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Abstract

In this paper, the anti-plane problem for an interfacial crack between two dissimilar magneto-electro-elastic plates sub-
jected to anti-plane mechanical and in-plane magneto-electrical impact loadings is investigated. Four kinds of crack sur-
face conditions are adopted: magneto-electrically impermeable (Case 1), magnetically impermeable and electrically
permeable (Case 2), magnetically permeable and electrically impermeable (Case 3), and magneto-electrically permeable
(Case 4). The position of the interfacial crack is arbitrary. The Laplace transform and finite Fourier transform techniques
are employed to reduce the mixed boundary-value problem to triple trigonometric series equations in the Laplace trans-
form domain. Then the dislocation density functions and proper replacements of the variables are introduced to reduce the
series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together
with the corresponding single-valued condition is approximated as a system of linear algebra equations, which can easily be
solved. Field intensity factors and energy release rates are determined and discussed. The effects of loading combination
parameters on dynamic energy release rate are plotted for Cases 1–3. On the other hand, since the magneto-electrically
permeable condition is perhaps more physically reasonable for type III crack, the effect of the crack configuration on
the dynamic fracture behavior of the crack tips is studied in detail for Case 4. The results could be useful for the design
of multilayered magneto-electro-elastic structures and devices.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their unique magneto-electric coupling effect, composite materials consisting of a piezoelectric phase
and a piezomagnetic phase are extensively used as magnetic field probes, electric packaging, acoustic, hydro-
phones, medical ultrasonic imaging, and sensors and actuators. The mechanics behaviors of these novel mate-
rials have drawn significant interest in recent years [1–9].
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On the other hand, when subjected to mechanical, magnetic and electrical loads in service, these magneto-
electro-elastic composites can fail prematurely due to defects, such as cracks, holes and inclusions, arising
during their manufacturing process. Therefore, it is of great importance to study the fracture behaviors of pie-
zoelectric/piezomagnetic composites with cracks under the magneto-electro-elastic interaction. While a variety
of progress has been made on crack problems in magneto-electro-elastic materials [10–14], most studies are for
crack problems in homogeneous materials and under static deformation assumption. To date, the analysis of
dynamic fracture problems of magneto-electro-elastic materials is still very limited. Du et al. [15] obtained the
scattered fields of SH waves by a partially debonded magneto-electro-elastic cylindrical inhomogeneity, and
determined the numerical results of crack opening displacement. Feng et al. [16] further investigated both
the near- and far-field properties of arc-shaped interfacial cracks. Hou and Leung [17] analyzed the dynamic
plane-strain problem of a magneto-electro-elastic hollow cylinder by virtue of the separation of variables,
orthogonal expansion technique and the interpolation method. Zhou et al. [18] analyzed the dynamic behavior

Nomenclature

a, b x-coordinates of crack tips
BIi(x,y, t), Bxi(x,y, t), Byi(x,y, t) magnetic induction components
c half crack length
ci ‘‘extended’’ shear wave speeds
ci

IJKL; c
i
44 elastic constants

d width of the plate
DIi(x,y, t), Dxi(x,y, t), Dyi(x,y, t) electric displacement components
ei

IK ; e
i
11 dielectric permittivities

ex,ey crack eccentricities away from the horizontal and vertical mid-planes, respectively
ei

KIJ ; e
i
15 piezoelectric constants

EKi(x,y, t), Exi(x,y, t), Eyi(x,y, t) electric field components
/i(x,y, t) electric potentials
f i

KIJ ; f
i
15 piezomagnetic constants

czyi(x,y, t), czxi(x,y, t) engineering strain components
gi

IK ; g
i
11 electromagnetic constants

Ga,Gb dynamic energy release rates of crack tips a and b, respectively
h1, h2 heights of the plate in the region y P 0 and y 6 0, respectively
H(t) heaviside unit step function
HKi(x,y, t), Hyi(x,y, t), Hxi(x,y, t) magnetic field components
K field intensity factor vector
KT, KB, KD stress, magnetic induction and electric displacement intensity factors, respectively
kB, kD magnetic and electric loading combination parameters, respectively
li

IK ; l
i
11 magnetic permeabilities

p Laplace transform parameter
qi material densities
rIJi(x,y, t), rzxi(x,y, t), rzyi(x,y, t) stress components
sKLi(x,y, t) strain components
t time
Tyi,Txi ‘‘extended’’ traction vectors

T ðjÞyi ; T
ðjÞ
xi the jth component of traction vectors

Ui ‘‘extended’’ displacement vectors
U ðjÞi the jth component of displacement vectors
wi(x,y, t) displacements
x, y, z coordinates
wi(x,y, t) magnetic potentials
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of two collinear interface cracks in magneto-electro-elastic materials. Feng et al. [19] studied the dynamic
fracture behaviors of magneto-electrically impermeable interfacial crack between two dissimilar magneto-
electro-elastic materials using the energy density criterion and Fourier integral transform method, where mag-
neto-electrically impermeable crack surface condition was adopted. Hu and Li [20] considered the constant
moving crack in an infinite magneto-electro-elastic material. Recently, Hu et al. [21] further studied the
moving crack at the interface between two dissimilar magneto-electro-elastic materials, and Feng and Su
[22] studied the dynamic fracture behaviors of cracks in a functionally graded magneto-electro-elastic strip,
where the Fourier integral transform technique was applied. So far, however, the interfacial crack problems
of a magneto-electro-elastic body of finite size, in particular when the problem domain is finite in all direc-
tions, have not been addressed.

