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Abstract

The complex variable method is employed to derive analytical solutions for the interaction between a piezoelectric screw
dislocation and a Kelvin-type viscoelastic piezoelectric bimaterial interface. Through analytical continuation, the original
boundary value problem can be reduced to an inhomogeneous first-order partial differential equation for a single function
of location z = x + iy and time ¢ defined in the lower half-plane, which is free of the screw dislocation. Once the initial,
steady-state and far-field conditions are known, the solution to the first order differential equation can be obtained. From
the solved function, explicit expressions are then derived for the stresses, strains, electric fields and electric displacements
induced by the piezoelectric screw dislocation. Also presented is the image force acting on the screw dislocation due to its
interaction with the Kelvin-type viscoelastic interface. The derived solutions are verified by comparing with existing solu-
tions for the simplified cases, and various interesting features are observed, particularly for those associated with the image
force.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Interaction between dislocations and interface is an intriguing topic in micromechanics. In the majority of
the studies the interface is simplified to be perfect (Head, 1953; Dundurs and Mura, 1964; Kelly et al., 1993,
1994; Wang and Sudak, 2006) or is modeled by a linear spring layer of vanishing thickness (see, for example,
Wang and Shen, 2002; Fan and Wang, 2003a; Sudak, 2003; Sudak and Wang, 2006; Wang and Sudak, 2007
among others). Recently Fan and Wang (2003b) considered the interaction of a straight screw dislocation with
a Kelvin- or Maxwell-type viscoelastic interface by means of Laplace and Fourier transformations. The inter-
face considered by Fan and Wang (2003b) is modeled by linear spring and dashpot. They presented explicit
expressions of the image force on the dislocation due to its interaction with the viscoelastic interface. In Fan
and Wang (2003b), the two half-planes of the bimaterial are purely elastic, and the expressions of the stresses
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induced by the dislocation are implicit in the sense that inverse Fourier transformation needs to be carried out
[see Egs. (2.22)—(2.25) in Fan and Wang (2003b) for the Kelvin-type interface]. In fact thin viscoelastic damp-
ing layers can be artificially introduced into smart/intelligent structures to produce higher and tailorable
damping in vibration control (Baz, 1993; Shen, 1994; Haung et al., 1996; Liao and Wang, 1997; Lee and
Kim, 2001; Sun and Tong, 2003). To the best of the authors’ knowledge, the viscoelastic behavior of the
interface in piezoelectric composite has not yet been touched despite the fact that existence of a viscoelastic
interface will definitely influence the response of the piezoelectric composite.

In this investigation we address in detail a screw dislocation in a piezoelectric (or more specifically ferro-
electric) bimaterial with a Kelvin-type viscoelastic imperfect interface by employing the complex variable
method. Both the electroded and unelectroded cases for the interface are discussed. It is found that the com-
plex variable method is very suitable to study the interaction of a screw dislocation with a Kelvin-type visco-
elastic interface between two bonded piezoelectric half-planes. The explicit expressions of the stresses, strains,
electric displacements and electric fields induced by the screw dislocation are obtained. Concise expressions of
the image force on the screw dislocation are also presented, including further discussion on some special cases
involved.

2. Basic formulations

In a fixed rectangular coordinate system (x, y, z), we consider a screw dislocation located at a point x =0,
y=20, (6 >0) in the upper piezoelectric (or more specifically ferroelectric) half-plane of a piezoelectric
bimaterial, as shown in Fig. 1. Both the upper piezoelectric half-plane y > 0, denoted by #1, and the lower
piezoelectric half-plane y < 0, denoted by #2, are transversely isotropic with the poling direction parallel to
the z-axis. The screw dislocation is assumed to be straight and infinitely long in the z-direction, experiencing
a displacement jump b and an electric potential jump A¢ across the slip plane. The bimaterial interface y =0
considered in this investigation possesses Kelvin-type viscoelasticity.

For the problem described above, the governing equations and constitutive equations can be simplified con-
siderably as follows

— Governing field equations:

O-zx,x + O-zy,y = Oa Dx,x + Dy,y = 07 (1)
y
b O
Upper piezoelectric half-plane
(cii» €15’ el
X
T N\ N\
Kelvin-type viscoelastic interface Lower piezoelectric half-plane
(cii', e’ €r)

Fig. 1. A piezoelectric screw dislocation located at x = 0 and y = d(d > 0) in the upper piezoelectric half-plane which is bonded to a lower
piezoelectric half-plane via a Kelvin-type viscoelastic interface y = 0.
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— Electric field-electric potential relations:

E, = _(ﬁ,xa Ey = _¢,ya (2)
— Linear, piezoelectric constitutive equations:

o, Cy —e w,

o) lo <) o
Dy els €1 Ey
O C. —e Wy

o) Lo D =
D, e;s  €n | LE;

where a comma followed by x (or y) denotes partial derivatives with respect to x (or y); 0., 0., are the shear
stress components; D,, D, are the electric displacement components; E,, E, are the electric fields; w is the out-
of-plane displacement; ¢ is the electric potential; c44, €15, and €;; are, respectively, the elastic modulus, pie-
zoelectric constant, and dielectric permittivity. In this paper the piezoelectrically stiffened elastic constant
Cas = caa + €15/ €11 Will be also used. In Eq. (1) we have neglected the inertial effect of the piezoelectric material
due to the fact that the viscoelastic response comes from the interface only and that the deformation of the
piezoelectric bimaterial is assumed to be in a quasi-static state (Fan and Wang, 2003b; Ang and Fan, 2004;
Yan et al., 2006).

The displacement and electric potential can be expressed in terms of two analytic functions fi(z,#) and
iz, 1), (z=x+1y) as

w=Im{fi(z.0)}, ¢=Im{f0)}. 4)

Since the viscoelastic interface exhibits the time effect, the two analytic functions fi(z,¢) and f5(z, ) depend
not only on the complex variable z but also on the time z. In terms of the two analytic functions, the strains,
electric fields, stresses and electric displacements can be expressed as

yzv+iyzx :afl (Z, t>7 _Ey_iEx :aﬁ<Z7 l)v

- aZ aZ (5)
_ ofi(z, ¢ 0f>(z, ¢ ) 0fi(z,¢ 0f2(z,t

0z + 10, = Cyy fla(j )+€15 fza(j ), Dy+1Dx=€15 fla(j )—611 fzéj ),

where the strains y., and y., are related to the out-of-plane displacement w through
sz = WMC’ sz = W,y' (6)

In this paper, the superscripts (1) and (2) will be used to denote, respectively, the physical quantities in the
upper and lower half-planes. The two analytic functions, as defined in Eq. (4), are denoted by g,(z,¢) and
g>(z,t) in the upper half-plane and by /;(z,¢) and /ix(z,¢) in the lower half-plane. Both the electroded and
unelectroded interfaces will be considered.

The continuity conditions on an unelectroded Kelvin-type viscoelastic interface are given by (Fan and
Wang, 2003b; Fan et al., 2006)

1 2
o) =6 DI =pO ¢l = ¢,
2 W) _ @ 4 D 1) gy BT (7)
0 = kw) —w |+ 05 WY —w],

where k is the spring constant of the interface and # the viscosity coefficient. Eq. (7) is similar to that adopted
by Fan et al. (2006) except that a linear dashpot is added to our model. In this model a linear spring and a
linear dashpot are parallel-connected (Fan and Wang, 2003b). The above expression implies that the interface
is dielectrically perfect, i.e., both the normal electric displacement and electric potential are continuous across
the interface.

The continuity conditions on an electroded Kelvin-type viscoelastic interface are given by (Fan and Wang,
2003b; Fan et al., 2006)
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=0. |
6<2) _ k[w(l) _ W(2>] + 1//@ [W(l) —_ W(2>]’ ony ( )

zy

In this model a grounded electrode is placed on the interface.

3. Full-field solutions
3.1. Unelectroded Kelvin-type viscoelastic interface

The continuity conditions Eq. (7) on an unelectroded Kelvin-type viscoelastic interface can be equivalently
expressed in terms of gi(z,1), g-(z,¢) defined in the upper half-plane and /(z, t), hx(z,?) defined in the lower
half-plane as follows

e lgt (e, 1) + &7 (v, 0)] + €1 [83 (v, ) + &5 (x, 0] = ¢ [y (x,8) + I (x,0)] + 2 [y (x, 2) + B (x, 1)),

el lgf (v, ) + &7 (v, 1)] — €1 g3 (x, 1) + &5 (v, 0)] = €{F [y (v, 1) + Af (x, 0)] — €[5 (x, ) + B (x, 1)),

g (x,1) = & (x,1) = hy (x,1) — by (x,1),

klgy (x, 1) — &y (x.0) = Iy (x,2) + Ay (x,0)] +

d _ d _
lcg4>a A7 (x, t)+h1+(x,z)]+1e55>a—[h (x,1) + ki (x,1)]. on y=0.

