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Based on the Lekhnitskii-Eshelby approach of two-dimensional anisotropic elasticity, a semi-analytical solution is derived
for the problem associated with an anisotropic elliptical inhomogeneity embedded in an infinite anisotropic matrix subjected
to remote uniform antiplane shear stresses. In this research, the linear spring type imperfect bonding conditions are imposed
on the inhomogeneity-matrix interface. We use a different approach than that developed by Shen et al. (2000) to expand the
function encountered during the analysis for an imperfectly bonded interface. Our expansion method is in principle based on
Isaac Newton’s generalized binomial theorem. The solution is verified, both theoretically and numerically, by comparison
with existing solution for a perfect interface. It is observed that the stress field inside an anisotropic elliptical inhomogeneity
with a homogeneously imperfect interface is intrinsically nonuniform. The explicit expression of the nonuniform stress field
within the inhomogeneity is presented. The nonuniform stress field inside the inhomogeneity is also graphically illustrated.
A difference in internal stress distribution between a composite composed of anisotropic constituents and a composite
composed of isotropic constituents is also observed. We finally extend the solution derived for a linear spring type imperfect
interface to address an elliptical inhomogeneity with a viscous interface described by the linear law of rheology. It is
observed that the stress field inside an elliptical inhomogeneity with a viscous interface is nonuniform and time-dependent.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The antiplane shear (APS) deformation of anisotropic elastic materials is one of the simplest kinds of deformations in solid
mechanics. In the following we outline some recent results within the context of APS. A comprehensive review for both
linear and nonlinear elasticity was given by Horgan [1]. The decay rates of Saint-Venant end effects for sandwich strips
and generally laminated anisotropic strips with imperfect bonding conditions were investigated by Baxter and Horgan [2]
and Tullini et al. [3]. An elliptical inhomogeneity perfectly bonded to an unbounded matrix was considered by Kattis and
Providas [4] by using the Lekhnitskii-Eshelby formulation and the so-called two-phase potentials. An anisotropic wedge of
finite radius with traction-free condition on the circular segment and three different cases of boundary conditions on the radial
edges was considered by Shahani [5]. The Green’s function for an orthotropic quarter plane and a bimaterial that consists
of two perfectly bonded orthotropic quarter planes was obtained by Ting [6] by employing the image singularity approach.

The objective of this research is to analyze the antiplane deformation of an anisotropic elliptical inhomogeneity imperfectly
bonded to an infinite matrix. Here the condition of the imperfect interface is modeled to allow jumps in displacements
proportional to the tractions at the interface [3,7–16]. The isotropic counterpart of this problem has been considered by Shen
et al. [13,14]. In this investigation a semi-analytical solution to the present problem is derived based on the Lekhnitskii-Stroh
formalism of two-dimensional anisotropic elasticity [4,17]. Here we use a different approach than that developed by Shen
et al. [13] to expand the function encountered during the analysis. Our expansion method is in principle based on Isaac
Newton’s generalized binomial theorem. It is observed that the stress field inside an anisotropic elliptical inhomogeneity
with a homogeneously imperfect interface is intrinsically nonuniform, a phenomenon similar to that observed by Shen et
al. [13] for a composite composed of isotropic constituents. A difference in internal stress distribution between a composite
composed of anisotropic constituents and a composite composed of isotropic constituents is also observed in this study.
We finally extend the solution derived for a linear spring imperfect interface to address an elliptical inhomogeneity with a
viscous interface (or time-dependent sliding interface) described by the linear law of rheology [18–23]. It is observed that
the stress field inside an elliptical inhomogeneity with a viscous interface is nonuniform and time-dependent.
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Fig. 1 An anisotropic elliptical inhomogeneity imperfectly bonded to
an infinite matrix subjected to remote uniform antiplane shear stresses.