In this paper, the dynamic anti-plane problem of a bonded magneto-electro-elastic rectangular plate with
an interfacial crack is considered. The crack is assumed to be impermeable or permeable for magnetic and
electric fields, and the position of the interfacial crack is further assumed to be arbitrary. By virtue of the
Laplace transform and finite Fourier transform, the mixed boundary-value problem is first reduced to a sin-
gular integral equation in the Laplace transform domain. The resulting singular integral equation is then
approximated as a system of linear algebraic equations, which are finally solved. Field intensity factors and
dynamic energy release rates (DERRs) in the physical domain are obtained and analyzed. Since for III crack
problems (see e.g., [12,13,18,20,21] for magneto-electro-elastic materials and [23] for piezoelectric material),
magnetically and/or electrically permeable crack surface conditions are perhaps more reasonable in engineer-
ing applications, we emphasize our analysis on Case 4 to show the effects of crack configuration on the
DERRs. In the meantime, the effects of the applied magnetic and/or electric excitation on the DERRs for
other magneto-electric crack surface assumptions are also simply illustrated. Results presented in this paper
should have potential applications to the design of multilayered magneto-electro-elastic structures.

2. Statement of the problem

Consider a Griffith crack of length b � a at arbitrary position of the interface between two bonded mag-
neto-electro-elastic rectangular plates occupying 0 < x < d, 0 < y < h1 and 0 < x < d, �h2 < y < 0, respectively,
as shown in Fig. 1. The magneto-electro-elastic plates are assumed to be transversely isotropic, and be

h2

y

h1

xa  b o  d 

D0H(t)

B0H(t)

0H(t)

Material 1 

Material 2 

σ

Fig. 1. An interfacial crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane
magnetic and electrical impact loadings.
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infinitely long in the poling direction, denoted as the z-axis. Within the framework of the theory of linear mag-
neto-electro-elastic solid, the constitutive equations involving stresses rIJ, strains sIJ, electric displacements DI,
electric fields EI, magnetic inductions BI and magnetic fields HI, are

rIJi

DIi

BIi

264
375 ¼ ci

IJKL �ei
KIJ �f i

KIJ

ei
IKL ei

IK gi
IK

f i
IKL gi

IK li
IK

264
375 sKLi

EKi

H Ki

264
375; i ¼ 1; 2; ð1Þ

where the quantities with the subscript or subscript i (=1,2), denote the corresponding quantities in the upper
and lower plates, respectively; cIJKL, eIJK, fIJK and gIK are the elastic, piezoelectric, piezomagnetic and electro-
magnetic constants, respectively; eIK and lIK are the dielectric permittivities and magnetic permeabilities,
respectively. In this paper, only the anti-plane deformation is considered (i.e., anti-plane elastic deformation
and in-plane electric and magnetic fields).

When subjected to the anti-plane mechanical and in-plane electric displacement and magnetic induction
impact loadings, the constitutive equations in the bonded rectangular plate reduce to

TKi ¼
ci

44 �ei
15 �f i

15

ei
15 ei

11 gi
11

f i
15 gi

11 li
11

264
375 czKi

EKi

HKi

264
375; i ¼ 1; 2; K ¼ y; x; ð2Þ

where

TKiðx; y; tÞ ¼ rzKiðx; y; tÞ DKiðx; y; tÞ BKiðx; y; tÞ½ �T; i ¼ 1; 2; K ¼ y; x; ð3Þ

The strain components czK (instead of 2szK in 1), electric field components EK and magnetic field components
HK can be expressed in terms of the out-of-plane displacement w, in-plane electric potential / and magnetic
potential w by the gradient relations

czKi

EKi

HKi

264
375 ¼ wi;K

�/i;K

�wi;K

264
375; i ¼ 1; 2; K ¼ y; x: ð4Þ

Neglecting body forces, electric charge density and magnetic current density, it follows that w(x,y, t), /
(x,y, t) and w(x,y, t) satisfy the basic governing partial differential equations for the magneto-electro-elastic
body under anti-plane deformation, as

Nir2Ui ¼ ½ qio
2wi=ot2 0 0 �T; i ¼ 1; 2; ð5Þ

where $2 is the two-dimensional Laplacian operator, qi is the material density, and

Ni ¼
ci

44 ei
15 f i

15

ei
15 �ei

11 �gi
11

f i
15 �gi

11 �li
11

264
375; Uiðx; y; tÞ ¼

wiðx; y; tÞ
/iðx; y; tÞ
wiðx; y; tÞ

264
375; i ¼ 1; 2: ð6Þ

Introducing

Ui ¼ XiZi; i ¼ 1; 2; ð7Þ

where

Xi ¼
1 0 0

a1i b1i c1i

a2i b2i c2i

264
375; Ziðx; y; tÞ ¼

wi x; y; tð Þ
vi x; y; tð Þ
fi x; y; tð Þ

264
375; i ¼ 1; 2; ð8Þ

with a1i, b1i, c1i (referring to Appendix A) being known constants, the constitutive Eq. (2) and governing Eq.
(5) can be respectively expressed as
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TKi ¼Mi
oZi

oK
; i ¼ 1; 2; K ¼ y; x; ð9Þ

r2Zi ¼ ½ c�2
i o2wi=ot2 0 0 �T; i ¼ 1; 2; ð10Þ

where

Mi ¼
m1i m2i m3i

0 1 0

0 0 1

264
375; i ¼ 1; 2; K ¼ y; x; ð11Þ

with m1i, m2i and m3i again referring to Appendix A, and ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1i=qi

p
ði ¼ 1; 2Þ is the ‘‘extended’’ shear wave

speed.
For the present crack problem, four kinds of ideal magneto-electric boundary condition are assumed by

extending the conception of the electrically impermeable and permeable crack embedded in a piezoelectric
material [24]. They are, respectively, (i) magneto-electrically impermeable, (ii) magnetically impermeable
and electrically permeable, (iii) magnetically permeable and electrically impermeable, and (iv) magneto-
electrically permeable. Thus, the crack surface conditions can be described as

Case 1:

T ðjÞyi ðx; 0; tÞ ¼ 0; j ¼ 1; 2; 3; i ¼ 1; 2; a < x < b; ð12Þ

Case 2:

T ðjÞyi ðx; 0; tÞ ¼ 0; j ¼ 1; 3; i ¼ 1; 2; a < x < b; ð13Þ
U ð2Þ1 ðx; 0; tÞ ¼ U ð2Þ2 ðx; 0; tÞ; a < x < b; ð14Þ

Case 3:

T ðjÞyi ðx; 0; tÞ ¼ 0; j ¼ 1; 2; i ¼ 1; 2; a < x < b; ð15Þ
U ð3Þ1 ðx; 0; tÞ ¼ U ð3Þ2 ðx; 0; tÞ; a < x < b; ð16Þ

Case 4:

T ð1Þyi ðx; 0; tÞ ¼ 0; i ¼ 1; 2; a < x < b; ð17Þ
U ðjÞ1 ðx; 0; tÞ ¼ U ðjÞ2 ðx; 0; tÞ; j ¼ 2; 3; a < x < b; ð18Þ

where the quantities with superscript (j) (j = 1, 2, 3) represent the elements of the jth column in the correspond-
ing vector. Moreover, due to the presence of the interface bonding regions, the elastic displacements, electric
potentials, magnetic potentials, stresses, electric displacements and magnetic inductions should be continuous
across the interface, which can be written as

U1ðx; 0; tÞ ¼ U2ðx; 0; tÞ; Ty1ðx; 0; tÞ ¼ Ty2ðx; 0; tÞ; x 62 ða; bÞ: ð19Þ

In addition, there exist eight possible boundary conditions for the applied magneto-electro-mechanical uni-
form impact loadings at the edges of the bonded plate. For simplicity, only one of them is considered, i.e.,

Ty1ðx; h1; tÞ ¼ Ty2ðx;�h2; tÞ ¼ s0HðtÞ; 0 < x < d; ð20Þ
Tx1ð0; y; tÞ ¼ Tx1ðd; y; tÞ ¼ 0; 0 < y < h1; ð21Þ
Tx2ð0; y; tÞ ¼ Tx2ðd; y; tÞ ¼ 0; �h2 < y < 0; ð22Þ

where H(t) is the unit step function, and s0 ¼ r0 D0 B0½ �T is the given loading coefficient. Eqs. (20)–(22)
indicate that the bonded plate is initially at rest. At time t = 0, the anti-plane shear loading r0, electric
displacement D0 and magnetic induction B0 are applied suddenly to both the upper and lower surfaces and

1472 W.J. Feng, E. Pan / Engineering Fracture Mechanics 75 (2008) 1468–1487



Author's personal copy

maintained constants thereafter. Moreover, both the left- and right-hand sides of the plate are assumed to be
traction free, with also the normal electric displacement and magnetic induction being zero.

3. Solution and analysis of magneto-electrically impermeable interfacial cracks (Case 1)

3.1. Derivation and solution of singular integral equation

We define a Laplace transform pair as follows:

f �ðpÞ ¼
Z 1

0

f ðtÞe�pt dt; f ðtÞ ¼ 1

2pi

Z
Br

f �ðpÞept dp; ð23Þ

in which Br stands for the Bromwich path of integration, p denotes the Laplace parameter. Thus it follows
from Eq. (10) that in Laplace transform domain,

r2Z�i � p2c�2
i w�i 0 0

� �T ¼ 0; i ¼ 1; 2: ð24Þ

In previous studies on cracks in magneto-electro-elastic materials, the Fourier transform method is fre-
quently used [13,14,16,18,19]. However, for the present study we propose the Fourier series approach or
the finite Fourier transform technique, since it can avoid some tedious manipulations in the derivation as com-
pared to the usual Fourier integral transform method. Based on the above method, it can be easily shown that
an appropriate solution satisfying Eq. (24) can be written in terms of the following Fourier series:

Z�i ðx; y; pÞ ¼
X1
n¼1

fdiag e�kniy ; e�bny ; e�bny
� �

AniðpÞ þ diag ekniy ; ebny ; ebny
� �

BniðpÞg cosðbnxÞ

þ 1

p
M�1

i C0iy þ Z�0iðpÞ; i ¼ 1; 2; ð25Þ

where

kniðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n þ p2v�2
i

q
; bn ¼ np=d; ð26Þ

Ani, Bni (n = 1, 2,. . .), C0i and Z�0i are unknown vectors to be determined from the appropriate boundary con-
ditions, and M�1

i is introduced in Eq. (25) purely for convenience.
Once Z�i x; y; pð Þ are determined from the given boundary conditions, it is straightforward to obtain the ser-

ies expressions for the components of the anti-plane stresses, in-plane electric displacements and magnetic
inductions. They are, respectively,

T�yi x;y;pð Þ¼�Mi

X1
n¼1

diag knie
�kniy ;bne�bny ;bne�bny

� �
Ani�

�
diag knie

kniy ;bnebny ;bnebny
� �

Bni

�
cos bnxð Þþ1

p
C0i; ð27Þ

T�xiðx;y;pÞ¼�Mi

X1
n¼1

diag e�kniy ;e�bny ;e�bny
� �

Aniþ
�

diag ekniy ;ebny ;ebny
� �

Bni

�
bn sinðbnxÞ; ð28Þ

In what follows, we shall look for these unknown vectors. Firstly, by a simple manipulation, C0i can be
determined from the boundary conditions in the Laplace domain corresponding to Eq. (20) as follows:

C0i ¼ s0: ð29Þ

What remains is to determine a singular field disturbed by the interfacial crack between the two dissimilar
magneto-electro-elastic plates. In the following, we do not directly solve Ani(p), Bni(p) (n = 1, 2, . . . ). Instead,
by eliminating them through given boundary conditions, a singular integral equation is obtained. More spe-
cifically, making use of the continuity conditions of the stress, electric displacement and magnetic induction at
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y = 0, and the boundary conditions on the top and bottom surfaces of the rectangular magneto-electro-elastic
plate, we obtain, in the Laplace domain,