1 g 0) & (60) — hy (x,0) + (3,

It follows from (9);_3 that the three functions g(z, 7), gx(z, ) and hy(z,t) defined in the upper half-plane can
be expressed in terms of one single function 4, (z, ¢) also defined in the upper half-plane, as

() - (2) )y 1,0 2(6() @ _ e “))
Ci €17 T +ese B 11 €15 11
gl(z7 t) - :(‘?) (111) 44 (121 (115) (125)h ( )+g10(z) _gl()(z) + ~(1) 0] () ( g20( )
St +C44 1l tesers 44611 Ty € te 15 els
(2) (1) 1 _(2) (1) ( M _2) =) (1)
_ €44 €15 — Caa€1s Cas © 11 +es 915 —CuCn g
e S T e L2 e (e m_ 8l 10)
Ciy €1 T Cy €1f Te5€55 Cay 11 +C44€11 tesers
1 _(2) (2) () ~(1) 1)
7 _ Cuq €15 — Cyq€5 7 2¢, € _
h(zt)=m-m oo oenE) Yo m oo n.e 800
Ca €1 T Cy €11 T ejs€s Cag €1 Ty €11 T ejs€s

where g,9(z) = £ In(z —i6) and g,(z) = 5% In(z — i) are the complex potentials for a screw dislocation
located at z =10 in a homogeneous material.

Similarly the three functions g,(z, ), g2(z,¢) and h,(z, t) defined in the lower half-plane can be expressed in
terms of one single function /(z, ) also defined in the lower half-plane, as

(1) _(2) ) <1)>
-2 2 —
04(;4) (11) + C44 (11 + 615)3(15) hy 2<E” é1s 6“

8 (27 t) - ~(1 ( (1) (2) (27 t) +g10(z) _gIO(Z) + ~(l) gZO( )
11 '+e 44 1l tesers 44611 +c 44 11 ' te 15 15
(2) (1) 1 _(2) () M _2)  ~(1) (1)
_ Ciieis —cyile _ c +e e\l —Cu €
8220 =m0 <2>h1(z”>+g2°(z)+~?f> él N0 0,00 (1
€11 T Cy €y tejsers € tc¢ 44611 tesers
1 _(2) (2) (1) () 1)
cu e —cile 2¢,, €
) = e e + 200 44 3 2 820(2)-
Cap €1 T Cy €1f T e5€55 Cyu €y TC 44 611 te 15 15

Substituting Egs. (10) and (11) into Eq. (9)4, we finally arrive at
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~(1) (2)\ (1) 1 | =2 -2 1 _(2) _

(6 )l v elel 2l e s e et
~(1) ~(1) 1) (2 1 _(2) 0= ~(1) ~(1) 1) ~(2) 1 _(2)
Ciy €1 TCyu €11 Tej5€)5 Ciy €1 TCy €11 TEi5€)5 Ox

~(1) () ~(1) M | =2\ -2 1 2 - (2) (1) 1) _(2)
<C44 +C44>€11 + (C44 —|—c44>€” +2ej5¢e)s ohy (x,1) Zk(en €is — € elS)

+1 — 2kgio(x) — 82(x)
~(1) (1) 1) ~(2) 1 _(2) ~(1) (1) 1) ~(2) 1 _(2)
Ciu €11 TC4 €1 tes€s ot Cu €11 TCy €1 tes€5s
~(1) () (1) M | =2\ -2 1 (2
2162‘)6511)6(125) _, ( ) k<C44 +C44>€11 + <C44 +C44)€11 +2€15 615 hi( t)
TS, 00, o820 = ~O -0, 00, 1O 1\
Cay €1) TCya €1 T Ei5€)5 Ciy €1 TCy €11 T ej5€55
~(1) )\ (1) 1N | =@\ 2 1 _(2)
el dbetlel v | (B @)ell + () re)el +2elel v
~(1) ~(1) M) ~(2) 1) _(2) ~(1) (1) 1) ~(2) 1 _(2)
Ciu €11 TCy €1 tejs5€55 Ox Cus €11 TCy €5 teses ot
2k (effely — el el 51D (1),0)
44 S11 €15
=2k () ~ e, o @ ). ony=0. (12)
Ciy €1 TCyu €11 T €j5€55 Ciy €1 T Cyu €11 T ej5€55

It is apparent that the left-hand side of Eq. (12) is analytic in the upper half-plane, whilst the right-hand side
of Eq. (12) is analytic in the lower half-plane. Consequently the continuity condition in Eq. (12) implies that
the left- and right-hand sides of Eq. (12) are identically zero in the upper and lower half-planes, respectively. It
follows that

Ohy(z,t) . Ohi(z,¢)