2 Basic equations

In a fixed rectangular coordinate system xi, (i = 1, 2, 3), let ui and σij be the displacement and stress, respectively. If the
material possesses a symmetry plane x3 = 0, then the stress-strain relation for an antiplane deformation is

σ31 = C55u,1 + C45u,2 ,

σ32 = C44u,2 + C45u,1 ,
(1)

where u = u3, C44, C45, C55 are elastic constants and the comma stands for differentiation with xi. The positive definiteness
of the strain energy density will require that

C44 > 0 , C55 > 0 , C44C55 − C2
45 > 0 . (2)

For the special case of an orthotropic material with the orthotropy axes coinciding with the reference axes, one hasC45 = 0.
The equation of equilibrium is

σ31,1 + σ32,2 = C55u,11 + 2C45u,12 + C44u,22 = 0 . (3)

The general solution of Eq. (3) can be expressed in terms of a single analytic function f(zp) as

u = Im{f(zp)} , zp = x1 + px2 (4)

where

p =
−C45 + i

√
C44C55 − C2

45

C44
. (5)

The stresses σ31, σ32 and the stress function φ are given by [4,17]

σ31 + pσ32 = iλ Im{p}f ′(zp) , (6)

φ = λRe{f(zp)} , (7)

where λ =
√

C44C55 − C2
45, and the stresses σ31, σ32 are related to the stress function φ through

σ31 = −φ,2 , σ32 = φ,1 . (8)

Let T be the antiplane surface traction component on a boundary L, if s is the arc-length measured along L such that,
when facing the direction of increasing s, the material is on the right-hand side, it can be shown that [17]

T =
dφ

ds
. (9)

Consider now the antiplane deformation of an unbounded matrix containing an elliptical inhomogeneity. The linearly
elastic materials occupying the inhomogeneity and the matrix are assumed to be homogeneous and anisotropic with associated
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elastic constants C
(1)
44 , C(1)

45 , C(1)
55 and C

(2)
44 , C(2)

45 , C(2)
55 , respectively. We represent the matrix by the domain S2 : x2

1
a2 + x2

2
b2 ≥ 1

and assume that the inhomogeneity occupies the elliptical region S1 : x2
1

a2 + x2
2

b2 ≤ 1. The ellipse L : x2
1

a2 + x2
2

b2 = 1, whose
semi-major and semi-minor axes are respectively a and b, will denote the inhomogeneity-matrix interface. In what follows,
the subscripts 1 and 2 will refer to the regions S1 and S2, respectively. At infinity, the matrix is subject to remote uniform
antiplane shear stresses σ∞

31 and σ∞
32 . On the imperfect interface L, the displacement jumps are proportional to the associated

tractions. Thus the boundary conditions on the imperfect interface can be expressed as

φ1 = φ2 ,

− dφ1

ds
= T = χ(u2 − u1) ,

on L (10)

where χ is a non-negative imperfect interface constant parameter, and the increasing s is in the counterclockwise direction
of the interface. The case where χ → ∞ corresponds to a perfect interface, while the case where χ →0 corresponds to a
traction-free surface.

Now consider the following mapping function [24]

z1 = m1(ζ) = 1
2 (a − ip1b)ζ + 1

2 (a + ip1b)ζ−1 , (11)

which can map an elliptical region with a cut in the z1(= x
(1)
1 +ix(1)

2 = x1 +p1x2)-plane onto the annulus
√|ρ| ≤ |ζ| ≤ 1,(

ρ = a+ip1b
a−ip1b

)
in the ζ-plane. Next we consider another mapping function [24]

z2 = m2(ζ) = 1
2 (a − ip2b)ζ + 1

2 (a + ip2b)ζ−1 , (12)

which can map the outside of an elliptical region in the z2(= x
(2)
1 + ix(2)

2 = x1 + p2x2)-plane onto the outside of the unit
circle |ζ| ≥ 1 in the ζ-plane. For convenience, we write f1(z1) = f1(m1(ζ))=f1(ζ) and f2(z2) = f2(m2(ζ))=f2(ζ). In the
following we endeavor to derive the expressions of f1(ζ) and f2(ζ).