M1 diag kn1; bn; bn½ � An1 � Bn1ð Þ ¼M2diag kn2; bn; bn½ � An2 � Bn2ð Þ; ð30Þ
diag e�kn1h1 ; e�bnh1 ; e�bnh1

� �
An1 � diag ekn1h1 ; ebnh1 ; ebnh1

� �
Bn1 ¼ 0; ð31Þ

diag ekn2h2 ; ebnh2 ; ebnh2
� �

An2 � diag e�kn2h2 ; e�bnh2 ; e�bnh2
� �

Bn2 ¼ 0; ð32Þ

for n = 1, 2, . . . . The resulting three algebraic equations for An1, An2, Bn1 and Bn2, are solvable up to three un-
knowns. Hence, by choosing Bn2 as an unknown, we obtain

An1 ¼ diag e2kn1h1 ; e2bnh1 ; e2bnh1
� �

LnðpÞBn2; ð33Þ
An2 ¼ diag e�2kn2h2 ; e�2bnh2 ; e�2bnh2

� �
Bn2; ð34Þ

Bn1 ¼ LnðpÞBn2; ð35Þ

where Ln(p) is a 3 · 3 matrix, with its elements being given in Appendix B.
We now define the jumps of the elastic displacement, electric potential and magnetic potential across the

crack faces as follows

DU�ðx; 0; pÞ ¼ U�1ðx; 0; pÞ �U�2ðx; 0; pÞ: ð36Þ

From Eqs. (7), (25) and (33)–(35), we can easily obtain

DU�ðx; 0; pÞ ¼
X1
n¼1

X1 An1 þ Bn1ð Þ �X2 An2 þ Bn2ð Þf g cosðbnxÞ þU�0ðpÞ; ð37Þ

where

U�0 ¼ X1Z�01 �X2Z�02: ð38Þ

Substituting Eqs. (33)–(35) into Eq. (37), we can further obtain

DU�ðx; 0; pÞ ¼ 2
X1
n¼1

Cn cosðbnxÞ þU�0: ð39Þ

where

Cn ¼
1

2
DnBn2; n ¼ 1; 2; . . . ; ð40Þ

with

DnðpÞ ¼ X1 diag coth kn1h1ð Þ; coth bnh1ð Þ; coth bnh1ð Þ½ �Pn pð Þ �X2 diag e�2kn2h2 þ 1; e�2bnh2 þ 1; e�2bnh2 þ 1
� �

;

ð41Þ

and Pn(p) being given in Appendix B.
From Eqs. (27), (33)–(35) and (40), we arrive at

T�y2ðx; 0; pÞ ¼ �2M2

X1
n¼1

QnCn cos bnxð Þ þ 1

p
s0; ð42Þ

where

Qn ¼ diag kn2 e�2kn2h2 � 1
� �

; bn e�2bnh2 � 1
� �

; bn e�2bnh2 � 1
� �� �

D�1
n : ð43Þ
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Applying Eq. (12) and the first of Eq. (19) yields, from Eqs. (42) and (39),

� 2M2

X1
n¼1

QnCn cosðbnxÞ þ 1

p
C0 ¼ 0; a < x < b; ð44Þ

2
X1
n¼1

Cn cosðbnxÞ þU�0 ¼ 0; 0 < x < a; b < x < d: ð45Þ

Eqs. (44) and (45) form the triple trigonometric series equations with respect to Cn.
In what follows the triple series Eqs. (44) and (45) will be converted into a singular integral equation. For

this purpose, we first introduce the dislocation density function F(x,p) in the Laplace domain as

F x; pð Þ ¼ oDU�ðx; 0; pÞ
2ox

: ð46Þ

By virtue of the finite Fourier transform, we can choose Cn as a finite Fourier sine integral

Cn ¼ �
2

bnd

Z b

a
Fðu; pÞ sin bnuð Þdu: ð47Þ

Substituting Eq. (47) into Eq. (44) and noting the intrinsic properties of Qn as n tends to infinity, i.e.,

Qn ! bn X1M�1
1 M2 þX2

� ��1
; n!1; ð48Þ

we can finally obtain a singular integral equation of the first kind as follows:

1

d

Z b

a

sinðpu=dÞ
cosðpx=dÞ � cosðpu=dÞFðu; pÞduþ 1

d

Z b

a
Xðu; x; pÞFðu; pÞdu ¼ � 1

p
S0ðxÞ; a < x < b; ð49Þ

where

Xðu; x; pÞ ¼ 2
X1
n¼1

1

bn
ðX1M�1

1 M2 þX2ÞQn � I

	 

sin bnuð Þ cosðbnxÞ; ð50Þ

S0 ¼ C�1s0; ð51Þ

with

C ¼ 2M2 X1M�1
1 M2 þX2

� ��1
; ð52Þ

and I being the 3 · 3 identity matrix. It should be pointed out that in the derivation of Eq. (49), the following
relation

X1
n¼1

sinðnuÞ cosðnxÞ ¼ 1

2

sinðuÞ
cosðxÞ � cosðuÞ ; ð53Þ

has been used.
On the other hand, substituting Eq. (47) into Eq. (45), and recalling the known result

u
2
þ
X1
n¼1

1

n
sinðnuÞ cosðnxÞ ¼

p=2; 0 < x < u;

p=4; u ¼ x;

0; u < x < p;

8><>: ð54Þ

U�0ðpÞ can be solved as

U�0 ¼ �
2

d

Z b

a
uFðu; pÞdu: ð55Þ
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Introducing the following normalized quantities:

u ¼ d
p

arccos g cos
pb
d
� cos

pa
d

� �
=2þ cos

pb
d
þ cos

pa
d

� �
=2

	 