—iyhy(z,t) + 0 T, :—i}gocln(z—ié)—z—

y<0 (13)
or equivalently

.Xahl(z,t)+62h1(z,t) iazhl(z,t)_ iy i

- <0, 14
RE e T A A (14)

where
-1 My (1 ) =2 (2 e
(‘3514> + 64(14))6(11) + (04(14) + 04(14))651) + 2655)955)
~(1) (2) ~(1) 1) ~(2) ~(2) ’
CaqCag ©1) T CyqCaq €1
(1 2\ (1 ), =2 (2 e
S (24 + el + (e +ei)el + 2eflely
- ~(1) (2) ~(1) 1 =((2) ~(2) ’
CagCaq €11 T CaqCyy €3

1=k

and
~(1) _( )@ e 2 e
(CA(M)egl) + 04(14)6(11) + 655 615))b + (€<11 615) - E(11)6(15))A(l5
_a M (1 ), -2 (2 ) @
T (04(14) + Cz(m))egl) + (Cfm) + 0514))651) + 2e<15>e55)}
~(1) (1) (2)
Cy €11 s AP

ﬂ p— .
~(1) (2) ~(1) 1 =((2) ~(2)
T(Cay Cag €11 + C4qCag €17)

)

(16)

Eq. (14) is an inhomogeneous first-order partial differential equation for function ahla—(z“) It is noted that, at
t = 0 when the piezoelectric screw dislocation is just introduced into the upper piezoelectric half-plane, the dis-
placement across the interface has no time to experience any jump due to the dashpot. Therefore the displace-
ment is continuous across the interface at t = 0 (i.e., the interface is perfect when ¢ = 0). In order words, the
following initial condition for ahla—i”) holds
ohy(z,0 o

l(Za ) — . (17)

Oz z—10
When ¢ — oo, on the other hand, the interface should be at a steady state and there is no time effect. In this
case it follows from Eq. (13) that
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p

z—10"

6}11(2, OO)
Oz

—iyhy(z,00) + = —iyaln(z — i0) — (18)

The solution to the above differential equation can be readily derived as (for more details see Sudak and
Wang, 2006)

ahl(Z, OO) ﬁ

5 = (et pexplix(z —i0)]E[ix(z —10)] - —, (19)
where the exponential integral is defined by
Z efq
Ev) = — / . (20)
o 4
In addition,

M —0 asz— o0 (21)

Oz

due to the fact that at the far field the stresses and electric displacements should approach zero. In view of the
initial state Eq. (17), the steady state Eq. (19) and the far-field condition Eq. (21), the solution to Eq. (13) or
(14) can be derived to be

IEt) i+ ) expliz(z — )1 fir(z — i0)] — Eiztz — 0 — /7))
(a4 B)exp(—xt/y) B
L STy X (22)

It can be shown solution (22) satisfies the conditions Egs. (17), (19) and (21). Here we shall also mention
that the term iy(x + ) explix(z — i0)]E, [ix(z — id)] — £~ s in Eq. (22) is a particular solution to Eq. (14) whilst
G(z,t) = expliy(z — 10)1E1[ix(z — 16 — it/y)] and G,(z, t) = % in Eq. (22) are two homogeneous solutions
to Eq. (14), namely,

=

When k& =0 (or y — 0) for a viscous interface, it can be deduced from Eq. (22) that the expression of a}"a—(z”)
for an unelectroded viscous interface is given by

ahl(Z,[) B OC+ﬁ ﬁ

—ixGy(z,t) + =0, j=1,2. (23)

= T — %, 24
0z z—10—1t/y z—10 (24)
which satisfies the partial differential equation
Ohi(z,t) . Fhi(zt
1(27 )_l'y 1(27 >: ﬂ 5 y<0 (25)
0z2 0zO0t (z —i9)
Once ahl( ) is obtained, the expressions of ahz =) % ‘( ) and 6g2 ”) can be found as follows
1 (2 2) (1 -
e el el one chiiag -
—-m_a H_(2 D 2 ~(h__( n_(2 e )
e o e s e
~(2) (2 2) (1 1) () A7
6g1(z,t):cfm)Egl)+cf‘4)€§1>+e(15)e<15> Ohy (z,1) (€lely E11 is )A‘f’ b1 b (27)
Oz dyel) +eell +elfely o (e el +e el +elfell) 2n)z+id 2n(z—id)
2) (1 1) 2 7 1 2 1) _(1
0g,(z,1) _ chiels —cuely Ohy (z,1) (ci €17 +eisels —ael)Ag A¢ (28)

oz gheh |

nD_2, 0.2 ~h_Q i ~i0)
44 €1 04(14)6(11)4’@55@(15) 0z an(elyel) +ciy il +elfel?) (z +i0) 2n(z i9)

where the explicit expression of =122 ah‘ ) is given by
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6h1a(j, 1) = —iy(o + f) exp[—iy(z + 10)|[{E|[—iy(z + 10)] — E [—iy(z + 10 + it/y)]}
L et Bexp(—ntfy) B
z+10+1t/y z4+16"

cgl z,t)