3 General solution

In view of Eqs. (4), (7), (11) and (12), the above boundary conditions Eq. (10) can also be expressed in terms of f1(ζ) and
f2(ζ) as follows

Γ
[
f+
1 (ζ) + f̄−

1 (1/ζ)
]

= f−
2 (ζ) + f̄+

2 (1/ζ) ,

ζf ′+
1 (ζ) − ζ−1f̄ ′−

1 (1/ζ) = γ
√

1 − h2 cos2 θ
[
f−
2 (ζ) − f̄+

2 (1/ζ) − f+
1 (ζ) + f̄−

1 (1/ζ)
]

,
(ζ = eiθ) (13)

where h =
√

1 − b2/a2, (0 ≤ h < 1) is the eccentricity of the ellipse L, Γ = λ1/λ2 is a two-phase elastic parameter [4],
and γ = aχ/λ1 is a dimensionless imperfect interface parameter.

Here f1(ζ) can be expanded into the following form

f1(ζ) =
+∞∑

n=1

an(ζn + ρnζ−n) ,
(√

|ρ| ≤ |ζ| ≤ 1
)

(14)

where an, (n = 1, 2, . . .) are unknown constants to be determined.
It follows from Eq. (13)1 that

f2(ζ) = kζ − k̄ζ−1 + Γ
+∞∑

n=1

(anρn + ān)ζ−n , (|ζ| ≥ 1) (15)

where the parameter k is related to the remote stresses σ∞
31 and σ∞

32 through

k =
(ia + p2b)(σ∞

31 + p̄2σ
∞
32)

2λ2 Im{p2} . (16)

Substituting the above expressions of f1(ζ) and f2(ζ) into Eq. (13)2, we obtain

+∞∑

n=1

[
(nan + nānρ̄n)ζn − (nanρn + nān)ζ−n

]
(17)

= γ
√

1 − h2 cos2 θ

[
+∞∑

n=1

[
(Γ − 1)anρn + (Γ + 1)ān − 2k̄δn1

]
ζ−n −

+∞∑

n=1

[(Γ − 1)ānρ̄n + (Γ + 1)an − 2kδn1] ζn

]

,
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(ζ = eiθ) .

In order to solve the above equation, we first expand the function
√

1 − h2 cos2 θ, (0 ≤ h < 1) into the following
convergent series form based on Newton’s generalized binomial theorem as well as the binomial theorem in its normal sense

√
1 − h2 cos2 θ = I0 +

+∞∑

n=1

I2n(ζ2n + ζ−2n) , (ζ = eiθ) (18)

where

I2n = Ī2n =
+∞∑

k=n

(−1)k
(

1
2

)2k
Ck

1/2C
k−n
2k h2k , (n = 0, 1, 2, . . .) (19)

with Cn
α the binomial coefficient defined by

Cn
α =

α(α − 1) . . . (α − n + 1)
n!

. (20)

Here it shall be stressed that we adopt a different approach than that developed by Shen et al. [13] to expand√
1 − h2 cos2 θ = b

a

√
1 + b∗ sin2 θ,

(
b∗ = a2−b2

b2

)
. One advantage of the present approach is that the integrals (A3)

in Shen et al. [13], which are indispensable to the calculation of the expansion coefficients, can be circumvented.
Inserting the above expansion Eq. (18) into Eq. (17), and equating the coefficients for the same power of ζ, we finally

obtain the following set of linear algebraic equations

a2n = 0 ,

(2n − 1)a2n−1 + (2n − 1)ρ̄2n−1ā2n−1 + γ

[
+∞∑

m=1

I2|n−m|b2m−1 −
+∞∑

m=1

I2(n+m−1)b̄2m−1

]

= 0 ,

b2n−1 = (Γ − 1)ā2n−1ρ̄
2n−1 + (Γ + 1)a2n−1 − 2kδ(2n−1)1 ,

(n ≥ 1) (21)

where δ(2n−1)1 is the Kronecker delta.
If we introduce three vectors x1, x2, J, two diagonal matrices Λ1, Λ2, and two real and symmetric matrices A, B

defined as

x1 =
[
a1 a3 a5 . . .

