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Abstract

The influence of specimen geometry and material anisotropy on the vibrational modes of free-standing particles is

investigated using a variational method applied to the traction-free vibration of elastic solids. The geometric shapes of

spheres, cubes, and pyramids with both isotropic and cubic material symmetry are explored for a variety of compounds. It

is shown that the shape and inclusion of anisotropy in the elastic stiffness tensor are both critical parameters in the

frequency spectra, and that these features must be modeled for an accurate representation of both free and embedded

particles.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of traction-free vibration of elastic solids has become a hugely important area of study with
numerous applications ranging from non-destructive evaluation to the evaluation of material properties. In
nearly all applications, an accurate representation of both the geometry of the solid and the level of material
anisotropy is of significant interest in that it is not uncommon to assume isotropic behavior for an anisotropic
material or use an assumed shape of a sphere for an irregular non-spherical particle.

A typical example where these assumptions are often invoked are quantum nanostructures, which show
certain unique features due to their electronic energy confinements in different directions, and thus can be
applied to a variety of semiconductor devices [1–3] or more generic studies of particles whose characteristic
dimensions are at the nanoscale [4–12]. Many recent studies on the induced strain fields in these structures,
based either on molecular-dynamics or continuum methods, have clearly indicated the importance of the
material anisotropy on the induced fields. Nearly all of the models used in previous dynamic studies are based
on the assumption that the particles are elastically isotropic and are of spherical shape.

Another class of problem in which the assumption of material isotropy and spherical particle shape are
frequently assumed is the field of particle compaction [13,14]. The reasons for using these assumptions are
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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usually to allow for a much simpler form of analysis, particularly using discrete element methods [15–18]. This
is in contrast to alternative representations of the particle, such as that given in the present study, in which
power series representations of the fields are used over the specific domain of a particle that can be spherical or
otherwise [19]. In the case of particle vibration, the solution for an isotropic sphere can be obtained in closed
form rather than the far more complex problem of an anisotropic particle of non-spherical shape. In particle
compaction, the assumption of spherical particles allows for much simpler contact algorithms using local
deformation laws. However, the actual influence of particle shape and anisotropy in aggregate particle
compaction remains an area of current study that could be influenced by the results of the individual particle
mechanics as represented in this work.

The intent of the present study is to examine the effect of anisotropy and shape on the vibrational modes of
free particles, and therefore to estimate the levels of error that are induced by invoking the simplifying
assumptions of either spherical shape or material isotropy. To solve this problem, we apply a variational
method to the unrestrained free vibration of elastic solids. This approach uses the fundamentals of continuum
mechanics, and hence any limitations in continuum theory as the particles approach the nanoscale will not be
explored in this work. The particles are modeled as spheres, cubes, and pyramids for a variety of compounds
with both isotropic and cubic symmetry. This latter geometry is important, as results for this shape have not
yet appeared in the literature but they can in fact appear as quantum dot nanostructures [3]. It is expected that
this geometry will have numerous future applications. It is shown that both the shape and elastic anisotropy of
the particles can have significant influence on the vibrational spectra, and thus these features must be modeled
for an accurate representation of both free-standing and embedded particles.
2. Problem description and governing equations

2.1. Equations of motion and weak form

The particles are assumed to consist of linear elastic solids with constitutive equations expressed in
Cartesian coordinates as [20]

sij ¼ Cijkl�kl , (1)

where sij, Cikjl, and eij are the components of stress, the elastic stiffness tensor, and the infinitesimal strain
tensor, respectively. In matrix form, the elements of the tensor C (with components Cijkl) for a generic
orthotropic solid can be expressed as

½C� ¼

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Sym C55 0

C66

2
6666666664

3
7777777775
. (2)

If the constitutive relation is expressed in this matrix form, the conventional contracted notation (s11 ¼ s1,
s23 ¼ s4, e11 ¼ e1, 2e23 ¼ e4, C1111 ¼ C11, C1123 ¼ C14, and so on) is assumed, and it is understood that the 1,
2, 3 directions are x1 ¼ x, x2 ¼ y, and x3 ¼ z.

The general strain–displacement relation is given by

�ij ¼ 0:5ðui;j þ uj;iÞ, (3)

where ui (i ¼ 1,2,3) represent the components of elastic displacement within the particle. Substitution of the
constitutive relations and strain–displacement relations into the equations of motion

sij;j ¼ r
q2ui

qt2
(4)
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yields three differential equations of motion in the three displacement variables (u1,u2,u3). To determine the
acoustic modes of free-standing particles, the tractions on the boundary surfaces of the solid are specified to be
zero. There are no specified displacements for this class of boundary-value problem, and hence there will be six
rigid-body modes corresponding to a frequency of zero.

Exact solutions for most solid objects are, with some important exceptions, very difficult to obtain.
The general approach used in this study is the Ritz method applied to the problem of unrestrained
free vibrations. Hamilton’s principle for an elastic medium is the starting point for such an analysis, and is
given by [20]

d
Z t

to

dt

Z
V

½1
2
r _uj _uj �

1
2
Cijkl�ij�kl �dV þ

Z t

to

dt

Z
S

t̄kduk dS ¼ 0. (5)

Here t denotes time, V and S the volume and surface occupied by and bounding the solid, t̄k the components
of the specified surface tractions, d the variational operator, and the overdot denotes the differentiation with
respect to time. For the free-standing particle, the specified tractions on the surfaces of the solid are zero, and
the surface integral will vanish. In contracted notation, this relationship becomes

0 ¼ �

Z t

0

Z
V

fs1d�1 þ s2d�2 þ s3d�3 þ s4d�4 þ s5d�5 þ s6d�6gdV dt

þ
1

2
d
Z t

0

Z
V

rð _u2 þ _v2 þ _w2ÞdV dt. ð6Þ

Using the assumptions of periodic motion and inserting the constitutive relations of Eq. (1) and the
strain–displacement relations of Eq. (3) yields the final weak form of the equations of motion. It is this
expression for which approximate solutions must be sought for problems with no exact solution.