(29)

With the expressions of 220 and agi” defined in the upper piezoelectric half-plane, ah‘ ) and P20 a’” 21 defined
in the lower piezoelectric half-plane for an unelectroded Kelvin-type viscoelastic 1nterface the dlstrlbutlons of
the strains, stresses, electric fields and electric displacements in the two half-planes can be obtained from Eq.
(5). By using the Peach-Koehler formulation (Pak, 1990; Lee et al., 2000), the image force acting on the screw
dislocation due to its interaction with the unelectroded Kelvin-type viscoelastic interface can be derived to be

pub® + 2p1bAG + py AP

Fy=- 4nd
anb” +2q,bA¢ + gAY | N T i (30)
+ i g(A) + 1+2 exp(—) |l —gll+—= 7 ,
F,=0,

where F, and F), are, respectively, the horizontal and vertical components of the image force; A= dy and
to = 0y are, respectively, the interface “rigidity” and the relaxation time; 7 = t/to; g(n) = 21 exp(2n)E(2n),
(0 < g(n) < 1) is a monotonic function of 5 (see Fan and Wang, 2003a for more details) and the constants
Dij»4q;» which are related to the material constants of the two piezoelectric half-planes, are defined as

_ (D _ M
P11 =Cyy» Pr2=¢€5,

M2 =) 1), (1)=2) ~2)  ~(1) (2) (1)
_¢is +c44 €11 (C4g Cyy €] —CyyCiy €11) (31)
P 1) (1)( (1)~(2)€(2) ~(1) (2)6(1))
Cyq Cyq (Cyy 044 11 T CagCaqg €1

(1)~(2) 2)~(1) ~(1)
2(044044 11 +c44c44 €y)

e (Eé(tldf) +C44)€(11)
~(1) (1) (2 ~(1) _(1
2 =2m <>cg4)€§l)<62§15) ORER) CEM)(E;“) H( G I P e
Cag €11 +C44 il teses  (Cy +C44)€11 +(cay +Ciy )€1 +2e15€5
il el el i) —cllef)

~(1) ~(1) (1) @)\ | (=) )y (1) 1) | =22 m @1’
(Cas €1 +C44€11 ""315615 ) {(044 ey )€1y + (e +E4)€EN +2ey5 615}

@) @)
+(C44 —|—c44) 11 +2315)e(15)

2) | ~(2) ~(2) (1)
€5 TCu €11 €15
1) (2)

~(1) (1) (2) | =(2) ~(2) (1) ~(1) (1) (2) (2) (1) 1 _(2)
q22:2(C44 €i1€5 +Cy €1 €5) [ Caq €11 €5 n €ireis —€i'es ] (32)
~0 D0 D O |=0 20 )-02) -2 " -0 DI D . -2 RelR
Cé(t4>€(11> + 624)6(11) +‘3<15)e§5) 04(14)Cé(t4)€(11) + Ca(m)cc(m)e(ll) (04(14) +C£t4>)€§1) + (CA(M) + 64(14))653 + 2‘9§5>€(15)

We remark that the present solution (the image force) includes a couple of special cases solved previously.

(i) If we ignore the piezoelectric effect for the two half-planes, i.e., eg? = e(IZS) =0, and let A¢ =0, then Eq.
(30) is reduced to
}, (33)

1,2 2
Fo o= C4(14)b {1 204(14)
c

2(2) + <1 + ;) " exp(_id) [1 - (z + g)]

y 1 2
o |
where
(1) (2) (1) 2
o Cag T Cy o Cyp T Cy
A= 5kW7 and ty = 51’]W (34)
CaqCaq C44 G4

Eq. (33) is just the result of Fan and Wang (2003b).
(ii) If we ignore the viscous effect of the interface, i.e., # =0 or t — oo and let A¢ =0, then Eq. (30) is
reduced to
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1,2 1)=2) (2 2)=(1) ~()\ /5
Fo—_ 04(14)[) [1 B 2(0514)04(14)6(11) + 64(14)04(14)€§1))g(/b) ] (35)
y= 0~ 2~ 0 -2 IROHE
4no 04(14)[(04(14) + ‘724))6(11) + (CA(M) + 054))6(11) + 26(15)e§5>]

which can be proved to be equivalent to Eq. (59) in Wang and Sudak (2007) for a mechanically compliant and
dielectrically perfect interface.
(ii1) If the two half-planes have the same material property and same poling direction, i.e., cﬁ) = cﬁ) = cys,

