξr)dξdt, (39a)

Dz(r) = −2
[
D0 − D(c)

]

π

a∫

0

t

∞∫

0

ξ sin(ξ t)

×J0(ξr)dξdt, (39b)

Bz(r) = −2
[
B0 − B(c)

]

π

a∫

0

t

∞∫

0

ξ sin(ξ t)

×J0(ξr)dξdt. (39c)

Noting

d

dr
[r J1(ξr)] = ξr J0(ξr),

∞∫

0

sin(ξ t)J1(ξr)dξ

= t H (r − t)

r
√

r2 − t2
, (40)
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the integral in Eq. 39 can be given as
a∫

0

t

∞∫

0

ξ sin(ξ t)J0(ξr)dξdt

= 1

r

d

dr

a∫

0

t2 H (r − t)√
r2 − t2

dt

=
{
π/2, r < a,
sin−1 (a/r)−a/

√
r2 − a2, r > a.

(41)

Obviously, the above result for r < a fulfills the bound-
ary conditions at the crack surfaces, and the result for
r > a is useful in determining the magnetoelectroelas-
tic behaviors ahead of crack front.

We define

K q = lim
r→a+

√
2π (r − a)q(r), (42)

where q(r) ≡ q(r, 0) stands forσzz , Dz , and Bz , respec-
tively. Then the intensity factors of stress, electric dis-
placement, and magnetic induction can be
expressed as

K σ = 2

π

√
πaσ0, K D = 2

π

√
πa

[
D0 − D(c)

]
,

K B = 2

π

√
πa

[
B0 − B(c)

]
. (43)

Equation 43 implies that no matter how magnetic and/or
electric loads applied on the crack surfaces vary, stress
intensity factors remain unchanged if σ0 is a prescribed
constant, while both electric displacement and mag-
netic induction intensity factors depend on not only
the mechanical load but also the electrical and mag-
netic loads. Moreover, both the electric displacement
and magnetic induction intensity factors depend on the
material properties and ε(c) and µ(c) as well.

Additionally, for the COD across the crack near the
crack front, according to the following definition

KCOD = lim
r→a−

√
π

2 (a − r)
uz(r), (44)

we can obtain the COD intensity factor as

KCOD

= 2

π

√
πa

m̄11σ0+m̄21
(
D0−D(c)

)+m̄31
(
B0−B(c)

)

det(m)
.

(45)

This indicates that, similar to K D and/or K B , the COD
intensity factor KCOD depends on material properties,
loading cases together with magnetic permeability and
dielectric permittivity inside the crack.

In addition, for a magnetically impermeable crack,
B(c) = 0 at the crack surfaces. Therefore, the magnetic
induction intensity factors in this case directly depend
only on the magnetic load B0, not on the mechani-
cal load σ0 and electric load D0, which is in agree-
ment with those for a crack in an infinite magnetoelec-
troelastic strip under the impermeable assumption for
antiplane analysis (Hu and Li 2005). And for an electri-
cally impermeable crack, there exists similar phenom-
ena, which have also been observed for a crack in an
infinite piezoelectric ceramics in two-dimensional and
three-dimensional analyses (Pak 1992; Jiang and Sun
2001). On the other hand, if only adopting magneto-
electrically permeable boundary conditions, as pointed
out before, the corresponding solution is equal to that of
a conducting crack in the present analysis. The applica-
tion of Eq. 37 to the above field intensity factors results
in

K σ = 2

π

√
πaσ0, K D = 2m21

πm11

√
πaσ0,

K B = 2m31

πm11

√
πaσ0, (46a)

KCOD = 2

πm11

√
πaσ0, (46b)

which indicates that for a magnetoelectrically perme-
able crack, the stress, electric displacement, magnetic
induction and COD all exhibit a square-root singularity
near the crack front. Furthermore the singularity arises
only from the mechanical load σ0, not from the mag-
netic load B0 and/or electric load D0, which further
implies that the singularity is independent of both the
magnetic and electric fields applied at infinity. These
phenomena are in consistence with those in Gao et al.
(2003) and Zhou et al. (2004) for antiplane megneto-
electroelastic analysis and those in Kogan et al. (1996)
and Yang and Li (2002) for three-dimensional piezo-
electric ceramics analysis.

5 Numerical results and discussions

According to the classical COD fracture criterion for
a three-dimensional elastic body, crack starts to grow
when the COD intensity factor exceeds the critical value
under the applied loads. For a magnetoelectroelastic
material, not only mechanical loads but also magnetic
and electrical loads can cause a crack to open and even
to propagate. In this section, a numerical example is
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given to examine the effects of the applied magnetic
and/or electric fields on the COD intensity factor near
the crack front.