]T

, x2 =
[
b1 b3 b5 . . .

]T

, J =
[
1 0 0 . . .

]T

, (22a)

Λ1 = diag
[
1 3 5 . . .

]
, Λ2 = diag

[
ρ̄ ρ̄3 ρ̄5 . . .

]
, (22b)

A = AT =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

I0 I2 I4 I6 . . .

I2 I0 I2 I4 . . .

I4 I2 I0 I2 . . .

I6 I4 I2 I0 . . .
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, B = BT =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

I2 I4 I6 I8 . . .

I4 I6 I8 I10 . . .

I6 I8 I10 I12 . . .

I8 I10 I12 I14 . . .
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, (22c)

then Eq. (21)2,3 can be concisely written into the following matrix forms

Λ1x1 + Λ1Λ2x̄1 + γAx2 − γBx̄2 = 0 ,

x2 = (Γ − 1)Λ2x̄1 + (Γ + 1)x1 − 2kJ .
(23)

Consequently x1 can be uniquely determined from the above set of linear algebraic equations as

[
x1

x̄1

]

= 2

⎡

⎣ γ−1Λ1 + (Γ + 1)A− (Γ − 1)BΛ̄2 γ−1Λ1Λ2 + (Γ − 1)AΛ2 − (Γ + 1)B

γ−1Λ1Λ̄2 + (Γ − 1)AΛ̄2 − (Γ + 1)B γ−1Λ1 + (Γ + 1)A− (Γ − 1)BΛ2

⎤

⎦

−1 ⎡

⎣(kA − k̄B)J

(k̄A− kB)J

⎤

⎦ . (24)
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If the inhomogeneity is orthotropic, then Λ2 is real. As a result the above expression for x1 can be further simplified as

x1 = 2 Re{k} [
γ−1(A − B)−1Λ1(I + Λ2) + (Γ + 1)I + (Γ − 1)Λ2

]−1
J

+ 2i Im{k} [
γ−1(A + B)−1Λ1(I − Λ2) + (Γ + 1)I − (Γ − 1)Λ2

]−1
J . (25)

Particularly if the inhomogeneity is isotropic while the matrix is anisotropic and one is only concerned with the stress
field inside the inhomogeneity, then it is equivalent to treat the matrix also as isotropic with shear modulus μ = λ2 subject
to the virtual remote uniform shear stresses σ̃∞

31 and σ̃∞
32 such that

σ̃∞
31 − iσ̃∞

32 =
(a − ip2b)(σ∞

31 + p̄2σ
∞
32)

(a + b) Im{p2} . (26)

4 Nonuniform stress field inside the elliptical inhomogeneity

If we truncate x1 to n = N , then f1(z1) within the inhomogeneity can be expressed as

f1(z1) =
N∑

n=1

d2n−1z
2n−1
1 ,

(
x2

1

a2
+

x2
2

b2
≤ 1

)
(27)

where d2n−1, (n = 1, 2, . . . , N) are unknown constants to be determined.
In view of the fact that f1(z1) = f1(m1(ζ))=f1(ζ), then we arrive at the following set of linear algebraic equations

N∑

n=m

(
a − ip1b

2

)2n−1

ρn−mCn−m
2n−1d2n−1 = a2m−1 , (m = 1, 2, . . . , N) . (28)

Consequently, the vector x3 =
[
d1 d3 . . . d2N−1

]T

can be uniquely determined to be

x3 = C−1x1 , (29)

where the upper triangular matrix C is given by

C =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

(
a−ip1b

2

)
ρ0C0

1

(
a−ip1b

2

)3

ρ1C1
3

(
a−ip1b

2

)5

ρ2C2
5 . . .