2.2. The sphere: exact solutions

The torsional modes of an isotropic, elastic sphere can be found exactly by solving the characteristic
equations of motion (4) for the frequency parameter Z, given as

d

dZ
jlðZÞ
Z

� �
¼ 0, (7)

where jl is the spherical Bessel function of order l. The torsional modes of an isotropic sphere are somewhat
unusual in that they do not depend on the elastic constants of the material, but only on the geometry.
Spheroidal modes are characterized by deformations resulting in dilatation, and are found using solutions of
the characteristic equation

2 Z2 þ ðl � 1Þðl þ 2Þ
Zjlþ1ðZÞ

jlðZÞ
� ðl þ 1Þ

� �� �
zjlþ1ðzÞ

jlðzÞ
�

Z4

2
þ ðl � 1Þð2l þ 1ÞZ2

þ ½Z2 � 2lðl � 1Þðl þ 2Þ�
Zjlþ1ðZÞ

jlðZÞ
¼ 0. ð8Þ

For given values of l, the nth frequency can be calculated from solution of this equation. This very important
result was first obtained by Lamb in 1882 [21] and the resulting characteristics of the motion were later
expanded in some detail in a sequence of papers by Sato and Usami [22,23]. These results are significant in part
because they provide one of the very few exact mathematical results for unrestrained free-vibration of elastic
solids, and is one of the dominant reasons why the model of nanostructures as isotropic spheres has been so
prevalent in the literature. The resulting frequencies from these calculations will be used later in this study to
confirm the numerical procedure used in this study and to provide baseline numerical results for isotropic
spheres.
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2.3. The general anisotropic solid: the approximate model

For the general anisotropic solid, it is not possible to obtain an exact solution to the free vibration problem.
The Ritz method provides an alternative means of computing the frequencies of elastic solids when either the
material is anisotropic or the solid is not of spherical shape. This method has been used extensively to study
the resonant modes of anisotropic solids, such as the work of Visscher et al. [24] and Heyliger and Jilani [25].
Using power series as the basis functions for this approach allows for both exact and simple integration of the
integrals implied by Eq. (6) and also allows for separation of the frequencies into specific modal groups [24].
The approximations for the three displacement components can be written in this case as

uðx; y; zÞ ¼
Xm

j¼1

ajCu
j ðx; y; zÞ, (9a)

vðx; y; zÞ ¼
Xn

j¼1

bjCv
j ðx; y; zÞ, (9b)

wðx; y; zÞ ¼
Xp

j¼1

djCw
j ðx; y; zÞ. (9c)

Here a, b, and d are constants associated with the jth approximation function for u, v, and w, respectively, the
C functions are the approximation functions for each of the three variables, and m, n, and p are the number of
terms selected for each of the three series approximations. In this study, the approximation functions are
selected as power series in x, y, and z (e.g. 1, x, y, z, xy, xz, yz, xyz, x2, and so on). Substitution of these
approximations into the weak form of Eq. (6) results in a standard generalized eigenvalue problem that can be
solved using standard techniques. This methodology has been discussed elsewhere [24,25] and will not be
repeated here.

The use of power series in Cartesian coordinates regardless of geometric shape allows a grouping of the
approximation functions in such a way as to reduce the size of the resulting eigenvalue problem. Depending on
the shape used to model the particle and the type of material symmetry assumed, this grouping can
significantly reduce computational effort. For example, the modes for the isotropic sphere as formulated in
Cartesian coordinates can be split into eight separate modal groups, while the modes for a pyramid composed
of a material with cubic symmetry can be split into four groups. For other geometries and material
symmetries, different groupings are possible [26–28], and we note only that this approach was exploited to the
maximum possible effect in all of the numerical results that follow.

3. Numerical results

This section contains two separate discussions. First, the relative accuracy of the computational method is
briefly discussed. We then apply this methodology to a wide array of particle geometries with varying material
properties.

3.1. Accuracy of the method

Before considering the comparisons of most interest in this study, it is useful to comment on the relative
accuracy of the present method. Below we briefly discuss the relative accuracy of this method when applied to
spheres, parallelepipeds, and pyramids with isotropic material symmetry.

3.1.1. The sphere

The Ritz model as applied in this study does not allow simple classification of spheroidal or torsional modes
as is the case when the problem is solved in spherical coordinates. Yet even without this benefit, the accuracy
of this approach is excellent. An example is shown in Table 1, which shows the convergence of frequencies of
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Table 1

Convergence of frequencies for the isotropic sphere using the present Ritz method

l ¼ 6 l ¼ 8 l ¼ 10 l ¼ 12 Exact Mode

2.501 (5) 2.501 2.501 2.501 2.501 T(1,1)

2.640 (5) 2.64 2.64 2.64 2.64 S(2,1)

3.425 (3) 3.425 3.425 3.424 3.424 S(1,2)

3.868 (7) 3.865 3.865 3.865 3.865 T(2,1)

3.917 (7) 3.916 3.916 3.916 3.916 S(3,1)

4.440 (1) 4.44 4.44 4.44 4.44 S(0,1)

4.883 (5) 4.865 4.865 4.865 4.865 S(2,2)

5.105 (9) 5.011 5.009 5.009 5.009 S(4,1)

5.139 (9) 5.095 5.095 5.095 5.095 T(4,1)

5.856 (3) 5.765 5.763 5.763 5.763 T(1,2)

6.247 (11) 6.036 6.033 6.033 6.033 S(5,1)

6.504 (7) 6.287 (11) 6.266 6.266 6.266 T(5,1)

6.814 (3) 6.456 (7) 6.454 6.454 6.454 S(3,2)

7.211 (11) 6.773 (3) 6.772 6.771 6.771 S(1,3)

7.330 (5) 7.143 (13) 7.029 7.023 7.023 S(6,1)

7.998 (3) 7.238 (5) 7.136 7.136 7.136 T(2,2)

8.660 (13) 7.44 (13) 7.404 7.404 7.404 T(6,1)

9.307 (5) 7.76 (3) 7.747 7.745 7.744 T(3,2)

9.554 (9) 8.173 (9) 8.004 (15) 7.995 7.995 S(7,1)

10.743 (1) 8.396 (15) 8.066 (9) 8.061 8.062 S(4,2)

11.402 (13) 8.518 (5) 8.338 (5) 8.322 8.329 S(2,3)

11.436 (7) 8.772 (7) 8.462 (7) 8.442 8.444 T(3,2)

11.565 (11) 9.729 (3) 8.575 (15) 8.521 8.52 T(7,1)

13.116 (7) 9.848 (11) 9.140 (3) 8.968 8.955 S(8,1)

13.416 (12) 10.066 (4) 9.454 (6) 9.065 9.095 T(1,3)

The number in parentheses indicates the number of degenerate modes at that specific frequency. As more terms are used, there can be

shifts in frequency, and hence this number can be updated with the final and more accurate value in a column on the right. The column in

the far right indicates the modal group type using the nomenclature of Sato and Usami [22], with T and S denoting torsional and

spheroidal modes, respectively.
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an isotropic sphere when compared with the analytic solution solved in terms of Bessel functions as originally
computed by Lamb [21]. We use the parameter l as the convergence variable both for this example and the rest
of this study, where this symbol denotes the sum of the individual powers in x, y, and z (i.e. if the
approximation functions are expressed as xqyrzs, then series up to and including l ¼ q+r+s are used in the
series approximation for each of the variables). Frequencies computed using l ¼ 10 are in excellent agreement
with the exact solution for the first 60 or so frequencies for the isotropic sphere. We use this accuracy to justify
the use of l ¼ 10 in later calculations. Also of note is the extremely large number of degenerate frequencies for
the isotropic sphere. These are denoted by the parenthetical number to the right of each frequency in Table 1.
When the material is anisotropic or the solid not exactly spherical, the frequencies are not exactly the same but
instead appear within a very tightly packed frequency range. When the material possesses cubic material
symmetry, the number of degenerate frequencies drops significantly, as we show in a later section.

