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he problem of a functionally graded plane with a circular inclu-
ion under a uniform antiplane eigenstrain is investigated, where
he shear modulus varies exponentially along the x direction. By
ntroducing a new function which satisfies the Helmholtz equation,
he general solution to the original problem is derived in terms of
eries expansion. Numerical results are then presented which
emonstrate clearly that for a functionally graded plane, the
train and stress fields inside the circular inclusion under uniform
ntiplane eigenstrains are intrinsically nonuniform. This phenom-
non differs from the corresponding homogeneous material case
here both the strain and stress fields are uniform inside the cir-
ular inclusion. �DOI: 10.1115/1.2745391�

eywords: functionally graded material, Eshelby eigenstrain, cir-
ular inclusion, antiplane deformation

Introduction
The well-known result of Eshelby �1� for an elastic space shows

hat the strain and stress fields inside an ellipsoidal �and elliptical�
nclusion under uniform eigenstrains are uniform. Eshelby’s result
s based on the assumption that the infinite elastic space is isotro-
ic and homogeneous. Recently, this classic Eshelby problem has
een extended to material anisotropy and even piezoelectric cou-
ling �2–4�, with applications in novel strained semiconductor
uantum structures �see, e.g., �5,6��.

As a new type of composites, functionally graded materials
FGMs� were initially designed as thermal barrier materials for
erospace structures �Koizumi �7��, in which the volume fractions
f different constituent materials vary continuously from one side
o the other, resulting in smooth variation of material properties. If

FGM space contains an ellipsoidal or elliptical inclusion with
niform eigenstrains, are the strain and stress fields inside the
nclusion still uniform? To the best of the authors’ knowledge, the
shelby problem in FGMs has not been addressed, although the

racture problem �see, e.g., �8�� and some Green’s function prob-
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lems �see, e.g., �9–13�� in FGMs were investigated before. Since
the general Eshelby problem in FGMs is very difficult, we con-
sider here only the simple situation in which a FGM plane con-
tains a circular cylindrical inclusion under uniform antiplane
eigenstrains. Furthermore we assume that the shear modulus of
the FGM varies exponentially along a fixed direction, say the x
direction, as adopted by Erdogan et al. �8�. In doing so, it is
possible for us to derive a general solution to this problem by
introducing a new function � which satisfies the Helmholtz equa-
tion. The final series solution is expressed in terms of the modified
Bessel functions.

2 General Solution
We consider an infinite FGM in the x-y plane as shown in Fig.

1, and assume that the shear modulus � of the FGM varies expo-
nentially in the x direction as �e.g., �8��

� = e2�x�0 �1�

where �0 is the homogeneous shear modulus and � is the gradient
factor of the FGM.

We point out that while various processing techniques have
been proposed for FGMs �e.g. �14–17��, including the isotropic
FGM as a special case �15�, the exponential variation described by
Eq. �1� could be difficult to achieve experimentally. Therefore, Eq.
�1� should be regarded as a simplified FGM model to the more
complicated FGMs fabricated from laboratories. We further men-
tion that an isotropic FGM, as the one assumed here, could be
realized only for certain spatial variations of composition �14�
since random distributed microstructures �i.e., two distinct phases
distributed in a disordered fashion� would be locally anisotropic
�18–20�, with the latter requires more involved analysis.

We also assume that, within the FGM, there is a circular inclu-
sion r=�x2+y2�R which undergoes uniform antiplane eigen-
strains �zx

* and �zy
* . The boundary condition along the inclusion-

matrix interface r=R is assumed to be fully bonded, and can be
expressed in terms of the out-of-plane elastic displacements w�1�

inside the inclusion and w�2� outside, as

w�1� + w* = w�2�

�w�1�

�r
=

�w�2�

�r

�r = R� �2�

where w*=r��zx
* −i�zy

* �ei�+r��zx
* +i�zy

* �ei� is the additional dis-
placement corresponding to the uniform eigenstrains �zx

* ,�zy
* . The

first condition in Eq. �2� states that the displacement is continuous
across the interface; while the second one in Eq. �2� implies that
the traction �zr is continuous across the interface. Furthermore, it
is easy to show that w�1� and w�2� satisfy the following partial
differential equations:

�2w�1�

�x2 +
�2w�1�

�y2 + 2�
�w�1�

�x
= 0 �x2 + y2 � R

�2w�2�

�x2 +
�2w�2�

�y2 + 2�
�w�2�

�x
= 0 �x2 + y2 � R �3�

We now introduce a new function � which is related to w
through the following relation:

w = e−�x� �4�

It is easy to show that, in terms of the new function �, the bound-
ary condition �2� can be equivalently expressed as

��2� − ��1� = e�xw*

���2�

�r
−

���1�

�r
= �e�x cos �w* �r = R� �5�

where ��1� and ��2� are within and outside the inclusion, respec-

tively. They satisfy the following Helmholtz equations:
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�2��1�

�x2 +
�2��1�

�y2 − �2��1� = 0 �x2 + y2 � R

�2��2�

�x2 +
�2��2�

�y2 − �2��2� = 0 �x2 + y2 � R �6�

In view of Eq. �6�, ��1� and ��2� can be expressed in terms of
eries expansion as

ig. 1 An infinite FGM plane containing a circular inclusion
ith uniform antiplane eigenstrains
2

14501-2 / Vol. 75, JANUARY 2008

aded 11 Jan 2008 to 130.101.12.6. Redistribution subject to ASME
��1� = �
n=−	

+	

An
�1�In����r�ein� 0 � r � R �7�

��2� = �
n=−	

+	

An
�2�Kn����r�ein� r � R �8�

where In and Kn are the modified nth-order Bessel functions of the
first and second kinds, respectively; An

�1� and An
�2� are unknown

coefficients to be determined. In addition, the exponential function
e�x can be expanded as follows:

e�x = �
n=−	

+	

In��r�ein� �9�

Therefore, the two terms on the right-hand side of Eq. �5� can
be expanded as

e�xw* = R �
n=−	

+	

�In−1��R���zx
* − i�zy

* � + In+1��R���zx
* + i�zy

* ��ein�

�10�

� cos �e�xw* =
�R

2 �
n=−	

+	

��In−2��R� + In��R����zx
* − i�zy

* � + �In��R�

+ In+2��R����zx
* + i�zy

* �	ein� �11�
By enforcing the boundary condition �5�, we determine the un-

known expansion coefficients in Eqs. �7� and �8� as

An
�1�

An
�2� � =

R

Kn����R�In�����R� − In����R�Kn�����R�

Kn�����R� − Kn����R�

In�����R� − In����R� �

 � In−1��R���zx

* − i�zy
* � + In+1��R���zx

* + i�zy
* �

�

2���
��In−2��R� + In��R����zx

* − i�zy
* � + �In��R� + In+2��R����zx

* + i�zy
* �	 
 �12�
here the prime � �� denotes the derivative with respect to the
ariable in the parentheses.

We mention that the following identities are useful in the cal-
ulation of the coefficients:

In��x� =
In−1�x� + In+1�x�

2

Kn��x� = −
Kn−1�x� + Kn+1�x�

2
�13�

hich can be easily derived using the definitions that

In�x� = i−nJn�ix�

Kn�x� =
�

2
in+1Hn

�1��ix� �14�

here Jn and Hn
�1� are the nth order Bessel and Hankel functions

f the first kind. The other useful identities are

Jn��x� =
Jn−1�x� − Jn+1�x�
Hn
�1���x� =

Hn−1
�1� �x� − Hn+1

�1� �x�
2

�15�

We add that Eq. �9� can be easily derived from the following
Jacobi-Anger expansion �21�:

eikx = �
n=−	

+	

inJn�kr�ein� �16�

by taking �=ik and using the definition of In in Eq. �14�.

3 Numerical Results
As a numerical example, we consider a circular inclusion with

uniform eigenstrains �zx
* �0 and �zy

* =0. We truncate the series in
Eqs. �7� and �8� at n= ±10 in order to obtain a result with a
relative truncation error less than 0.1%.

Figure 2 shows the distribution of the normalized stress com-
ponent

� = −
�zx

�0�zx
*

where
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�zx = �
�w

�x
= �0e�x�− �� +

��

�x
�

long the x axis for four different gradient parameters �*=�R
0,0.2,0.5,1. It is noted that, for �*=0, which corresponds to a
omogeneous plane, variation of � obeys the following exact ex-
ression, which can also be derived from the result of Ru and
chiavone �22�:

� = �1, �x� � R

�R

x
�2

, �x� � R � �17�

It is well known that the stress field inside the circular inclusion
s uniform when the plane is homogeneous, which is the classic
shelby result. When �*�0 for an FGM plane, however, the
tress field inside the circular inclusion is no longer uniform with
ts maximum value being always reached at x=R �Fig. 2�.

