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 1 Introduction Multiferroic materials simultaneously 
possess both ferroelectric and ferromagnetic (or antiferro-
magnetic) order in the same phase. They hold great poten-
tial for applications as the multiferroic coupling allows 
switching of the magnetic state by an electric field and 
likewise switching of the ferroelectric polarization by a 
magnetic field [1–6]. Significantly, multiferroics could 
lead to a new generation of memory and microwave de-
vices that can be controlled both electrically and magneti-
cally [3, 6]. 
 The Green’s functions in multiferroic materials can be 
utilized to tailor the magnetoelectric effect [7, 8] and to in-
vestigate inclusions of various shapes with spontaneous 
polarization and magnetization [9, 10]. Li and Li [9] ob-
tained Green’s functions for the uniaxial multiferroic mate-
rial induced by a point electric or magnetic charge. The 
Green’s functions for a uniaxial multiferroic half-space and 
bimaterial were addressed very recently [11]. The corre-
sponding Green’s functions for exponentially graded uni-
axial multiferroic materials were also derived [12]. How-
ever, the aforementioned works on Green’s functions in 
multiferroic materials [9, 11] were confined to the isother-
mal case in which the pyroelectric and pyromagnetic ef-
fects, which have been observed [13, 14] and which have 

found many applications both in science and technology 
[15, 16], were not taken into consideration. We also point 
out that thermal source is important in smart materials, as 
was discussed for piezoelectric [17] and magnetoelectro-
elastic [18] materials under the thermal source/loading in 
two dimension. A thermomagnetoelastic model was even 
proposed for earthquake source mechanism study [19]. 
 Obtained in this research are the induced electromag-
netic fields for a uniaxial multiferroic material and bimate-
rial subjected to a steady point heat source. In the course of 
elaborating our method we establish electromagnetic char-
acteristic constants, λ1 and λ2, to parameterize the multifer-
roic behavior. Both the nondegenerate case, in which the 
heat conduction characteristic constant λ0 (the ratio of the 
transverse and axial thermal conductivity tensor elements) 
is different from the two electromagnetic characteristic 
constants λ1 and λ2, and the degenerate case, in which the 
heat conduction characteristic constant λ0 is equal to one of 
the two electromagnetic characteristic constants λ1 and λ2, 
are addressed. Once the Green’s functions for a multifer-
roic full-space are known, the corresponding Green’s func-
tions for two bonded multiferroic half-spaces are obtained 
by the image method, with the twelve unknown constants 
being determined by inverting a simple 4 × 4 matrix [11]. 

Pyroelectric and pyromagnetic effects are important for ap-

plications of multiferroic materials in elevated temperature 

environments. In this paper, we derive exact closed-form 

electromagnetic Green’s function expressions for polarization 

fields in uniaxial multiferroic materials and bimaterials in-

duced by a steady point heat source. The pyroelectric and py-

romagnetic effects as a result of temperature change in mul-

tiferroic materials are incorporated in this study. The degen- 

 erate and nondegenerate cases, which pertain to whether the 

heat conduction characteristic constant is equal to one of the 

two electromagnetic characteristic constants, are discussed in 

detail. The Green’s functions for a bimaterial composed of 

two perfectly bonded uniaxial multiferroic half-spaces sub-

jected to a point heat source are further obtained by means of 

the image method.              
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 2 A steady point heat source in a homogene-
ous uniaxial multiferroic material The constitutive 
equations for a uniaxial multiferroic material with its 
unique axis along the x3-axis can be written as 