; �1 < g; 1ð Þ < 1; ð56Þ

x ¼ d
p

arccos 1 cos
pb
d
� cos

pa
d

� �
=2þ cos

pb
d
þ cos

pa
d

� �
=2

	 

; �1 < g; 1ð Þ < 1; ð57Þ

Eq. (49) can be rewritten as a standard singular Cauchy integral equation over ( � 1,1):

1

p

Z 1

�1

1

g� 1
Fðg; pÞdgþ 1

p

Z 1

�1

Tðg; 1; pÞFðg; pÞdu ¼ � 1

p
S0; �1 < 1 < 1; ð58Þ

where

Fðg; pÞ ¼ Fðu; pÞ; ð59Þ

T g; n; pð Þ ¼ � cos
pb
d
� cos

pa
d

� �
2 sin

pu
d

� �
Xðu; x; pÞ; ð60Þ

S0ð1; pÞ ¼ S0ðx; pÞ: ð61Þ

Applying the numerical method proposed by Erdogan and Gopta [25], the Cauchy singular integral
Eq. (58) together with the corresponding single-valued conditionZ 1

�1

Fðg; pÞdg ¼ 0; ð62Þ

can further be transformed into a system of linear algebraic equations as follows:XK

j¼1

1

gj � 1i
Iþ T gj; 1i; p

� � !
Y� gj; p
� �
K

¼ � 1

p
�S0 1ið Þ; ð63Þ

XK

j¼1

Y� gj; p
� �
K

¼ 0; ð64Þ

where Y�ðg; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
Fðg; pÞ, gj = cos[(2j � 1)p/2K], j = 1, 2, . . . ,K, 1i = cos(ip/K), i = 1, 2, . . . ,K � 1, and

K is the total discrete points of g.
Finally, the Laplace inversion of Y*(g,p), i.e., Y(g, t) is easily obtained by employing some well known

numerical methods.
It is worth remarking that the present solution for the coupled magneto-electro-elastic solid contains the

solutions for various reduced cases (by setting the coupling coefficients to zero). In particular, it can be
reduced to the solution to the problem where a dynamic anti-plane interfacial crack is between two dissimilar
piezoelectric plates, which in fact has not been solved so far.

3.2. Field intensity factors and energy release rate

The dynamic stress intensity factors (DSIFs), dynamic electric displacement intensity factors (DEDIFs) and
dynamic magnetic induction intensity factors (DMIIFs) in vector form KK ¼ KT K KDK KBK½ �T K ¼ b; að Þ in
the time domain at the two crack tips are defined and easily derived as

KbðtÞ ¼ lim
x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bÞ

p
Ty2ðx; 0; tÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
2

cos
pa
d

.
sin

pb
d
� cot

pb
d

� �s
CY ð1; tÞ; ð65Þ

KaðtÞ ¼ lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p
Ty2 x; 0; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
2

cot
pa
d
� cos

pb
d


sin

pa
d

� �s
CY �1; tð Þ: ð66Þ

It is interesting to point out that the coefficients in the field intensity factors Kb and Ka differ from the
known expressions of the dynamic field intensity factors for magneto-electro-elastic materials [22], and from
those of the static field intensity factors of a crack at an arbitrary position of a homogeneous piezoelectric
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rectangle [26]. The reason for this difference is that, in the present work, two novel normalized quantities, i.e.,
Eqs. (56) and (57), are introduced in order to reduce Eq. (49) to a standard singular Cauchy integral equation.

For the magneto-electrically impermeable cracks, the DERRs are very important to evaluate the behaviors
of crack tips. In accordance with the definition of the energy release rates proposed by Pak [27], the DERRs
can finally be expressed as

GbðtÞ ¼
1

2
KT

b ðtÞC�1Kb tð Þ ¼ d
4

cos
pa
d

.
sin

pb
d
� cot

pb
d

� �
YT 1; tð ÞCTY 1; tð Þ; ð67Þ

GaðtÞ ¼
1

2
KT

a ðtÞC�1KðtÞa ¼
d
4

cot
pa
d
� cos

pb
d


sin

pa
d

� �
YT �1; tð ÞCTY �1; tð Þ: ð68Þ

It should be noted that the expressions of DERRs given above are, in fact, the same as those for an imper-
meable crack in homogeneous magneto-electro-elastic materials [14], and that if all the coupled magnetic coef-
ficients are set to zero, then the expressions are essentially agreement with those for an interfacial crack
between two dissimilar piezoelectric strips [28].

Further analysis on Eqs. (65)–(68) shows that both the field intensity factors and DERRs of interfacial
cracks are related to the material parameters, crack configuration, as well as all the mechanical, electrical
and magnetic loadings.

It is easy to know that for a homogeneous magneto-electro-elastic plate, the corresponding linear algebraic
equations in Laplace domain can be obtained from Eqs. (63) and (64) as

1

K

XK

j¼1

1

gj � 1i
NY�ðgj; pÞ þ

1

K

XK

j¼1

R g; 1; pð ÞY�ðgj; pÞ ¼ �
1

p
s0; ð69Þ

1

K

XK

j¼1

NY�ðgj; pÞ ¼ 0; ð70Þ

where N = N1 = N2,R(g,1,p) are given in Appendix C.
Following the same procedure as in [22], the DSIFs in time domain can be written as

KT bðtÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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d
� cos

pb
d


sin

pa
d

� �s
W �1; tð Þ; ð72Þ
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Wðg; tÞ ¼ 1

2pi

Z
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c44 e15 f15½ �Y�ðg; pÞept dp: ð73Þ

The DEDIFs and DMIIFs in time domain can be described as

KDbðtÞ
KBbðtÞ

� �
¼ �
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where U(g) satisfies the following algebra equation