Figure 3 shows the variation of the maximum stress �max as a
unction of �*. It is observed that �max is a monotonic increasing
unction of �*. The influence of the gradient parameter �* on
max is significant. For example, when �*=3, �max=98.3133, a
alue nearly 100 times of the one corresponding to the homoge-
eous material case ��max=1 for �*=0�.

ig. 2 Distribution of the normalized stress component �=
„�zx /�0�zx

*
… along the x axis for different gradient parameters

*=�R=0,0.2,0.5,1

*
ig. 3 Variation of the maximum stress �max as a function of �

ournal of Applied Mechanics

aded 11 Jan 2008 to 130.101.12.6. Redistribution subject to ASME
Besides the stress distribution, we also show in Fig. 4 the dis-
tribution of the normalized total strain component �being an ele-
ment of the Eshelby tensor �1��

� = ���zx
�1� + �zx

* �/�zx
* , �x� � R

�zx
�2�/�zx

* , �x� � R
� �18�

along the x axis for four different gradient parameters �*

=0,0.2,0.5,1. In Eq. �18�,

�zx
�1� =

1

2

�w�1�

�x

and

�zx
�2� =

1

2

�w�2�

�x

are the elastic strains inside and outside the inclusion, respec-
tively. Similarly, Fig. 4 demonstrates that the Eshelby tensor
within the circular inclusion is no longer uniform for an FGM
plane ��*�0�.

Figure 5 shows the distribution of the normalized total displace-
ment

Fig. 4 Distribution of the normalized total strain component �
along the x axis for different gradient parameters �*

=0,0.2,0.5,1

Fig. 5 Distribution of the normalized total displacement �
along the x axis for different gradient parameters �*
=0,0.2,0.5,1
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 = ��w�1� + w*�/R�zx
* , �x� � R

w�2�/R�zx
* , �x� � R

� �19�

long the x axis for four different gradient parameters �*

0 ,0.2,0.5,1. It is observed that the displacement field inside the
ircular inclusion in an FGM plane �especially when �*=1� is no
onger a linear function of the coordinate x. Furthermore, the mag-
itude of 
 for x�R is very small when the gradient parameter �*

s large. For example, for a large �*, say �*�1, the magnitude of
at x=R is 
�0. It is further interesting that, for a large �*, the

orresponding stress � at x=R is also large ���3.5 at x=R�. On
he other hand, for �*�1, the magnitude of 
 at x=−R is very
arge �
�−2.5 at x=−R� while that of � at x=−R is small ��

0 at x=−R�. Finally, when �*=0, i.e., for the corresponding
omogeneous material case, the displacement 
 along the x axis
beys the following exact expression �22�:


 = �x/R , �x� � R

R/x , �x� � R
� �20�

hich implies that 
 within the inclusion is proportional to the
oordinate x, while outside the inclusion 
 is inversely propor-
ional to the coordinate x.

We remark that the dimensionless gradient parameter �* cannot
e arbitrarily large as this would result in a FGM with a very large
hear modulus. For example, the modulus corresponding to �*

3 at x=R would be more than 400 times larger than the one
orresponding to the homogeneous material case �i.e., �0 when
*=0�.

Conclusions
We have analyzed the displacement, strain, and stress fields for

n infinite FGM plane containing a circular inclusion under uni-
orm antiplane eigenstrains. The solution is expressed in terms of
eries expansion by virtue of a new function. Numerical results
how that, inside the circular inclusion, the stress and strain fields
re nonuniform and the displacement field is no longer a linear
unction of the coordinates x and y when the elastic plane is func-
ionally graded �or inhomogeneous in shear modulus�. A similar
roblem that could be addressed in the future is for the corre-
ponding transversely isotropic and piezoelectric FGM plane with
circular inclusion under uniform antiplane eigenstrains and in-

lane eigenelectric fields. Finally we indicate again that the FGM
lane studied in this research is assumed to be isotropic and ex-
onentially graded to simplify the analysis. Introduction of local
nisotropy �18–20� to our model will require more involved in-

estigation and thus form the subject of future research.
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