3.1.2. The parallelepiped

Another geometric shape that can be used to model typical nanoparticle geometries is that of the cube. In
this case, the same formulation used for the sphere can be used again, with the domains of integration changed
to model the change in geometry. This approach was originally used by Demarest [29] and has also seen
extensive applications in numerous studies. We do not show representative results for this geometry, but note
that the level of accuracy is similar to that of the sphere for l ¼ 10.

3.1.3. The pyramid

There are very few published studies on the acoustic modes or free vibration behavior of solid pyramids [30],
although the use of the Ritz model as used here was first discussed by Visscher et al. [24] but with no numerical
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results given. Use of power series as basis functions allows for computation of the frequencies and modal
shapes of pyramids with base half-lengths of d1 and d2 and a height of d3. This allows for exact computation of
the volume integrals required by the variational model.

Since there are no results available for comparison, we test the accuracy and validity of our
Ritz algorithm by comparing our results with those of a three-dimensional finite element solution to the
equations of motion. We omit details of this formulation, as the variational formulation is identical to that
given here for the solids under investigation and the element matrices are also the same. The only difference is
in the nature of the approximation functions for the three displacement variables. In the Ritz model, these
functions are global and span the entire domain of the solid. In a finite element model, these approximations
are piecewise and span only over the domain of a typical finite element. In this representation, we use 8-noded
brick elements. When there are pyramid shaped elements, we collapse the edges into the appropriately
shaped element. The relative test pyramid dimensions are given as d1 ¼ d2 ¼ d3. A total of four meshes are
used to represent the pyramid to show the convergence characteristics. Mesh 1 has 35 nodes and 20 elements,
mesh 2 has 69 nodes and 40 elements, mesh 3 has 165 nodes with 120 elements, and mesh 4 has 969 nodes
with 816 elements. The resulting frequencies are shown in Table 2 and are compared with the frequencies
from the Ritz model using l ¼ 10 terms in the approximation. The values shown in the table are
the dimensionless frequencies $ ¼ od1/Ct where o is the natural frequency and Ct is the shear wave speed
defined by (C44/r)

1/2.
Table 2

The convergence of the first 30 modal frequencies of the isotropic pyramid is shown as a function of mesh size

Mode FEM Ritz

Mesh 1 Mesh 2 Mesh 3 Mesh 4

1 1.8208 1.5872 1.5250 1.4546 1.4309

2 2.5026 2.1905 2.0931 1.9403 1.8856

3 2.5083 2.1905 2.1356 2.0102 1.9635

4 2.5083 2.2556 2.1356 2.0102 1.9635

5 2.6470 2.4605 2.3013 2.1620 2.1032

6 2.9299 2.7102 2.5596 2.3980 2.3237

7 3.0832 2.7102 2.5596 2.3980 2.3237

8 3.2100 2.7292 2.6061 2.4362 2.3850

9 3.2230 2.7594 2.6953 2.4755 2.4051

10 3.2230 2.9828 2.7383 2.4755 2.4051

11 3.4642 2.9828 2.7383 2.6344 2.6109

12 3.4642 2.9898 2.8980 2.8143 2.7845

13 3.7116 3.3365 3.1463 2.9972 2.9427

14 4.0067 3.4047 3.2059 3.0103 2.9493

15 4.0121 3.5613 3.3770 3.1599 3.0740

16 4.0121 3.5613 3.3770 3.1599 3.0740

17 4.4535 4.1010 3.9854 3.4577 3.2234

18 4.5853 4.3576 3.9854 3.4683 3.2234

19 4.5853 4.3576 4.0236 3.4683 3.2241

20 5.4007 4.5028 4.0455 3.5816 3.4181

21 5.5010 4.5203 4.0575 3.6932 3.4698

22 5.6903 4.6923 4.1454 3.8455 3.6959

23 5.8469 4.7261 4.2576 3.8682 3.7657

24 5.8469 4.7261 4.2806 3.8682 3.7657

25 5.9825 5.1142 4.2806 3.8810 3.8153

26 6.1302 5.2595 4.9636 4.2991 3.9957

27 6.1467 5.2595 4.9636 4.2991 3.9957

28 6.1467 5.4050 5.0147 4.6265 4.2955

29 6.1746 5.6431 5.0687 4.6265 4.4433

30 6.3816 5.7321 5.0687 4.6391 4.4433

The repeated frequencies appear from both structural and material symmetry.
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This comparison is presented for two reasons. First, the authors are unaware of any previous results for free
vibration response spectra for pyramids, and the finite element results are a useful means of comparison. The
convergence trends appear to be very good, with the frequencies of the most refined mesh being within several
percent of the Ritz results for most modes and no greater than five percent higher than the Ritz model for the
higher frequencies. Both the finite element and Ritz methods converge from above, so the Ritz frequencies are
the more accurate of the two. The second reason for this comparison is to show the level of accuracy of the
present Ritz model compared to the more typically used finite element method. For the level of approximation
Fig. 1. The first ten modes of traction-free vibration for an isotropic pyramid. (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode

5, (f) Mode 6, (g) Mode 7, (h) Mode 8, (i) Mode 9, (j) Mode 10.
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used (l ¼ 10), the use of group theory allows the complete eigenvalue problem associated with functions of
this order to be separated into four smaller eigenvalue problems of dimension 216, 195, 231, and 216. These
numbers vary depending on the order of approximation, type of material symmetry, and shape of the solid.
They are given here only as representative examples of the ordering reduction using symmetry of modal
groups. The finest mesh used in this study uses over ten times the number of degrees of freedom than that of
the Ritz model, but is still less accurate than when using global basis functions. It would be possible to exploit
symmetry features of the vibrational modes to reduce the size of the finite element mesh, but even the use of
this tactic does not result in higher accuracy per degree of freedom.

We also show the first ten independent modes of a free-standing pyramid in Fig. 1. These are plotted using
the respective eigenvectors that correspond to the frequencies given in Table 2.

3.2. Geometry and material symmetry

In this section, we compute and compare the acoustic modes of free particles composed of a wide array of
materials using assumed geometric shapes of spheres, parallelepipeds, and pyramids. The materials used in this
study are Ge, Si, Ag, Au, GaSb, AlSb, GaN, AlN, and AlAs. The elastic constants for the first four of these
crystals are taken from Hirth and Lothe [31] and those for the latter five are from Vurgaftman et al. [32] and
are shown in Tables 3 and 4. Each of these crystals possess cubic material symmetry, and the level of material
anisotropy for each crystal is denoted by the dimensionless parameter A ¼ |C11�C12�2C44|/C44. This
parameter is zero when the material is isotropic, and increases with the level of anisotropy.