(
a−ip1b

2

)2N−1

ρN−1CN−1
2N−1

0
(

a−ip1b
2

)3

ρ0C0
3

(
a−ip1b

2

)5

ρ1C1
5 . . .

(
a−ip1b

2

)2N−1

ρN−2CN−2
2N−1

0 0
(

a−ip1b
2

)5

ρ0C0
5 . . .

(
a−ip1b

2

)2N−1

ρN−3CN−3
2N−1

...
...

...
. . .

...

0 0 0 . . .
(

a−ip1b
2

)2N−1

ρ0C0
2N−1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

. (30)

Now that the stress field inside the inhomogeneity can be explicitly given by

σ31 + p̄1σ32 = −iλ1 Im{p1}
N∑

n=1

d2n−1(2n − 1)(x1 + p1x2)2n−2 ,

(
x2

1

a2
+

x2
2

b2
≤ 1

)
. (31)

It is observed from the above expression that the stress field inside an anisotropic elliptical inhomogeneity with a
homogeneously imperfect interface is intrinsically nonuniform.

Next we consider two special cases in which uniform internal stress field exists
(i) A perfect interface, i. e., γ → ∞. In this case it follows from Eq. (21) that

a1 =
2(Γ + 1)k + 2ρ̄(1 − Γ)k̄
(Γ + 1)2 − (Γ − 1)2 |ρ|2 , an = 0 , (n = 2, 3, . . . , +∞) (32)

Consequently, the stress field, which is uniform inside the perfectly bonded elliptical inhomogeneity, is given by

σ31 + p1σ32 =
2iλ1 Im{p1}ā1

a + ip̄1b
,

(
x2

1

a2
+

x2
2

b2
≤ 1

)
(33)
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which is checked to be the result derived by Kattis and Providas [4, Eq. (36)] by using the two-phase potentials.
Note: We find that there is a typo in the expression of A2 below Eq. (35) in [4], the correct one is given below

A2 = (1 + Γ)
(1 + Γ)M̄R

1 ML
1

∑̄∞ − (1 − Γ)M̄L
1 M̄R

2

∑∞

(1 + Γ)2
∣
∣MR

1

∣
∣2 − (1 − Γ)2

∣
∣MR

2

∣
∣2

.

(ii) An imperfectly bonded anisotropic circular inhomogeneity (a = b and h = 0). In this case it is observed from Eq. (18) that

I2n = δn0 , (n = 0, 1, 2, . . . , +∞) . (34)

Consequently it follows from Eq. (21) that

a1 =
2γ [1 + γ(Γ + 1)] k − 2γρ̄ [1 + γ(Γ − 1)] k̄

[1 + γ(Γ + 1)]2 − |ρ|2 [1 + γ(Γ − 1)]2
, an = 0, (n = 2, 3, . . . , +∞) (35)

with ρ = (1 + ip1)/(1 − ip1) and k = a(i + p2)(σ∞
31 + p̄2σ

∞
32)/[2λ2 Im{p2}].

We observe that the stress field within an imperfectly bonded anisotropic circular inhomogeneity is still uniform, and the
uniform stress field is given by

σ31 + p1σ32 =
2iλ1 Im{p1}ā1

a(1 + ip̄1)
,

(
x2

1 + x2
2 ≤ a2

)
(36)

5 An illustrative example

As an illustration of the obtained solution, we consider a composite composed of a graphite-epoxy elliptical inhomogeneity
imperfectly bonded to a wood matrix. The material properties of the inhomogeneity and the matrix are taken from [3] as

C
(1)
44 = 2.75790 Gpa , C

(1)
45 = 0 , C

(1)
55 = 4.13685 Gpa ,

C
(2)
44 = 0.05 Gpa , C

(2)
45 = 0 , C

(2)
55 = 0.5 Gpa .