Numerical calculations are carried out for a penny-
shaped crack in a BaTiO3–CoFe2O4 composite, the
material properties of which are taken from Wang and
Mai (2007). Without loss of generality, in all our cal-
culating procedures, it is assumed that σ0 = 4.2 ×
106 N/m2. Numerical results are plotted in
Figs. 2–4, where K0 represents the COD intensity fac-
tor of magnetoelectrically impermeable penny-shaped
crack in an infinite magnetoelectroelastic solid under
only mechanical load; λH = f33 H0/σ0 and λE =
e33 E0/σ0 are two parameters introduced to reflect the
corresponding loading combinations between magnetic
and mechanical loads, and between electrical and
mechanical loads, respectively; εr and µr are defined
as

εr = εc/ε0, µr = µc/µ0, (47)

with ε0 = 0.0885×10−10 C2/Nm2 andµ0 = 0.1256×
10−5 Ns2/C2 being the electric permittivity and mag-
netic permeability of air (or vacuum), respectively.
Obviously, in general, εr = 1 andµr = 1, which means
the crack is magnetically dielectric, while εr = 0 (or
µr = 0) and εr = ∞ (or µr = ∞) imply that the crack
is electrically (or magnetically) impermeable and elec-
trically (or magnetically) permeable, respectively.

Figures 2 and 3 indicate that for a crack full of air
or vacuum (i.e., magnetically dielectric crack), accord-
ing to the maximum COD criterion, negative magnetic
fields slightly inhibit crack propagation and growth,
while positive magnetic fields slightly enhance crack
propagation. Figure 4 indicates that electric fields have
the same effects on KCOD as applied magnetic fields
have.

From these figures, it is seen that adopting magneti-
cally (or electrically) impermeable assumptions, mag-
netic (or electric) fields have great effects on KCOD,
i.e., magnetic (or electric) fields can evidently aid or
impede crack growth, not only depending on the sizes
but also the directions of applied magnetic (or electric)
fields. The effects of the electric fields on KCOD for the
magnetoelectroelastic body are in agreement with the
corresponding results for piezoelectric ceramic (Park
and Sun 1995; Li and Lee 2004). Moreover, in the case
of µr = 0 (or εr = 0), for a given λE (or λH ), there is
a critical value of λH (or λE ) in the range of our calcu-
lations, when λH (or λE ) is less than the corresponding
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Fig. 2 Normalized COD intensity factors as a function of com-
bined magnetic and mechanical loading λH = f33 H0/σ0 for
different crack surface conditions under combined electric and
mechanical loadings λE = e33 E0/σ0: (a) λE = 0.25; (b)
λE = −0.25

critical value, the calculated KC O D is less than zero. It
perhaps should be explained that the crack is actually
closed at this moment. We remark that for a magnet-
ically dielectric crack, both the critical magnetic and
electrical fields have not been found in the depicted
figures.

As expected, in the case of magnetically (or electri-
cally) permeable crack assumptions, for given electric
(or magnetic) fields, the effects of magnetic (or elec-
tric) fields on crack propagation and growth are much
less than those for the corresponding magnetically (or
electrically) impermeable crack surface assumptions.
Especially, for both magnetically and electrically per-
meable assumptions, KCOD is independent of either
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Fig. 3 Normalized COD intensity factors as a function of com-
bined magnetic and mechanical loading λH = f33 H0/σ0 for
different crack surface conditions under combined electric and
mechanical loadings λE = e33 E0/σ0: (a) λE = 0.75; (b)
λE = −0.75

applied magnetic field H0 or electric field E0. This is in
agreement with the reduced result, i.e., Eq. 46b, which
could imply that our calculated results are correct.

Finally, it should be noted that for a penny-shaped
crack full of magnetically dielectric medium, the four
kinds of ideal models of analyzing the response to
magnetic and/or electric fields, to some extent, can all
cause some errors. Comparatively speaking, as shown
in Figs. 2–4, similar to piezoelectric crack problems
pointed out in Sect. 1, for the material properties used
here, magnetically and/or electrically impermeable
assumptions would introduce large errors on KCOD

than permeable assumptions.
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Fig. 4 Normalized COD intensity factors as a function of com-
bined electric and mechanical loading λE = e33 E0/σ0 for dif-
ferent crack surface conditions under combined magnetic and
mechanical loadings λH = f33 H0/σ0: (a) λH = 0.25; (b)
λH = −0.25

6 Conclusions

The magnetoelectroelastic analysis of a transversely
isotropic magnetoelectroelastic body with a magnet-
ically dielectric penny-shaped crack perpendicular to
the poling direction was conducted. The problem was
solved under the exact magnetoelectric boundary con-
dition, i.e., the crack is magnetically dielectric. By mak-
ing use of the Hankel transform technique, the mixed
boundary value problem was converted to the alge-
braic equations with respect to three auxiliary func-
tions. Both the magnetic induction B(c) and electric
displacement D(c) induced by the crack are obtained

123



136 W. J. Feng et al.

explicitly. The field intensity factors were also derived
in a closed form and discussed in detail. For a magneti-
cally dielectric crack, except for the stress intensity fac-
tor, all the other intensity factors are apparently affected
by the magnetic permeability and dielectric permit-
tivity of the crack interior, magnetoelectromechanical
loads equivalently applied on the crack surfaces and
material properties. Previous studies on magnetoelec-
trically impermeable or permeable penny-shaped
cracks can be reduced from the present analysis as lim-
iting cases.