For each of the crystals considered, six separate analyses are completed. For specimens with the same total
mass, the frequencies for unrestrained free vibration are computed first using the assumption of isotropic
Table 3

Elastic constants (in GPa) for various materials used in frequency calculations and the degree of anisotropy factor A ¼ |C11�C12�2C44|/

C44

Crystal C11 C12 C44 A

Cubic elastic constants

Ge 128.9 48.3 67.1 0.80

Si 165.7 63.9 79.6 0.72

Ag 124.0 93.4 46.1 1.34

Au 186.0 157.0 42.0 1.31

GaSb 884.2 402.6 432.2 0.89

AlSb 876.9 434.1 407.6 0.91

GaN 293 159 155 1.14

AlN 304 160 193 1.25

AlAs 1250 534 542 0.68

Table 4

Isotropic polycrystalline elastic constants from averaged monocrystal elastic constants (in GPa)

Crystal C11 C44 u

Ge 148.2 54.76 0.2069

Si 186.6 66.60 0.2226

Ag 143.9 30.20 0.3671

Au 204.1 28.06 0.4203

GaSb 1019.9 342.6 0.2471

AlSb 1008.4 320.0 0.2675

GaN 352.2 111.4 0.2687

AlN 382.5 130.9 0.2399

AlAs 1385.3 459.5 0.2518

The values for Poisson ratio are given only for reference. They are not directly used in our calculations.
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symmetry and then repeated using the actual cubic elastic constants. For the isotropic assumption,
we use the Hershey–Kröner–Eshelby method that averages the monocrystal elastic constants to provide
predictions of the isotropic polycrystal. This method is known to yield the best agreement with observation
and is straightforward to apply. Details are provided elsewhere [33]. These frequencies are computed
for the geometries of the sphere, the paralellepiped, and the pyramid, each of which is assumed
to possess identical mass. Hence the radius of the sphere, denoted as R, is selected as the fundamental
dimension with the cube side lengths (1.6119915R) and the pyramid half-width and height corresponding
to a height angle of 451 (each 1.46459R) are used in the subsequent calculations. The dimensionless
frequencies shown in the results that follow are thus $ ¼ oR/Ct as was used in the initial pyramid geometry
comparisons.

The resulting frequency spectra are shown in Tables 5–13. Several key features are evident. First, the
frequencies for the sphere are significantly (up to about 25%) higher than those for the cube, which are in turn
significantly (on the order of a factor of two) higher than the frequencies of the pyramid. This feature is
consistent with the principle that as the material moves away from the center of mass of the solid, the easier it
is to excite specific modes of the solid. A simple way of looking at this characteristic is to consider a
parallepiped. Comparing a block of material (say of relative dimensions of 1 on a side) versus a plate of
identical mass (with relative dimensions of 0.01� 10� 10) it is clear that the lowest flexural modes of
the plate will be easier to excite and thus lower than the continuum modes of the cube. Returning our
discussion to the three-dimensional objects, as the material moves away from the solid center of mass, the
relative stiffness (i.e. the ability of the solid resist deformation into a specific shape) is reduced and the
Table 5

Frequency spectrum for Ge

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

2.0644 (2) 2.5011 (5) 1.7597 (2) 1.7716 (2) 0.7145 0.7241

2.0744 (3) 2.6338 (5) 1.9088 (3) 2.3692 (3) 0.8381 1.0396

2.4736 (2) 3.3283 (3) 2.1360 (3) 2.4215 (3) 0.9286 1.0459

2.6034 (3) 3.8647 (7) 2.3050 (3) 2.6809 (3) 1.1005(2) 1.1860 (2)

2.8619 (3) 3.8962 (7) 2.3371 (3) 2.7561 (3) 1.3025(2) 1.5643 (2)

3.0337 4.0711 2.5272 (3) 2.8943 (3) 1.4835(2) 1.7048 (2)

3.3816 (3) 4.7381 (5) 2.5748 (2) 3.1719 (2) 1.4915 1.7406

3.4670 (3) 4.9747 (9) 2.9008 (3) 3.3891 1.5417 1.7414

3.6292 (3) 5.0946 (9) 3.2051 (3) 3.4177 (3) 1.6001 1.7701

3.6305 (3) 5.7634 (3) 3.2458 3.4427 (3) 1.6483 1.8744

3.6578 5.9853 (11) 3.3286 3.7180 1.6872 1.9303

3.8584 6.2660 (11) 3.3849 (3) 3.8143 (3) 1.8777 2.1126

3.9004 (2) 6.3150 (7) 3.4252 (3) 3.9729 (3) 2.0340 2.2727 (2)

4.2241 (3) 3.4678 (3) 3.8859 (3) 4.4286 (3) 2.0879 2.3735

4.2603 (3) 6.9696 (13) 3.9668 4.4500 (3) 2.1066(2) 2.4153

4.2913 7.1365 (5) 4.0306 (3) 4.4847 (3) 2.1159 2.4594

4.4797 (3) 7.4042 (13) 4.1719 (2) 4.5702 2.1765(2) 2.4682 (2)

4.4987 (2) 7.6377 (3) 4.1833 (3) 4.5893 (2) 2.2299 2.4789

4.5081 (2) 7.9231 (9) 4.2489 (2) 4.8660 (2) 2.2771(2) 2.6959 (2)

4.7041 (3) 7.9341 (15) 4.2721 (3) 5.0412 (3) 2.6177 2.7504 (2)

4.7386 (3) 8.1280 (5) 4.5385 (3) 5.1546 (2) 2.6401(2) 2.8389

4.9916 8.4620 (7) 4.5395 (2) 5.2074 (3) 2.6648 2.9729

5.1192 (3) 5.5751 (15) 4.6177 (3) 5.2429 (3) 2.7211 3.0392

5.2002 (3) 9.1396 (3) 4.6305 (2) 5.4276 (2) 2.8146 3.1717

5.2411 (3) 9.3774 (6) 4.7255 (3) 5.4649 2.8714(2) 3.1924

5.3510 (2) 9.5127 (11) 4.9426 5.5109 (3) 2.9294 3.2219 (2)

5.4197 (3) 9.5595 (4) 5.0300 (3) 5.5126 (3) 2.9868 3.3701

5.4664 (3) 5.0819 (3) 5.5814 (3) 3.0153 3.4742

5.5523 (2) 5.1031 (3) 5.6025 (3) 3.0457(2) 3.5093 (2)

5.6234 (3) 5.1918 (3) 5.7793 (3) 3.1083(2) 3.5765
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Table 6