e<115 = e = ejs, eﬁ? = 6521) = €11, then it follows from Eq. (30) that the image force on the dislocation is
(C44b + 615A¢)2 E - ~ . /ﬁ
Fp=——7——""<1- — (143 —Af) |1 — — <0,
v Treud g(4) +t3) exp(—an) |l —g{i+7 0 (36)

which indicates that the dislocation is attracted to the interface. It shall be mentioned that in Eq. (36)
1—g(A)—(1 —1—%)_1 exp(—41)[1 — g(A+ %)] > 0 (see Fig. 2 in Fan and Wang, 2003b). It can be found from
expression (36) that if b and A¢ satisfy the relation b = — %, the image force on the screw dislocation will
be always zero.

(iv) If the two half-planes have the same material property but are poled in opposite directions, i.e.,

cf‘? = cﬁ) = Cys, e§15> = —eﬁ-) = es, eﬁ? = eﬁ> = €, then it follows from Eq. (30) that the image force
on the dislocation is
(C44b + 615A¢)2 E‘44b2 Z - ~ /ﬁ
F,=— / 1+= )|l —gl2A+—= . 37
y 47TC445 + 41_[:5 g(/“) + +2 exp( ) g + 2 ( )

Furthermore when b and A¢ satisfy the following inequality
b |€15| b |€15’ (38)

— < — — or — = = ,
A cas(\/ 1+ Cu/cu + ers/lers)) A cas(\/ 1+ Cu/cas — ers/lers))

or equivalently when (cg4b + elSAqb)z > Cascasb?, then it follows from Eq. (37) that

F< - E:;‘[’z: {1 —g() - <1 + 9_1 exp(—i7) [1 _ g(/l +§>} } <0, (39)

which implies that the dislocation is attracted to the interface.
(v) For a viscous interface we have 4 =0 and g(0) = 0, then it follows from Eq. (30) that

Fo— _Pllb2 +2p1,bAG + pyr AP’ n 010" +29,,bA¢ + g,,A¢’ (1 + E) B (40)
- 4o 4o 2)
When 7 — oo, Eq. (40) is reduced to
F, = _Pllb2 +2p1,bA¢ + prAP’ 7 (41)

4no

which is the image force on a dislocation interacting with a traction-free and dielectrically perfect interface. If
we further let 6(121) = e@ =0, then Eq. (41) becomes

b’ +2¢[)bAg — €]/ AY’
4nd ’

which is just the result for a screw dislocation interacting with a traction-free and charge-free surface (Pak,
1990). On the other hand if we let €7 — oo, then Eq. (41) becomes
1 1 2, =) (1
Fo—_ (b +eldAd)* + &) el Ap’ <0 43)
’ 471(:&)5 ’

F, = (42)

which is the image force on a screw dislocation interacting with a traction-free and electroded surface. Differ-
ent from the result for a dislocation interacting with a traction-free and charge-free surface (Pak, 1990 or see
Eq. (42) in this paper), the piezoelectric screw dislocation is always attracted to a traction-free and electroded
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surface. In fact it can be found from Eq. (31) for the expressions of pi1, p12, po» that when the following con-
dition is satisfied

(D~(2) (21)

1 (2) ~(1)
Caq Caq €

> CuqCq €11 s (44)
then the dislocation is always attracted to a traction-free and dielectrically perfect interface, i.e.,

Fo— pub’ + 2p,bA¢ +P22A¢2 0
y— 4ns <o

(45)

3.2. Electroded Kelvin-type viscoelastic interface

The continuity condition Eq. (8) on an electroded Kelvin-type viscoelastic interface can be equivalently
expressed in terms of gi(z,?), g-(z,t) defined in the upper half-plane and /(z, ), /»(z, t) defined in the lower
half-plane as follows

gt (v, 0) + &7 (x, 1)) + Y g5 (x, 1) + &5 (x,0)] = ¢ [y (6, 0) + B (x, )] + €2 [y (x,0) + ki (x,2)],
g;(x7 t) - g’z_(x7 t)

=0
hy (x, ) — by (x,£) = 0

)
)