According to the maximum COD criterion, for mag-
netically dielectric cracks, both negative magnetic and
electrical fields impede crack propagation and growth,
and both positive magnetic and electric fields enhance
crack propagation. However, the effects of both mag-
netic and electrical loads on the crack propagation and
growth under the exact crack surface conditions are
much less than the corresponding ones under the mag-
netoelectrically impermeable crack surface
assumption.
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Appendix A

D(c)
1 = − a2

3a3
−

3
√

2

3a3

χ2

χ1
+ χ1

3 3
√

2a3
, (A.1)

D(c)
2 = − a2

3a3
+

(
1 + i

√
3
)
χ2

3 3
√

4a3χ1
−

(
1 − i

√
3
)
χ1

6 3
√

2a3
, (A.2)

D(c)
3 = − a2

3a3
+

(
1 − i

√
3
)
χ2

3 3
√

4a3χ1
−

(
1 + i

√
3
)
χ1

6 3
√

2a3
, (A.3)

B(c)i = m̄31 B0 D(c)
i + m̄21 D0 D(c)

i − m̄21 D(c)2
i − m̄22 D(c)

i ε(c) + m̄11 D(c)
i σ0

m̄31 D(c)
i + m̄32ε(c)

+ m̄32 B0ε
(c) + m̄22 D0ε

(c) + m̄12ε
(c)σ0

m̄31 D(c)
i + m̄32ε(c)

, i = 1, 2, 3, (A.4)

where

χ1 =
(
−2a3

2 +9a1a2a3 −27a0a2
3

+
√

4
(
3a1a3 −a2

2

)3 +(−2a3
2 +9a1a2a3 −27a0a2

3

)2
)1/3

,

(A.5)

χ2 = 3a1a3 − 2a2
2 , (A.6)

a0 = ε(c)2
(
−m̄2

22m̄31 D2
0 + m̄23m̄2

32 D0µ
(c)−m̄12m̄31m̄32 B0σ0

+m̄11m̄2
32 B0σ0 + m̄13m̄2

32µ
(c)σ0 − m̄12m̄32m̄33µ

(c)σ0

−m̄2
12m̄31σ

2
0 + m̄11m̄12m̄32σ

2
0

+m̄21m̄32 D0
(
m̄32 B0 + m̄12σ0

)

+m̄22 D0

(
m̄32

(
m̄21 D0 − m̄33µ

(c) + m̄11σ0

)

−m̄31 (m̄32 B0 + 2m̄12σ0)
))
, (A.7)

a1 = ε(c)
(

m̄2
21m̄32 D2

0 + 2m̄2
22m̄31 D0ε

(c)

+2m̄23m̄31m̄32 D0µ
(c)

−m̄23m̄2
32ε

(c)µ(c) − m̄12m̄2
31 B0σ0 + m̄11m̄31m̄32 B0σ0

+2m̄13m̄31m̄32µ
(c)σ0 − m̄12m̄31m̄33µ

(c)σ0

−m̄11m̄32m̄33µ
(c)σ0 − m̄11m̄12m̄31σ

2
0 + m̄2

11m̄32σ
2
0 −m̄22

×
(

m̄2
31 B0 D0 + m̄32ε

(c)
(

2m̄21 D0 − m̄33µ
(c) + m̄11σ0

)

+m̄31

(
m̄21 D2

0 − m̄32 B0ε
(c) + m̄33 D0µ

(c) + m̄11 D0σ0

−2m̄12 ε
(c)σ0

))
+ m̄21

(
m̄31 D0

(
m̄32 B0 − m̄12σ0

)

−m̄32

(
m̄32 B0ε

(c) + m̄33 D0µ
(c) − 2m̄11 D0σ0

+ m̄12ε
(c)σ0

)))
, (A.8)

a2 = −2m̄2
21m̄32 D0ε

(c) + m̄31µ
(c)

(
m̄23m̄31 D0−2m̄23m̄32ε

(c)

+m̄13m̄31σ0 − m̄11m̄33σ0

)
− m̄2

22m̄31ε
(c)2

+m̄21

(
−m̄31m̄32 B0ε

(c) − m̄31m̄33 D0µ
(c)

+m̄32m̄33ε
(c)µ(c) m̄12m̄31ε

(c)σ0 − 2m̄11m̄32ε
(c)σ0

)

+m̄22ε
(c)

(
m̄2

31 B0 + m̄21m̄32ε
(c)

+ m̄31

(
2m̄21 D0 + m̄33µ

(c) + m̄11σ0

))
, (A.9)

a3 = −m̄21m̄22m̄31ε
(c) + m̄2

21m̄32ε
(c) − m̄23m̄2

31µ
(c)

+m̄21m̄31m̄33µ
(c). (A.10)
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