Frequency spectrum for Si

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

2.1270(3) 2.5011 (5) 1.7616 (2) 1.7716 (2) 0.7169 0.7250

2.1290 (2) 2.6360 (5) 1.9646 (3) 2.3722 (3) 0.8614 1.0398

2.4778 (2) 3.3636 (3) 2.2040 (3) 2.4224 (3) 0.9519 1.0555

2.6107 (3) 3.8647 (7) 2.3583 (3) 2.7075 (3) 1.1134(2) 1.1895 (2)

2.9516 (3) 3.9037 (7) 2.3756 (3) 2.7561 (3) 1.3389(2) 1.5709 (2)

3.1263 4.1953 2.5693 (3) 2.9081 (3) 1.5165(2) 1.7108 (2)

3.4391 (3) 4.7844 (5) 2.6658 (2) 3.2042 (2) 1.5407 1.7481

3.5255 (3) 4.9875 (9) 2.9656 (3) 3.3950 1.5684 1.7503

3.6650 (3) 5.0946 (9) 3.2386 (3) 3.4185 (3) 1.6255 1.7702

3.6754 (3) 5.7634 (3) 3.3455 3.4541 (3) 1.6678 1.8842

3.8204 6.0028 (11) 3.3813 3.8131 1.7369 1.9341

3.8735 6.2660 (11) 3.4501 (3) 3.8202 (3) 1.8872 2.1146

4.0302 (2) 6.3659 (7) 3.5000 (3) 3.9862 (3) 2.0966 2.2860 (2)

4.3238 (3) 6.5740 (3) 3.9747 (3) 4.4449 (3) 2.1319 2.3782

4.3471 (3) 6.9914 (13) 4.0452 4.4576 (3) 2.1399(2) 2.4432

4.3841 7.1366 (5) 4.1033 (3) 4.4970 (3) 2.1592 2.4618

4.5625 (3) 7.4043 (13) 4.2258 (3) 4.5704 2.2171(2) 2.4731 (2)

4.5683 (2) 7.6676 (3) 4.2259 (2) 4.6013 (2) 2.2743 2.4914

4.5905 (2) 7.9598 (15) 4.3544 (2) 4.8889 (2) 2.3318(2) 2.7036 (2)

4.7680 (3) 7.9758 (9) 4.4081 (3) 5.0517 (3) 2.6587 2.7616 (2)

4.7793 (3) 8.2057 (5) 4.6001 (3) 5.1658 (2) 2.6629(2) 2.8537

5.0117 8.4621 (7) 4.6476 (2) 5.2194 (3) 2.7184 2.9903

5.2468 (3) 8.5751 (15) 4.6912 (3) 5.2688 (3) 2.7871 3.0583

5.3055 (3) 9.1396 (3) 4.7016 (2) 5.4286 (2) 2.8600 3.1784

5.3602 (3) 9.4057 (5) 4.8023 (3) 5.5116 2.9264(2) 3.2061

5.4603 (2) 9.5648 (11) 5.0501 5.5126 (3) 2.9757 3.2325 (2)

5.4912 (3) 9.6270 (4) 5.1249 (3) 5.5313 (3) 3.0501 3.3861 (2)

5.5576 (3) 5.2046 (3) 5.6024 (3) 3.0912 3.4819

5.6149 (2) 5.2335 (3) 5.6207 (3) 3.1193(2) 3.5252 (2)

5.6884 (3) 5.2523 (3) 5.7926 (3) 3.1649(2) 3.5873

Table 7

Frequency spectrum for Ag

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

1.5560 (2) 2.5011 (5) 1.4666 (3) 1.7720 (2) 0.6442 0.7335

1.6078 (3) 2.6537 (5) 1.5878 (3) 2.3960 (3) 0.7108 1.0413

2.2753 3.6592 (3) 1.7354 (2) 2.4293 (3) 0.8620 1.1442

2.3035 (3) 3.8647 (7) 1.9953 (3) 2.7561 (3) 1.0117(2) 1.2183 (2)

2.4140 (2) 3.9622 (7) 2.0266 (3) 2.9430 (3) 1.0589(2) 1.6270 (2)

2.5420 (3) 5.0896 (9) 2.1418 (2) 3.0256 (3) 1.1566 1.7664 (2)

2.9486 (3) 5.0946 (9) 2.4256 (3) 3.4246 (3) 1.3131 1.7712

2.9640 (3) 5.1830 (5) 2.4624 (3) 3.4406 1.3197(2) 1.8049

3.1794 (2) 5.7634 (3) 2.8164 (3) 3.5057 (2) 1.3202 1.8534

3.3342 (3) 6.1449 (11) 2.9324 (3) 3.5396 (3) 1.4710 1.9611

3.4823 (3) 6.1564 3.0162 (3) 3.8862 (3) 1.5780 1.9690

3.5218 (3) 6.2660 (11) 3.1758 (3) 4.0933 (3) 1.7260 2.1406

3.7391 6.7978 (7) 3.2662 4.5266 (3) 1.7510 2.4147

3.7547 (2) 7.1366 (5) 3.3279 4.5726 1.7991 2.4237 (2)

3.7984 (3) 7.1703 (13) 3.3496 (3) 4.5738 (3) 1.8059(2) 2.4818

3.9124 7.3246 (3) 3.3763 (2) 4.5938 (3) 1.8659 2.5188 (2)

3.9316 (3) 7.4043 (13) 3.4851 4.7147 (2) 1.9204(2) 2.6062

4.2037 (3) 8.1731 (15) 3.6725 (3) 4.7731 2.0450 2.6909

4.2605 (2) 8.4075 (9) 3.7578 (2) 5.0772 (2) 2.0487(2) 2.7652 (2)

4.2947 (3) 8.4621 (7) 3.8242 (3) 5.1447 (3) 2.1753 2.8525 (2)

4.4132 (3) 8.5751 (15) 3.9323 (2) 5.2785 (2) 2.3985 3.0086

4.4498 (2) 8.7255 (5) 4.0369 (3) 5.3359 (3) 2.4261(2) 3.1757

4.5195 9.1396 (3) 4.1255 (3) 5.4379 (2) 2.4274 3.2363

4.5627 9.3210 (3) 4.2050 (3) 5.4881 (3) 2.5097 3.2471

4.6770 (3) 9.6356 (4) 4.2826 (3) 5.5126 (3) 2.5682 3.3310 (2)

4.6819 (3) 9.6987 (15) 4.2989 (2) 5.6647 (3) 2.5689(2) 3.3327

4.7625 (3) 4.4445 (3) 5.7830 (3) 2.6256(2) 3.5302 (2)

4.9332 (3) 4.4472 (3) 5.8281 (3) 2.6800 3.5469

4.9645 4.4554 5.9045 (3) 2.6893(2) 3.6521

5.0931 (3) 4.5267 (3) 6.0889 (3) 2.7385 3.6754
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Table 8