46)
- ] . 3 . ) _ (
k[gT(X, t) — & (x7 t) - hl (x7 t) + h;r(xa t)] + 77& [g1+(x7 t) — & (xv Z) - hl (x7 [) + hr(xv t)]
. O - O _
= iy 5[y (e, 0) + B (e, 1)) ey [y (6, 0) + 3 (1)) on y=0.
It follows from (46); ;5 that the following relationships hold in the upper half-plane
(2) (1)
Caf + _ 2ed _
£ 1) = AT (20) + 810(2) — 210E) — 1> g (2),
Cyy Caq (47)
82(z,1) = g2(2) + &20(2),
EQ(Z, t) = 0,
whilst the following relationships hold in the lower half-plane
(2) (1)
_ c _ 2e
gi(z,0) = %hl(za 1)+ g10(2) — &10(2) — %gZO(Z)v
Cag Caa (48)
82(2,1) = gx(2) + &2(2),
hz(Z, [) =0.
Substituting Eqs. (47) and (48) into Eq. (46)4, we arrive at the following condition on the interface
(1) @ Oht (x.t (1) (2) Oht (x. t 2% (1)
kc44 ‘(‘I)C44 hf(x, f) — icﬁ) 16(35’ )+ 17044 ‘(‘I)CM la(x, ) — 2kgo(x) — (ell)s 220 (%)
Cay u Cag ! Cag
(1) () - (1) () A7—
Cag +Caf . (2) Ohy (x,t Cyl ey Oh (x,t
_ oM = 44 hy (x,1) + 1c‘(é) 1a(x ) 4ot o 44 16(t ) — 2kg,o(x)
Cyq Caq
kel
- Tl)sgzo(x)a on y=0. (49)
Cyy4

It is apparent that the left-hand side of Eq. (49) is analytic in the upper half-plane, whilst the right-hand side
of Eq. (49) is analytic in the lower half-plane. Consequently the continuity condition in Eq. (49) implies that
the left- and right-hand sides of Eq. (49) are identically zero in the upper and lower half-planes, respectively. It
follows that
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L0 Onlan) e + el Ag)

—iyhi(z, ¢ = In(z —io <0, 50
X 1( 9 ) aZ al‘ TE(C&)—FC‘(&)) ( )’ y ( )
where
(1) 2) (1 2
c, +c¢ ¢l +c
1=k w1 (51)
Cy C Cy C
44 Cuq 44 Cuq

It is found from Eq. (51) that the two parameters y and y for the electroded Kelvin-type viscoelastic inter-
face are independent of the piezoelectric and dielectric constants of the piezoelectric bimaterial. Since at t =0
when the piezoelectric screw dislocation is just introduced into the upper piezoelectric half-plane, the displace-
ment across the interface has no time to experience any jump due to the dashpot, the displacement is, there-
fore, continuous across the interface at 1 =0 (i.e., the interface is mechanically perfect when ¢ = 0). In other
words, the following initial condition for ah‘a—f[) holds

Om(z,0) _  (cib+¢i/Ad)

- — (52)
Oz (el + )z —10)

When ¢ — oo, the interface should be at a steady state and there is no time effect. In this case it follows from
Eq. (50) that

(D) (A
Cighy (2, 00) + Oz 00) _  ixlcasd +e1sA9) In(z — i0), (53)
3 m, 0
z m(cyy + Cyy)

with its solution being given by

Ohi(z,00) ix(ciyb + eV AP)

= exp [x(z — 19)]E [y (z — 10)]. 54

= e e = 01l ) (54)
In addition,

Llla(j J —0 asz— oo (55)

due to the fact that at the far field the stresses and electric displacements should approach zero. In view of the
initial state Eq. (52), the steady state Eq. (54) and the far-field condition Eq. (55), solution to Eq. (50) can be
easily found to be

O (z,1) _ ix(ciib + ei Ag)

S B expliz(z — 10)[{E1 [ix(z — 10)] — E:[ix(z — i6 — it/y)]}

(c\b + e\ Ad) exp(—yt/7)

— (56)

n(cly + c)(z —i0 —it/y)

Then it follows from Eq. (47) that

0g,(z,t 2 ()b + YA . . . . . . .
00 ealeud 28] o (Liytey 0B [—igle + i0)] — Bil—iglz+ i6 + it/)])
0z Cyy (Cay +Caq)

cid (i + AP exp(—y1/7) cyb+2e30p b (57)
ncﬁ(cﬁ) + cﬁ))(z +10 +it/y) 27502‘) (z+10)  2m(z—1i)’

and

ez m(z+10)  2m(z—18)
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When k£ = 0 (or y — 0) for a viscous interface, it can be deduced from Egs. (56) and (57) that the expressions of

oh 3¢, . - -
‘a(zz’t) and % for an electroded viscous interface are given by

Ohy (,1) _ b+ el)Ag (59)
0z () + ) E—id—it/y)
o) b rellag)  dlbe2dlag b )

oz D)+ +io+it/y)  2mel)(z+is)  2m(z—10)

With the expressions of aglzu and agzaZ” defined in the upper piezoelectric half-plane, and ah‘az” and ah’ Z’)
defined in the lower piezoelectric half-plane for an electroded Kelvin-type viscoelastic interface, the dlstrlbu-
tions of strains, stresses, electric fields and electric displacements in the two half-planes can then be obtained
from Eq. (5).