XK

j¼1

1

gj � 1i
þ

cos pa
d � cos pb

d

sin pu gð Þ
d

X1
n¼1

2a2n � 1ð Þ sin bnu gð Þð Þ cos bnx 1ð Þð Þ
 !
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� �
K
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XK

j¼1

U gj

� �
K
¼ 0; ð77Þ

with a2n being given in Appendix C. Correspondingly, the DERRs in time domain are simplified as

G} ¼
1

2
KT
}N
�1K}; } ¼ b; a: ð78Þ

As shown in Eqs. (71) and (72), similar to interfacial cracks, the DSIFs for homogeneous plate are related
to the mechanical loadings, electrical loadings, magnetic loadings and the relevant material properties. How-
ever, from Eqs. (74) and (75), it is easy to observe that different to the interfacial crack case, both DEDIFs and
DMIIFs for the homogeneous plate are the Heaviside unit step function of time, and are only related to the
corresponding electrical or magnetic impact loadings; they are independent of the mechanical loadings and the
relevant material properties. It should be pointed out that these phenomena are similar to those for the impact
crack problems of functionally graded magneto-electro-elastic strip [22].

4. Effects of crack surface conditions on the field intensity factors and DERRs

The magneto-electrically impermeable interfacial crack (Case 1) has been considered in Section 3. Similarly,
the singular integral equations and corresponding single-valued conditions for the other cases of interfacial
cracks can be derived as

Case 2:
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X ð1;1Þðu; x; pÞ X ð1;3Þ u; x; pð Þ
X ð3;1Þðu; x; pÞ X ð3;3Þðu; x; pÞ

" #
F ð1Þðu; pÞ
F ð3Þðu; pÞ

" #
du

¼ � 1

p
Sð1Þ0

Sð3Þ0

" #
; a < x < b; ð79Þ

Z b

a

F ð1Þðu; pÞ
F ð3Þðu; pÞ

" #
du ¼ 0: ð80Þ

Case 3:

1

d

Z b

a

sinðpu=dÞ
cosðpx=dÞ � cosðpu=dÞ

F ð1Þðu; pÞ
F ð2Þðu; pÞ

" #
du ð81Þ

þ 1

d

Z b

a

X ð1;1Þðu; x; pÞ X ð1;2Þðu; x; pÞ
X ð2;1Þðu; x; pÞ X ð2;2Þðu; x; pÞ

" #
F ð1Þðu; pÞ
F ð2Þðu; pÞ

" #
du ¼ � 1

p
Sð1Þ0

Sð2Þ0

" #
; a < x < b;

Z b

a

F ð1Þðu; pÞ
F ð2Þðu; pÞ

" #
du ¼ 0: ð82Þ

Case 4:
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where the quantities with superscript (i, j)(i, j = 1,2,3) represent the elements of the ith row and jth column in
the corresponding matrix.
These equations corresponding to different crack surface conditions can further be solved by the method dis-
cussed in Section 3. Thus, the field intensity factors and DERRs can finally be derived as
Case 2:
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Fig. 2. Normalized (a) DERRs and (b) DSIFs of an electrically impermeable central crack in a homogeneous piezoelectric plate for
different electrical loadings kD with both h1 and h2 approaching to infinite.
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Case 3:
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Fig. 3. Normalized DERRs of a magneto-electrically impermeable central crack versus normalized time for (a) different magnetic impact
loadings with kD = 0.0 and for (b) different electrical impact loadings with kB = 0.0.
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Case 4:
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The analysis above implies that for the magnetically (or electrically) permeable interfacial crack, the applied
magnetic (or electrical) loadings have no influence on the fracture behaviors of the crack tips, and that the
DMIIFs (or DEDIFs) can be described as a function of DSIFs and DEDIFs (or DMIIFs). Moreover,
for magnetically (or electrically) permeable interfacial cracks, the DERRs are functions of the DSIFs and
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Fig. 4. Normalized DERRs versus normalized time for (a) different magnetic impact loadings in Case 2 and for (b) different electrical
impact loadings in Case 3.
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DEDIFs (or DMIIFs) only. Thus, for the magneto-electrically permeable case, the DEDIFs, DMIIFs and
DERRs are all the functions of the corresponding DSIFs (just as shown in Eqs. (91)–(93)). Therefore, for
magneto-electrically permeable cracks, the DERRs and DSIFs are quite equivalent to the fracture parameters,
which has been observed for unbounded magneto-electro-elastic materials (see e.g., [11] or [13]).

It is worth pointing out that for homogeneous magneto-electro-elastic plate with an internal crack, the
results (omitted here) corresponding to Cases 2–4 can further be obtained easily.

5. Numerical examples and discussions

In this section, numerical calculations are further carried out to show the effects of the crack configuration
and loading combination parameters on the normalized DERRs. Without loss of generality, in all our numer-
ical procedure, r0 is taken as 4.2 · 106 N/m2, and G0 as pcr2

0=ð2m11Þ, corresponding to the static energy release
rate for an infinite magneto-electro-elastic plane containing a magneto-electrically impermeable crack of
length 2c = b � a under anti-plane shear loadings. The normalized time is taken as c1t/c where c1, as pointed
out before, is the ‘‘extended’’ shear wave speed of the upper plate.