Frequency spectrum for Au

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

1.5882 (2) 2.5011 (5) 1.4973 (3) 1.7721 (2) 0.6564 0.7364

1.6366 (3) 2.6588 (5) 1.6194 (3) 2.4031 (3) 0.7156 1.0418

2.3196 3.7506 (3) 1.7378 (2) 2.4313 (3) 0.8965 1.1760

2.3653 (3) 3.8647 (7) 2.0538 (3) 2.7561 (3) 1.0267(2) 1.2271 (2)

2.4193 (2) 3.9794 (7) 2.0709 (3) 3.0219 (3) 1.0802(2) 1.6450 (2)

2.5544 (3) 5.0946 (9) 2.2266 (2) 3.0639 (3) 1.1853 1.7716

2.9756 (3) 5.1203 (9) 2.4574 (3) 3.4265 (3) 1.3343 1.7863 (2)

3.0166 (3) 5.3083 (5) 2.4827 (3) 3.4539 1.3438 1.8229

3.2763 (2) 5.7634 (3) 2.8468 (3) 3.5622 (3) 1.3573(2) 1.8997

3.3750 (3) 6.1884 (11) 3.0063 (3) 3.6141 (2) 1.5063 1.9818

3.5705 (3) 6.2660 (11) 3.0969 (3) 3.9141 (3) 1.6062 1.9819

3.5958 (3) 6.9301 (7) 3.2390 (3) 4.1261 (3) 1.7616 2.1542

3.8009 (2) 7.1365 (5) 3.3089 4.5510 (3) 1.7999 2.4255

3.8337 (3) 7.2260 (13) 3.3624 4.5734 1.8310 2.4792 (2)

3.8620 7.3927 (3) 3.4343 (2) 4.6110 (3) 1.8451(2) 2.4886

3.9454 7.4042 (13) 3.4433 (3) 4.6226 (3) 1.8814 2.5384 (2)

4.0078 (3) 7.9420 3.7309 4.7580 (2) 1.9646(2) 2.6477

4.2747 (3) 8.2401 (15) 3.7651 (3) 5.0205 2.0893(2) 2.7720

4.3457 (2) 8.4620 (7) 3.7965 (2) 5.1352 (2) 2.1080 2.7843 (2)

4.3557 (3) 8.5340 (9) 3.8730 (3) 5.1761 (3) 2.2232 2.8801 (2)

4.5195 (3) 8.5751 (15) 4.0315 (2) 5.3247 (2) 2.4591 3.0746

4.5355 (2) 8.8164 (5) 4.1186 (3) 5.3794 (3) 2.4781(2) 3.2550

4.5688 9.1396 (3) 4.1873 (3) 5.4415 (2) 2.4853 3.2558

4.6623 9.6985 (3) 4.2425 (3) 5.5126 (3) 2.5827 3.3211

4.7395 (3) 9.6986 (11) 4.3447 (3) 5.5515 (3) 2.6167 3.3663 (2)

4.7728 (3) 9.6987 (3) 4.3712 (2) 5.6983 (3) 2.6188(2) 3.3780

4.8805 (3) 9.7062 (5) 4.5355 (3) 5.8355 (3) 2.6988(2) 3.5680

5.0229 (3) 4.5474 (3) 5.9305 (3) 2.7466 3.5780 (2)

5.1639 (3) 4.5677 5.9403 (3) 2.7567(2) 3.6674

5.2234 (3) 4.5963 (3) 6.1396 (3) 2.8044 3.7032

Table 9

Frequency spectrum for GaSb

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

1.9944 (2) 2.5011 (5) 1.7575 (2) 1.7717 (2) 0.7157 0.7265

2.0119 (3) 2.6395 (5) 1.8507 (3) 2.3768 (3) 0.8114 1.0401

2.4680 (2) 3.4182 (3) 2.0573 (3) 2.4238 (3) 0.9326 1.0707

2.6036 (3) 3.8647 (7) 2.3018 (3) 2.7492 (3) 1.0943(2) 1.1949 (2)

2.8250 (3) 3.9150 (7) 2.3091 (3) 2.7561 (3) 1.2762(2) 1.5812 (2)

2.9261 4.4124 2.5181 (3) 2.9294 (3) 1.4540 1.7203 (2)

3.3161 (3) 4.8568 (5) 2.5491 (2) 3.2554 (2) 1.4698(2) 1.7584

3.4822 (3) 5.0070 (9) 2.8410 (3) 3.4039 1.5110 1.7660

3.5665 (3) 5.0946 (9) 3.1640 (3) 3.4197 (3) 1.5976 1.7704

3.6170 (3) 5.7634 (3) 3.3392 3.4712 (3) 1.6374 1.8993

3.8511 (2) 6.0296 (11) 3.3549 (3) 3.8301 (3) 1.6500 1.9401

3.8775 6.2660 (11) 3.3678 (3) 3.9711 1.8803 2.1180

3.8831 6.4451 (7) 3.3826 4.0064 (3) 2.0223 2.3077 (2)

4.1123 (3) 6.7504 (3) 3.8459 (3) 4.4695 (3) 2.0516 2.3852

4.1914 (3) 7.0248 (13) 3.8732 4.4698 (3) 2.0762 2.4654

4.2526 7.1365 (5) 4.0085 (3) 4.5157 (3) 2.1010(2) 2.4809 (2)

4.4092 (2) 7.4042 (13) 4.1147 (3) 4.5708 2.1473(2) 2.4870

4.4825 (2) 7.7363 (3) 4.1300 (2) 4.6203 (2) 2.2251 2.5113

4.5567 (3) 7.9993 (15) 4.1526 (3) 4.9240 (2) 2.2424(2) 2.7152 (2)

4.6272 (3) 8.0571 (9) 4.1559 (2) 5.0682 (3) 2.6135 2.7788 (2)

4.7513 (3) 8.3249 (5) 4.4662 (2) 5.1838 (2) 2.6510(2) 2.8778

4.9625 8.4621 (7) 4.4949 (3) 5.2387 (3) 2.6584 3.0188

5.0056 (3) 8.5751 (15) 4.5657 (3) 5.3094 (3) 2.6592 3.0890

5.1050 (3) 9.1396 (3) 4.5906 (2) 5.4302 (2) 2.8260 3.1887

5.1353 (3) 9.4490 (5) 4.6929 (3) 5.5126 (3) 2.8453(2) 3.2278

5.2316 (2) 9.6443 (11) 4.9647 (3) 5.5604 (3) 2.9252 3.2493 (2)

5.3694 (3) 4.9893 5.5967 2.9368 3.4113 (2)

5.4577 (3) 5.0465 (3) 5.6365 (3) 2.9553 3.4937

5.5404 (2) 5.0804 (3) 5.6495 (3) 2.9976(2) 3.5506 (2)