By using the Peach-Koehler formulation, the image force acting on the screw dislocation due to its inter-
action with the electroded Kelvin-type viscoelastic interface can be also derived to be

1 1 2 =) (1
(Ci4>b + e(ls)AqS) + 0514>€(11>A¢2

F,=—
’ 41tciz)5
@y L A2 . )
Cay (Cagb + €15 AQ) . { . Jr: (61)
" 2mett (el 5<2> 5 8(2) + 1+§ exp (—4if) [l —g A+5 ,
MCyy (Cag + Cay )
F, =0,

where 4= Jy and t, = dy are, respectively, the interface “rigidity” and the relaxation time for the elect-
roded Kelvin-type viscoelastic interface, and 7= ¢/t,. It is interesting from the above expression that
the image force on the screw dislocation due to its interaction with the electroded Kelvin-type visco-
elastic interface is independent of the piezoelectric and dielectric properties of the lower half-plane,
which is free of the screw dislocation. Somewhat surprising is the case when A¢ =0: Eq. (61) will
be reduced to the result of Fan and Wang (2003b) for a screw dislocation interacting with a Kel-
vin-type viscoelastic interface between two elastic half-planes. In other words if an elastic dislocation
interacts with an electroded Kelvin-type viscoelastic interface between two piezoelectric half-planes, then
the piezoelectric and dielectric properties of both piezoelectric half-planes have no influence on the
mobility of the dislocation!
For a viscous interface we have 4 =0 and g(0) = 0, then it follows from Eq. (61) that

N
Fo—_ (cf&)b + e<115)A¢) +c 44 11 A‘f’ C44 (044 b+e 15 A¢) <1 4 1) ' (62)
g 4ch44 0 2“044 (044 + C431 )0 2
When 7 — oo, this expression is reduced to
F,= <C44 b+ el Ag)’ + el Ap? <0, (63)

4nc44) 0

which is the image force on a screw dislocation interacting with a tractlon free and electroded surface.
It is found from Eq. (61) that if » and A¢ satisfy the relation b = — 1c5 240 , Eq. (61) then is reduced to Eq. (63).

In this special case the image force on the dislocation due to its interaction with an electroded Kelvin-type
viscoelastic interface is the same as that on the dislocation interacting with a traction-free and electroded
surface.

Finally, it is of interest to compare the values of the interface “rigidity” A= Jy and the relaxation
time 7y = Jy for the unelectroded and electroded cases. Due to the fact that the following inequality
holds
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~(1) (2)y (1) 1N | =22 1 _(2) 1) (2)
(Cay g )€Y + (cy +Ci3 )€ + 2e15€)s < Cu T+ Cyy

~(1) (2) (1) (1)~(2) ~(2) = 1M 2 7
Caq Cag €1 T CyqCaq €1 Cay Cuay

(64)

then the values of A and 7, for the unelectroded case are smaller than the corresponding ones for the electroded
case.

4. Conclusions

A detailed theoretical analysis is presented for the interaction between a screw dislocation and a Kelvin-
type viscoelastic interface bonding two transversely isotropic piezoelectric half-planes. Both the unelectroded
and electroded cases are investigated. The analytical solutions are obtained by virtue of the complex variable
method. The image force acting on the piezoelectric screw dislocation is obtained. For an unelectroded inter-
face, the image force can be completely determined by the interface “rigidity” A, the relaxation time ¢y and the
six coefficients pi1,p12, P22 and ¢11,¢12,¢>» Which are related to the material constants of the two piezoelectric
half-planes. For an electroded interface, the image force is independent of the piezoelectric and dielectric prop-
erties of the lower half-plane which is free of the screw dislocation. When the viscous effect of the interface is
ignored (o = 0), our results reduce to those for a linear spring elastic interface. On the other hand when the
elastic effect of the interface is ignored (A = 0), our results reduce to those for a viscous interface. Finally it is
mentioned that even though one could also derive the partial differential equation for a piezoelectric screw
dislocation interacting with a Maxwell-type viscoelastic interface, it would be difficult to find the analytical
solution, as we presented here for the Kelvin-type viscoelastic interface case. Similar to Ang and Fan
(2004), a boundary integral method can also be proposed for the numerical solution of a quasi-static antiplane
problem involving a piezoelectric bimaterial with an imperfect and viscoelastic interface.
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