For comparison with the known results, as a special example, both materials 1 and 2 are taken as piezo-
electric ceramics BaTiO3 with the material properties being taken from [29]. We also set h1 = h2 and
a:d:c = 0.5:3:1 and assume that the crack is electrically impermeable. Thus, the dynamic crack problem cor-
responding to h2/c!1 form an electrically impermeable central crack problem of piezoelectric strip with
the crack perpendicular to the boundaries of the finite strip, which has been considered by Wang and Yu
[29] in detail. Comparing the normalized DERRs, i.e., Fig. 2a with Fig. 5 in [29] and normalized DSIFs,
i.e., Fig. 2b with Fig. 4 in [29], it is easily seen that the present results are the same as those given in [29].
It should be pointed out that kD in Fig. 2 has the same meaning as in [29], i.e., kD ¼ D0e2

15=ðr0e2
11Þ representing

the electric loading combination parameter.
As an application, the effects of magnetic and/or electrical impact loadings on the fracture behaviors of an

interfacial crack with magnetically and/or electrically impermeable crack surface conditions (Cases 1–3) for the
combination of CoFe2O4/BaTiO3 are then examined in this section. The material properties of CoFe2O4 and
BaTiO3 are the same as those given in [15] or in [19]. Numerical results are respectively plotted in Figs. 3–5,
where kD is again the combination parameter and kB ¼ B0f 1

15=ðr0l1
11Þ is a newly introduced loading combina-

tion parameter (see e.g., [19]). From these figures, it is easily observed that for the present problem, the oscil-
lation peak occurs, and that the effects of crack configuration (including both the crack position and geometry
criterion of the plate) on the times for the DERRs reaching the corresponding peak values are more evident
than those of both magnetic and electrical loadings. As shown in Figs. 3 and 4, for a given electrical loading,
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Fig. 5. Normalized DERRs versus normalized time for different crack surface conditions under an anti-plane shear impact loading.
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the algebraic value of DERRs decreases with increasing magnitude of the magnetic loadings. Similarly, for a
given magnetic loading, the algebraic value of DERRs decreases with increasing magnitude of electrical load-
ings. This observation indicates that both the magnetic and electrical impact loadings impede crack propaga-
tion and growth. Figs. 3 and 4 also implies that, for CoFe2O4/BaTiO3 combination, although the (algebraic)
DERRs for a negative magnetic (or electrical) impact loading are slightly smaller than those for the correspond-
ing positive magnetic (or electrical) loading, the impact loading directions (positive or negative) have only slight
influence on the crack extension force of interfacial cracks, particularly for a small value of |kB| (or |kD|). More-
over, just as shown in Fig. 5 and Table 1 (Table 1 gives partial numerical results plotted in Fig. 5 for clarity), the
four kinds of ideal crack surface conditions (Cases 1–4) have nearly no effect on the DERRs under only anti-
plane shear impact loading.

In what follows, we evaluate the effect of the crack configuration on the dynamic fracture behaviors of the
crack tips. As pointed out before, the magneto-electrically permeable crack surface assumption is perhaps
more reasonable for mode III crack problems, therefore numerical results are only plotted graphically for
Case 4. The effect of the crack position on the DERRs for an internal crack is illustrated in Fig. 6 where
ey ¼ h1�h2

h1þh2
ð�1 < ey < 1Þ and ex = �1 � 2a/(d � 2c)|(0 6 ex < 1) represent the eccentricities away from the hor-

izontal and vertical mid-planes, respectively. The effects of plate size on the normalized DERRs are shown in
Figs. 7 and 8, respectively.

From Fig. 6a, it is observed that for an interfacial crack centered at the vertical mid-plane (i.e., ex = 0), the
DERRs, in general, increase with increasing |ey|. Thus, the interfacial crack with equal distances to the top and
bottom surfaces (i.e.,h1 = h2) can be approximately thought as most stable. In addition, it is worth noting that
for a ey-pair (e.g., ey = �0.85 and ey = 0.85), the eccentricity corresponding to the negative value of ey

enhances the interfacial crack propagation more than the one corresponding to the positive value of ey. On
the other hand, as shown in Fig. 6b, the eccentricity away from the vertical mid-plane can also enhance crack
propagate and grow. Moreover, the crack propagation and growth always occurs at the crack tip closer to the
flank surfaces of the plate. As expected from Figs. 7 and 8, for a central interfacial crack, increasing the width
and height of the plate decreases the DERRs. In addition, Fig. 8 indicates that the curves of the normalized
DERRs corresponding to h1/c = 2 and 10 are very close to each other. Therefore, when the height of the
piezomagnetic (or piezoelectric) layer exceeds the crack length, its effect on the DERRs becomes negligible.
Finally, we remark that our numerical results (omitted here) also illustrate that the crack position and/or
crack configuration have the same effects on the DERRs of crack tips of the interfacial crack under other
crack surface conditions (i.e., Cases 1–3).

6. Conclusions

In this paper, the dynamic fracture behaviors of an interfacial crack between two bonded magneto-electro-
elastic plates under anti-plane mechanical loadings and in-plane magnetic and electrical loadings are investi-
gated. Four kinds of crack surface conditions are adopted. The interfacial crack is assumed to be at an
arbitrary position. Finite Fourier transform method and dislocation density functions are used to reduce
the mixed boundary value problem to a standard singular Cauchy integral equation, which is further solved

Table 1
Comparison of normalized DERRs of a central crack under different crack surface conditions for the combined CoFe2O4/BaTiO3 under
the anti-plane shear impact loading

c1t/c

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Ga/G0

Case 1 0.13772 0.44233 0.7996 1.143 1.4376 1.6686 1.8337 1.9375 1.9885 1.9963 1.9706 1.9201 1.8526 1.7745 1.6909
Case 2 0.13793 0.44295 0.80062 1.1443 1.4391 1.6701 1.8352 1.9389 1.9898 1.9974 1.9715 1.9209 1.8533 1.7751 1.6915
Case 3 0.13787 0.44279 0.80033 1.1439 1.4384 1.6693 1.8342 1.9378 1.9886 1.9961 1.9701 1.9195 1.8519 1.7737 1.6901
Case 4 0.13793 0.44296 0.80063 1.1444 1.4391 1.6702 1.8352 1.939 1.9899 1.9976 1.9717 1.9211 1.8535 1.7753 1.6916

CoFe2O4/BaTiO3: kD = kB = 0.0, h1: h2:d:a:c = 2:2:4:1:1.
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numerically. The field intensity factors and DERRs are obtained and analyzed. The effects of both the applied
impact loadings and crack configurations on the DERRs are shown graphically. The main results are as
follows.