5.5533 (3) 5.1465 (3) 5.8131 (3) 3.0911(2) 3.6037
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Table 10

Frequency spectrum for AlSb

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

1.9716 (2) 2.5011 (5) 1.7568 (2) 1.7717 (2) 0.7165 0.7278

1.9909 (3) 2.6422 (5) 1.8319 (3) 2.3805 (3) 0.8026 1.0403

2.4660 (2) 3.4624 (3) 2.0313 (3) 2.4248 (3) 0.9374 1.0834

2.6043 (3) 3.8647 (7) 2.2989 (3) 2.7561 (3) 1.0929(2) 1.1992 (2)

2.8151 (3) 3.9240 (7) 2.3082 (3) 2.7835 (3) 1.2688(2) 1.5895 (2)

2.8905 4.6164 2.5192 (3) 2.9468 (3) 1.4428 1.7283 (2)

3.2948 (3) 4.9159 (5) 2.5485 (2) 3.2981 (2) 1.4683(2) 1.7669

3.5016 (3) 5.0226 (9) 2.8218 (3) 3.4109 1.5009 1.7706

3.5435 (3) 5.0946 (9) 3.1496 (3) 3.4206 (3) 1.5998 1.7796

3.6147 (3) 5.7634 (3) 3.3462 3.4847 (3) 1.6221 1.9112

3.8418 (2) 6.0511 (11) 3.3512 (3) 3.8388 (3) 1.6532 1.9451

3.8879 6.2660 (11) 3.3521 (3) 4.0226 (3) 1.8826 2.1211

4.0077 6.5098 (7) 3.4664 4.1092 2.0232 2.3262 (2)

4.0763 (3) 6.8977 (3) 3.8392 (2) 4.4794 (3) 2.0406 2.3908

4.1718 (3) 7.0517 (13) 3.8418 4.4896 (3) 2.0642 2.4683

4.2739 7.1365 (5) 4.0088 (3) 4.5304 (3) 2.1002(2) 2.4873 (2)

4.3758 (2) 7.4042 (13) 4.0628 (3) 4.5711 2.1416(2) 2.5218

4,4862 (2) 7.8264 (3) 4.1173 (2) 4.6362 (2) 2.2290 2.5291

4.5995 (3) 8.0312 (15) 4.1228 (2) 4.9523 (2) 2.2345(2) 2.7245 (2)

4.6010 (3) 8.1227 (9) 4.1441 (3) 5.0817 (3) 2.6172 2.7926 (2)

4.7643 (3) 8.4169 (5) 4.4525 (2) 5.1991 (2) 2.6397 2.8985

4.9513 8.4620 (7) 4.4831 (3) 5.2549 (3) 2.6576(2) 3.0435

4.9699 (3) 8.5751 (15) 4.5517 (3) 5.3426 (3) 2.6633 3.1150

5.0604 (3) 9.1396 (3) 4.5830 (2) 5.4315 (2) 2.8372 3.1972

5.1199 (3) 9.4837 (5) 4.6846 (3) 5.5126 (3) 2.8408(2) 3.2459

5.1935 (20 9.6986 (15) 4.9472 (3) 5.5821 (3) 2.9229 3.2633 (2)

5.3614 (3) 5.0443 5.6658 (3) 2.9296 3.4323 (2)

5.4578 (3) 5.0469 (3) 5.6734 (3) 2.9379 3.5034

5.5223 (3) 5.0758 (3) 5.6823 2.9839(2) 3.5720 (2)

5.5426 (2) 5.1226 (3) 5.8298 (3) 3.0906(2) 3.6170

Table 11

Frequency spectrum for GaN

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

1.7651 (2) 2.5011 (5) 1.6507 (3) 1.7717 (2) 0.7112 0.7278

1.8071 (3) 2.6423 (5) 1.7482 (2) 2.3806 (3) 0.7252 1.0403

2.4455 (2) 3.4648 (3) 1.8121 (3) 2.4249 (3) 0.8824 1.0840

2.5500 (3) 3.8647 (7) 2.1237 (3) 2.7561 (3) 1.0540(2) 1.1995 (2)

2.5793 (3) 3.9245 (7) 2.1741 (3) 2.7854 (3) 1.1577(2) 1.5900 (2)

2.5880 4.6281 2.3100 (2) 2.9477 (3) 1.2959 1.7287 (2)

3.1110 (3) 4.9191 (5) 2.4633 (3) 3.3005 (2) 1.3774(2) 1.7673

3.2917 (3) 5.0234 (9) 2.6234 (3) 3.4112 1.4121 1.7706

3.3984 (3) 5.0946 (9) 3.0029 (3) 3.4206 (3) 1.4652 1.7803

3.4836 (2) 5.7634 (3) 3.1214 (3) 3.4854 (3) 1.5287 1.9118

3.5167 (3) 6.0522 (11) 3.1584 (3) 3.8393 (3) 1.6035 1.9453

3.7556 (3) 6.2660 (11) 3.2602 4.0235 (3) 1.8633(2) 2.1213

3.7665 6.5133 (7) 3.3127 4.1169 1.8879 2.3272 (2)

3.8699 6.9055 (3) 3.5642 4.4799 (3) 1.9268 2.3911

3.9710 (3) 7.0531 (13) 3.5737 (3) 4.4906 (3) 1.9673(2) 2.4685

4.0738 7.1365 (5) 3.6243 (3) 4.5312 (3) 2.0185(2) 2.4876 (2)

4.0762 (2) 7.4042 (13) 3.7557 (2) 4.5711 2.1109(3)a 2.5234

4.3006 (3) 7.8325 (3) 3.8078 (3) 4.6370 (2) 2.4107 2.5303

4.3182 (2) 8.0329 (15) 3.9436 (2) 4.9538 (2) 2.5039 2.7250 (2)

4.4487 (3) 8.1262 (9) 3.9931 (3) 5.0825 (3) 2.5190 2.7934 (2)

4.5663 (3) 8.4216 (5) 4.1589 (2) 5.1999 (2) 2.6081(2) 2.8996

4.6727 (3) 8.4621 (7) 4.3056 (3) 5.2558 (3) 2.6667(2) 3.0449

4.6790 (3) 8.5751 (15) 4.3557 (3) 5.3443 (3) 2.7010 3.1164

4.8054 9.1396 (3) 4.3874 (3) 5.4316 (2) 2.7307 3.1976

4.8213 (2) 9.4855 (6) 4.3938 (2) 5.5126 (3) 2.7336 3.2469

4.8578 (3) 9.6987 (15) 4.6087 (3) 5.5832 (3) 2.7460(2) 3.2641 (2)

4.9970 (3) 4.7058 (3) 5.6675 (3) 2.8089 3.4334 (2)