1 11 11 1

1 11 11 1

2 11 11 2

2 11 11 2

3 33 33 3

3 33 33 3
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 (1) 

where D
i
 and B

i
 (i = 1, 2, 3) are the electric displacement and 

magnetic flux components (in the x1-, x2-, and x3-directions); 
E

i
 and H

i
 are electric field and magnetic field components; T 

is the temperature change; ε11 and ε33 are the two dielectric 
permittivity constants in the x1- and x3-directions, respec-
tively; α11 and α33 are the two magnetoelectric constants (in 
the x1- and x3-directions); µ11 and µ33 are the two magnetic 
permeability constants (in the x1- and x3-directions); and p 
and m are, respectively, the pyroelectric and pyromagnetic 
constants (in the x3-direction). 
 The electric and magnetic fields are related to the elec-
tric potential φ and magnetic potential ψ through the fol-
lowing 2 × 1 column matrix relation 

,

,

,

ii

ii

E

H

φ

ψ

È ˘È ˘
= -Í ˙Í ˙

Î ˚ Î ˚
 (2) 

where the subscript comma “,” followed by the index i 
(i = 1, 2, 3) denotes the derivative of the potential with re-
spect to the coordinate x

i
. 

 In the absence of free electric and magnetic charges, 
the electric displacement D

i
 and magnetic flux B

i
 satisfy 

the following Gauss’ equations 
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 Substituting Eq. (2) into Eq. (1), and then the results 
into Eq. (3), we finally arrive at the following set of inho-
mogeneous partial differential equations for φ and ψ 
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 In addition we assume that a steady point heat source 
of strength Q is located at the origin of a uniaxial multifer-
roic space. As a result the temperature T should satisfy the 
following 3D Poisson’s equation 

2 2 2

1 2 32 2 2

1 2 0 3 11

1
( ) ( ) ( ) ,

T T T Q
x x x

x x x k
δ δ δ

λ
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+ + = -

∂ ∂ ∂
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where δ() is the Dirac delta function; λ0 = k11/k33 is the di-
mensionless heat conduction characteristic constant; and 
k11 and k33 are two heat conductivity constants (in the  
x1- and x3-directions). It is obvious that for an isotropic 
thermal material, the heat conduction characteristic con-
stant λ0 = 1, whilst it can be larger or smaller than 1, de-
pending whether the strong direction of the heat conduc-
tion is along x1- or x3-direction. Equation (5) can be further 
expressed in the following standard form 

( )
( )
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0 3
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λ
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where 
11 33

k k k�

=  can be considered as the effective heat 
conductivity. The solution to Eq. (6) can be expediently 
given by 
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 Inserting the above expression for the temperature T into Eq. (4), we arrive at 
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 (8) 

 In the following we will decouple the coupled inhomogeneous partial differential equations (8) using the eigenvalue 
approach [11]. We first consider the following eigenvalue problem [11] 
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λ

α µ α µ

Ê È ˘ È ˘ˆ È ˘- =Á ˜Í ˙ Í ˙ Í ˙Ë ¯Î ˚ Î ˚ Î ˚
v  (9) 



208 X. Wang et al.: Electromagnetic fields induced by a concentrated heat source 

 

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  www.pss-b.com 

 The two eigenvalues λ1 and λ2, which are termed the electromagnetic characteristic constants, are given by [11] 
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and the two eigenvectors associated with λ1 and λ2 are 
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 Since the two matrices 
11 11
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 are 

real and symmetric, it can be easily verified that the fol-

lowing orthogonal relationships with respect to the two 

symmetric matrices hold [11] 
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where 
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We now introduce two new functions f and g, which are re-
lated to φ and ψ through 

,

f

g

φ

ψ

È ˘ È ˘
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Î ˚ Î ˚
Φ  (14) 

where Φ = [v 1 v 2]. 
 In view of Eqs. (8), (12) and (14), the two new func-
tions f and g satisfy the following two independent 3D 
Poisson’s equations 

2 2 2

1 0 3

2 2 2 2 2 2 3 2

1 2 1 3 1 2 0 3

2 2 2

2 0 3

2 2 2 2 2 2 3 2

1 2 2 3 1 2 0 3

1
,

( )