• Finite Fourier transform method and singular integral equation technique can be used to solve the transient
response problems of mode III interfacial crack. The crack is assumed to be at an arbitrary position on the
interface between the two bonded magneto-electro-elastic plates.

• Crack configuration including the position and relative criterion of the cracks has a more evident effect on
the time for the DERR reaching its peak value than magnetic and/or electrical impact loadings.

• Different to an internal crack embedded in a homogeneous magneto-electro-elastic plate, both the field
intensity factors and DERRs of an interfacial crack are not only related to the crack configuration but also
related to the material parameters. Furthermore, for a magneto-electrically impermeable interfacial
crack, both the field intensity factors and DERRs depend on the applied mechanical, magnetic and electri-
cal loadings simultaneously.
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Fig. 6. Normalized DERRs of a magneto-electrically permeable internal crack versus normalized time for different (a) ey = (h1 � h2)/
(h1 + h2) and (b) ex = |1 � 2a/(d � 2c)| where c is the half length of the crack and d the total width of the plate, under anti-plane shear
impact loading.
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• The magnetic (or electrical) impact loadings have no influence on the fracture behaviors for magnetically
(or electrically) permeable interfacial cracks according to maximum energy release rate criterion. On the
other hand, magnetic (or electrical) impact loadings always impede the crack propagation and growth
for magnetically (or electrically) impermeable interfacial cracks, and the directions of both magnetic and
electrical impact loadings have no apparent effect on the crack extension force.

• For CoFe2O4/BaTiO3 combination, under only anti-plane shear impact loadings, the DERRs correspond-
ing to the four kinds of ideal crack surface conditions considered here are almost the same for a given crack
configuration.

• For fixed width and total height of the composite plate and length of the crack, the eccentricity away from
either the horizontal mid-plane or vertical mid-plane can enhance the crack propagation. For fixed crack
length and crack position, increasing the width and height of the bonded plate can impede the crack prop-
agation and growth.
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Fig. 7. Normalized DERRs of a magneto-electrically permeable central crack versus normalized time for different ratio d/c where c is the
half length of the crack and d total width of the plate, under anti-plane shear impact loading.
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under an anti-plane shear impact loading.
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Appendix A

a1i, b1i, c1i, a2i, b2i and c2i in Eq. (8) are as follows:

a1i ¼
ei

15l
i
11 � f i

15gi
11

li
11e

i
11 � gi2

11

; b1i ¼
�li

11

li
11e

i
11 � gi2

11

; c1i ¼
gi

11

li
11e

i
11 � gi2

11

; ðA:1Þ

a2i ¼
f i

15e
i
11 � ei

15gi
11

li
11e

i
11 � gi2

11

; b2i ¼
gi

11

li
11e

i
11 � gi2

11

; c2i ¼
�ei

11

li
11e

i
11 � gi2

11

: ðA:2Þ

m1i, m2i, m3i in Eq. (11) are as follows:

m1i ¼ ci
44 þ

ei
11f i2

15 � 2ei
15f i

15gi
11 þ li

11ei2
15

li
11e

i
11 � gi2

11

; m2i ¼
f i

15gi
11 � ei

15l
i
11

li
11e

i
11 � gi2

11

; ðA:3Þ

m3i ¼
ei

15gi
11 � f i

15e
i
11

li
11e

i
11 � gi2

11

: ðA:4Þ

Appendix B

The matrix Ln(p) in Eqs. (33) and (35) are as follows:

LnðpÞ ¼ diag 1=ðe2kn1h1 � 1Þ 1=ðe2bnh1 � 1Þ 1=ðe2bnh1 � 1Þ
� �

PnðpÞ; ðB:1Þ

where

PnðpÞ ¼

kn2

kn1
ðe�2kn2h2 � 1ÞM11

bn
kn1
ðe�2bnh2 � 1ÞM12

bn
kn1
ðe�2bnh2 � 1ÞM13

kn2

bn
ðe�2kn2h2 � 1ÞM21 ðe�2bnh2 � 1ÞM22 ðe�2bnh2 � 1ÞM23

kn2

bn
ðe�2kn2h2 � 1ÞM31 ðe�2bnh2 � 1ÞM32 ðe�2bnh2 � 1ÞM33

2664
3775; ðB:2Þ

M ¼M�1
1 M2: ðB:3Þ

Appendix C

The matrix R(g,1,p) in Eq. (69) is as follows

Rðg; 1; pÞ ¼
cos pa

d � cos pb
d

sin puðgÞ
d

X1
n¼1

f2eNnðg; 1; pÞ � Ng sinðbnuðgÞÞ cosðbnxð1ÞÞ; �1 < 1 < 1; ðC:1Þ

where

eNn ¼
a1nc44 a2ne15 a2nf15

a2ne15 �a2ne11 �a2ng11

a2nf15 �a2ng11 �a2nl11

264
375; ðC:2Þ
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with

a1nðpÞ ¼
ðc44g2

11 � c44e11l11 � e2
15l11 � f 2

15e11 þ 2e15f15g11Þkn

c44ðg2
11 � e11l11Þbnðcothðknh1Þ þ cothðknh2ÞÞ

þ f 2
15e11 þ e2

15l11 � 2e15f15g11

c44ðg2
11 � e11l11Þðcothðbnh1Þ þ cothðbnh2ÞÞ

; ðC:3Þ

a2n ¼
1

cothðbnh1Þ þ cothðbnh2Þ
: ðC:4Þ
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