It is observed that in this example both the elliptical inhomogeneity and the surrounding matrix are orthotropic. Fig. 2
illustrates the two stress components σ31 and σ32 along the inhomogeneity side of the imperfect interface L for different
values of the imperfect interface parameter γ when the remote stress is σ∞

31 , (σ∞
32 = 0) and a/b = 5. Fig. 3 demonstrates

the stress components σ31 and σ32 along the inhomogeneity side of the imperfect interface L for different values of the
imperfect interface parameter γ when the remote stress is σ∞

32 , (σ∞
31 = 0) and a/b = 5. Due to the fact that the graphite-epoxy

∞σσ ∞σσ

Fig. 2 Non-uniformity of stresses σ31 and σ32 along the interface when the remote stress is σ∞
31 with a/b = 5 (◦— γ = 0.01,

�— γ = 0.1, ∗— γ = 1, �— γ = 10, �— γ = ∞).
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148 X. Wang and E. Pan: Antiplane shear deformations of an anisotropic elliptical inhomogeneity with imperfect or viscous interface

∞σσ ∞σσ

Fig. 3 Non-uniformity of stresses σ31 and σ32 along the interface when the remote stress is σ∞
32 with a/b = 5 (◦— γ = 0.01,

�— γ = 0.1, ∗— γ = 1, �— γ = 10, �— γ = ∞).

elliptical inhomogeneity is orthotropic, then we can adopt Eq. (25) to calculate x1. Furthermore we truncate x1 to n = 20
to ensure that the obtained results are sufficiently accurate with the relative errors being less than 0.1%. It is observed from
Figs. 2 and 3 that the non-uniformity of the stresses σ31 and σ32 inside the imperfectly bonded inhomogeneity is apparent,
especially when γ = 0.1 ∼ 1. The observation of the nonuniform internal stress field is consistent with the result in [13].
When γ → ∞ for a perfect interface, σ31 = 2.1670σ∞

31 and σ32 = 1.6139σ∞
32 within the inhomogeneity, just the results

calculated by using Eqs. (32) and (33) (or using Eq. (36) in [4]). When the remote stress is σ∞
31 , it is observed from Fig. 2 that

σ31 is an increasing function of the imperfect parameter γ and its value lies between zero for a totally debonded interface
and the uniform value for a perfect interface, while σ32 can reach its maximum absolute value (≈ 0.15σ∞

31) when γ = 1.
On the other hand when the remote stress is σ∞

32 , it is observed from Fig. 3 that σ32 is an increasing function of γ and its
value lies between zero for a totally debonded interface and the uniform value for a perfect interface, while σ31 can reach its
maximum absolute value (≈ 0.2σ∞

32) when γ = 0.1. The above phenomenon is quite different from that observed by Shen
et al. [13] for a composite composed of isotropic constituents.

6 Extension to a viscous interface

The solution obtained above for a linear spring type imperfect interface can be conveniently extended to address an elliptical
inhomogeneity with a viscous interface described by the following linear law of rheology [18–23]

φ1 = φ2 ,

− dφ1

ds
= T = η(u̇2 − u̇1) ,

on L (37)

where a dot over the quantity denotes differentiation with respect to the time t, and η is the interface slip constant which can
be measured through properly designed experiment. It is implied in Eq. (37) that we have ignored the inertia effect for both
the elliptical inhomogeneity and the surrounding matrix [18,19,22,23,25–28].

Now the two analytic functions defined in the inhomogeneity and the matrix are denoted as f1(ζ, t) and f2(ζ, t) as a
result of the introduction of the viscous interface which exhibits the time effect. In addition the expressions of f1(ζ, t) and
f2(ζ, t) are identical to Eqs. (14) and (15) except now that an, (n = 1, 2, . . .) are not constants but functions of the time
due to the viscous interface. Through a similar derivation presented in Sect. 3, we finally find a2n = 0, (n = 1, 2, . . .) and
obtain the following set of equations