1
,

( )

c x
f

x x x x x x

c x
g

x x x x x x

λ

λ λ

λ

λ λ

∂ ∂ ∂Ê ˆ+ + =Á ˜Ë ¯∂ ∂ ∂ + +

∂ ∂ ∂Ê ˆ+ + =Á ˜Ë ¯∂ ∂ ∂ + +

 (15) 

where the two constants c1 and c2 are given by 
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 In the following we will discuss the solutions to 
Eq. (15) according to whether the heat conduction charac-
teristic constant λ0 is equal to one of the two electromag-
netic characteristic constants λ1 and λ2. We assume that the 
two electromagnetic characteristic constants are distinct 
(which is true for a uniaixial material) in order to simplify 
our discussion. In the case of isotropy where λ1 = λ2, a 
small perturbation can be utilized to separate the two roots 
so that the solutions presented in this paper can still be util-
ized with neglected errors [20]. 
 
 

2.1 The nondegenerate case: λ1 ≠ λ2 ≠ λ0. When 
λ1 ≠ λ2 ≠ λ0, it can be easily checked that the solutions to 
Eq. (15) can be written as 
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where 
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 Due to the fact that the electric and magnetic potentials 
φ and ψ should be continuous across the plane x3 = 0, then 
we have φ = ψ = 0 (or equivalently f = g = 0) on x3 = 0 in 
view of the fact that f and g are odd functions of x3. As a 
result it follows from Eq. (17) that the two unknown con-
stants d1 and d2 can be uniquely determined to be 
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Consequently the expressions of f and g can be finally 
given by 
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The expressions of the electric and magnetic potentials φ and ψ are thus given by 
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which can be written more explicitly as 
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 The electric and magnetic fields induced by the point heat source can then be determined as 
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 It is observed from the above two expressions that the 
horizontal electric and magnetic fields E1, E2, H1, H2 are 
odd functions of x3, and are zero on the horizontal plane 
x3 = 0. On the other hand, the vertical electric and magnetic 
fields E3 and H3 are even functions of x3, inversely propor- 

tional to 
2 2

1 2
r x x= +  on the horizontal plane x3 = 0,  and 

are zero on the x3-axis excluding the origin. The electric 
displacements and magnetic fluxes can be determined by 
using Eq. (1) and the above two expressions. 
 
 
  

 
 
 2.2 The degenerate case: λ1 = λ0 (λ1 ≠ λ2). Next 
we address the degenerate case λ1 = λ0 (λ1 ≠ λ2). Applying 
the L’Hospital’s rule to Eq. (21) when λ1 → λ0 yields the 
expressions of the electric potential φ and magnetic poten-
tial ψ as follows 
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which can be written more explicitly as 
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 The electric and magnetic fields induced by the point heat source can then be determined as 
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 Similar to the nondegenerate case, we also observe that, 
for the degenerate case, the horizontal electric and mag-
netic fields are odd functions of x3, and are zero on the 
horizontal plane x3 = 0. On the other hand, the vertical 
electric and magnetic fields are even functions of x3, are 
inversely proportional to r when x3 = 0, and are zero on the 
x3 axis excluding the origin. The electric displacements and 
magnetic fluxes can be similarly determined by using 
Eq. (1) and the above two expressions. 
 Before ending this section, we add that the other degen-
erate case λ1 = λ0 (λ1 ≠ λ2) can be discussed similarly. The 
results obtained in this section can be further applied to de-
rive the electromagnetic Green’s functions for a uniaxial 
multiferroic bimaterial induced by a steady point heat source, 
which will be discussed in detail in the ensuing section. 
 