Λ1x1 + Λ1Λ2x̄1 + δAẋ2 − δB˙̄x2 = 0 ,

x2 = (Γ − 1)Λ2x̄1 + (Γ + 1)x1 ,
(38)

where x1, x2, Λ1, Λ2, A and B have been defined by Eq. (22), and δ = aη
λ1

. It shall be noticed that here x1 and x2 are not
constant vectors but functions of the time t due to the introduction of the viscous interface.
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Substituting Eq. (38)2 into (38)1, we finally arrive at the following state-space equation for the state variables x1 and x̄1

[
ẋ1

˙̄x1

]

= E

[
x1

x̄1

]

, (39)

where the matrix E is given by

E = − 1
δ

[
(Γ + 1)A − (Γ − 1)BΛ̄2 (Γ − 1)AΛ2 − (Γ + 1)B
(Γ − 1)AΛ̄2 − (Γ + 1)B (Γ + 1)A− (Γ − 1)BΛ2

]−1 [
Λ1 Λ1Λ2

Λ1Λ̄2 Λ1

]

. (40)

At the initial moment t = 0, the displacement across the interface has no time to have a jump due to the dashpot [18,25].
Therefore at t = 0 the interface is a perfect one. As a result it follows from Eq. (32) that the initial value of x1 is given by

x1(0) =
2(Γ + 1)k + 2ρ̄(1 − Γ)k̄
(Γ + 1)2 − (Γ − 1)2 |ρ|2 J , (41)

with J having been defined by Eq. (22a).
Now the solution to Eq. (39) can be concisely given by [22,29]

[
x1(t)
x̄1(t)

]

= exp(Et)

⎡

⎢
⎢
⎢
⎢
⎣

2(Γ + 1)k + 2ρ̄(1 − Γ)k̄
(Γ + 1)2 − (Γ − 1)2 |ρ|2 J

2ρ(1 − Γ)k + 2(Γ + 1)k̄

(Γ + 1)2 − (Γ − 1)2 |ρ|2 J

⎤

⎥
⎥
⎥
⎥
⎦

. (42)

Apparently when t > 0 the stress field inside the elliptical inhomogeneity with a viscous interface is nonuniform and
time-dependent. As t → ∞ the internal stress field will approach zero. This phenomenon is quite different from the uniform
and time-dependent stress field within a circular inhomogeneity with a viscous interface [18, 19]. It is observed from the
above derivations that the matrix form notations are also very effective in addressing an elliptical inhomogeneity with a
viscous interface.

7 Conclusions

A general solution to the antiplane deformation problem of an anisotropic elliptical inhomogeneity imperfectly bonded to
an unbounded anisotropic matrix subject to remote uniform shear stresses σ∞

31 and σ∞
32 is derived. In this investigation, we

use a method different from that proposed by Shen et al. [13] to expand the function
√

1 − h2 cos2 θ = b
a

√
1 + b∗ sin2 θ.

Extremely concise matrix form expressions for the unknown coefficients an, (n = 1, 2, . . .) are presented in Eqs. (24)
and (25). The results show that the imperfect parameter γ and the anisotropy of the inhomogeneity and the matrix exert a
significant influence on the (nonuniform)stress field inside the elliptical inhomogeneity.The nonuniformity of the stress field
inside the inhomogeneity is due to the assumption of uniformity of the imperfect interface parameter χ and the non-circular
shape (a 
= b) of the elliptical inhomogeneity, while uniformity of stress field inside the inhomogeneity is possible for a
special class of inhomogeneously imperfect interface [30]. We finally address an elliptical inhomogeneity with a viscous
interface and find that the stress field inside the elliptical inhomogeneity is in general nonuniform and time-dependent. The
case in which uniform eigenstrains are imposed on the inhomogeneity (transformation problem) [4] or a screw dislocation is
located in the matrix or located in the elliptical inhomogeneity [4,31,32] can also be similarly addressed with no much added
difficulties. Possible extensions of the present research include treating the interface as a viscoelastic one which is modeled
by linear spring and dashpot [25–28]. It is expected that the obtained solution in this research can be further employed to
predict the effective anisotropic moduli of the elliptical fiber reinforced composite with spring-type imperfect interface [33].
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