3 A steady point heat source in a homogeneous 
uniaxial multiferroic bimaterial In this section we  
investigate the electromagnetic fields in two bonded  
multiferroic  half-spaces induced by a steady point  heat 
  

 
source.  We assume that  both half-spaces are uniaxial 
multiferroic materials having the unique axis along the x3-
axis, and that the interface x3 = 0 of the two multiferroic 
half-spaces are perfect. Namely, the temperature, electric 
potential, magnetic potential, normal heat flux, normal 
electric displacement and normal magnetic flux are all con-
tinuous across the interface x3 = 0. Without loss of general-
ity, a steady point heat source of strength Q is assumed to 
be located at x1 = x2 = 0, x3 = h (h > 0) in the upper half-
space of the multiferroic bimaterial. In the following the 
subscripts 1 and 2 to vectors or matrices and the super-
scripts (1) and (2) to scalars are used to identify the quanti-
ties in the upper and lower half spaces, respectively. In ad-
dition, we only consider the nondegenerate case for the two 
multiferroic half-spaces in which the heat conduction char-
acteristic constant is different from the electromagnetic 
characteristic constants, i.e., 

( ) ( ) ( )

1 2 0 ,

i i i
λ λ λπ π  ( 1, 2).i =  

 First, making use of the image method [11] and enforc-
ing the continuity conditions of  temperature and normal 
heat flux across the interface x3 = 0, we arrive at the tem-  

perature field in the uniaxial bimaterial as follows 
(1) (2)
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 It can be found that the electric and magnetic potentials in the bimaterial, induced by the temperature field (29), take 
the following forms 
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 (30)  
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where Lij (i = 1−4, j = 0, 1, 2) are the unknown coefficients to be determined, and 
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 (i, j = 0, 1, 2) (32) 

Furthermore, c1, c2, e1, e2, e3, e4 in Eq. (30) are given by 
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with 
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11 1 33 11 ,
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of Φi. 
 Then, by enforcing the continuity conditions of the 
electric and magnetic potentials as well as the normal elec-
tric displacement and normal magnetic flux across the in-
terface  x3 = 0, the twelve unknowns Lij (i = 1−4, j = 0, 1, 2)

can be uniquely determined to be 
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where 
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and 
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 (37) 

 It is observed from Eq. (34) that the twelve unknowns 
Lij can be simply determined by inverting a single 4 × 4 
matrix. This concise procedure is similar to that for the 
corresponding isothermal case [11]. Once the electric and 
magnetic potentials in the multiferroic bimaterial are  
obtained, the electric and magnetic fields as well as electric 
displacements and magnetic fluxes can be found by tak- 
ing the derivatives of the electric and magnetic poten- 
tials. 
 
 4 Conclusions The three-dimensional electromag-
netic Green’s function solutions for a steady-state point 
heat source in a uniaxial multiferroic material and bimate-
rial are derived. The Green’s function expressions for a 
multiferroic full-space are given in Eqs. (22)–(24) for the 
nondegenerate case λ1 ≠ λ2 ≠ λ0 and in Eqs. (26)–(28) for 
the degenerate case λ1 = λ0 (λ1 ≠ λ2). The electromagnetic 
fields induced by a steady point heat source at the origin of 
a uniaxial multiferroic full-space with the x3-axis being its 
uniaxial axis exhibit the following properties: (1) The elec-
tric and magnetic potentials as well as the horizontal elec-
tric and magnetic fields (and as a result the horizontal elec-
tric displacements and magnetic fluxes) are odd functions 
of x3, and are zero on the horizontal plane x3 = 0; (2) The 
vertical electric and magnetic fields (and as a result the 
vertical electric displacements and magnetic fluxes) are 
even functions of x3, and are inversely proportional to r 
when x3 = 0, and are zero on the x3-axis excluding the ori-
gin. The Green’s function solutions for two bonded mul-
tiferroic half-spaces are presented in Eqs. (30)–(31) with 
the twelve constants Lij being determined by Eq. (34). We 
further remark that by making use of the image method 
discussed in Section 3, the point heat source induced elec-
tromagnetic Green’s functions in a multiferroic half-space 
with various surface electromagnetic boundary conditions 

[11] can also be derived, and that the influence of the tem-
perature on the electric and magnetic fields will be pursued 
using the developed Green’s functions. 
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