5.1376 4.7486 (3) 5.6747 (3) 2.9045(2) 3.5039

5.1933 (3) 4.7800 5.6874 3.0483 3.5732 (2)

5.3802 (3) 4.8178 (3) 5.8307 (3) 3.0673(2) 3.6177

aOf these three frequencies, there is a lower single mode (2.110881 in our calculations) and two degenerate modes (2.110888). We do not

claim this level of accuracy in our model, however, and hence they appear as three identical values in this table.
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Table 12

Frequency spectrum for AlN

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

1.6417 (2) 2.5011 (5) 1.5395 (3) 1.7717 (2) 0.6782 0.7261

1.6940 (3) 2.6385 (5) 1.6834 (3) 2.3751 (3) 0.7051 1.0400

2.3711 (3) 3.4026 (3) 1.7414 (2) 2.4234 (3) 0.8329 1.0663

2.4090 3.8647 (7) 1.9775 (3) 2.7369 (3) 1.0227(2) 1.1934 (2)

2.4291 (2) 3.9118 (7) 2.0833 (3) 2.7556 (3) 1.0879(2) 1.5783 (2)

2.5534 (3) 4.3471 2.1383 (2) 2.9230 (3) 1.2031 1.7176 (2)

3.0042 (3) 4.8361 (5) 2.4314 (3) 3.2400 (2) 1.3074(2) 1.7555

3.1057 (3) 5.0015 (9) 2.5050 (3) 3.4013 1.3582 1.7614

3.2356 (2) 5.0946 (9) 2.8980 (3) 3.4192 (3) 1.3678 1.7704

3.2680 (3) 5.7634 (3) 2.9571 (3) 3.4659 (3) 1.4678 1.8950

3.4305 (3) 6.0221 (11) 2.9994 3.8269 (3) 1.5590 1.9384

3.4608 6.2660 (11) 3.0037 (3) 3.9240 1.7536 2.1170

3.5667 (3) 6.4225 (7) 3.2666 4.0002 (3) 1.7812 2.3014 (2)

3.8333 6.6990 (3) 3.3670 (3) 4.4624 (3) 1.8351 2.3833

3.8389 7.0153 (13) 3.3698 (3) 4.4659 (3) 1.8416 2.4644

3.8603 (3) 7.1366 (5) 3.3943 4.5100 (3) 1.8591(2) 2.4745

3.8920 (2) 7.4042 (13) 3.5306 (2) 4.5703 1.9288(2) 2.4786 (2)

4.0716 (3) 7.7131 (3) 3.6421 (3) 4.6144 (2) 2.0089 2.5055

4.1710 (2) 7.9881 (15) 3.8274 (2) 4.9136 (2) 2.0369(2) 2.7120 (2)

4.2559 (3) 8.0339 (9) 3.8779 (3) 5.0630 (3) 2.2601 2.7740 (2)

4.3201 (3) 8.2914 (5) 3.9473 (2) 5.1781 (2) 2.4013 2.8708

4.4405 (3) 8.4621 (7) 4.1296 (3) 5.2326 (3) 2.4117 3.0105

4.5727 (2) 8.5751 (15) 4.1746 (3) 5.2973 (3) 2.5002(2) 3.0801

4.5854 (3) 9.1396 (3) 4.2424 (3) 5.4291 (2) 2.5438 3.1858

4.6600 9.4367 (5) 4.2558 (2) 5.5115 (3) 2.5719(2) 3.2216

4.6916 (3) 9.6219 (11) 4.4213 (3) 5.5522 (3) 2.6040(2) 3.2445 (2)

4.7421 (3) 4.4393 (3) 5.5700 2.6076 3.4041 (2)

4.7862 4.4955 (3) 5.6261 (3) 2.6332 3.4903

4.9746 (3) 4.5134 5.6408 (3) 2.7042 3.5432 (2)

5.1511 (3) 4.5638 5.8069 (3) 2.7415(2) 3.5991
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frequencies are decreased. The sphere is representative of locating the material as close to the center of mass as
possible, resulting in both higher frequencies and the huge number of degenerate frequencies as shown in
Tables 5–13 and Table 1.

Also of note is the change in frequency spectra when invoking assumptions of material isotropy. For each
geometric shape, this assumption leads to frequencies that are significantly above those of the frequencies
calculated using the cubic material elastic constants. One reason for this is the very large number of degenerate
frequencies that exist for both the isotropic sphere and cube. For the pyramid, repeated frequencies are far less
common, and the isotropic material assumption results in an increase of relative stiffness. To determine a bulk
estimate of the influence of cubic versus isotropic material properties, the average percent relative error was
calculated for the first five frequency values for each material and plotted against the degree of anisotropy A

introduced in Tables 3 and 4. This plot is shown in Fig. 2, and shows that there is an approximately linear
change in error with change in material anisotropy.

The results presented here provide several guidelines when incorporating simplifying assumptions
involving material shape and symmetry. For instance, the vast majority of past studies of
quantum dot nanostructures have invoked assumptions of both spherical shape and material isotropy. The
reasons for this are pragmatic. The analytical solution techniques used to study the dynamic behavior
are fairly easily solved for these two conditions, including the presence of a surrounding matrix material.
These past models have provided much important information regarding the physical characteristics of
embedded and free-standing quantum dots. Yet the quantitative nature of these studies must be applied with
caution.
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Table 13

Frequency spectrum for AlAs

Sphere (Cub) Sphere (Iso) Cube (Cub) Cube (Iso) Pyramid (Cub) Pyramid (Iso)

2.1544 (3) 2.5011 (5) 1.7625 (2) 1.7717 0.7196 0.7268

2.1652 (2) 2.6401 (5) 1.9967 (3) 2.3777 (3) 0.8739 1.0401

2.4799 (2) 3.4285 (3) 2.2400 (3) 2.4240 (3) 0.9758 1.0736

2.6175 (3) 3.8647 (7) 2.3681 (3) 2.7561 (3) 1.1237(2) 1.1959 (2)

3.0284 (3) 3.9172 (7) 2.4438 (3) 2.7572 (3) 1.3647(2) 1.5831 (2)

3.1753 4.4576 2.6070 (3) 2.9335 (3) 1.5426(2) 1.7222 (2)

3.4694 (3) 4.8706 (5) 2.7467 (2) 3.2653 (2) 1.5749 1.7604

3.5794 (3) 5.0107 (9) 3.0070 (3) 3.4055 1.5826 1.7691

3.6926 (3) 5.0946 (9) 3.2557 (3) 3.4199 (3) 1.6499 1.7705

3.6969 (3) 5.7634 (3) 3.3636 3.4744 (3) 1.6869 1.9021

3.8928 6.0347 (11) 3.4991 (3) 3.8321 (3) 1.7662 1.9413

4.0807 6.2660 (11) 3.5496 (3) 4.0027 1.8966 2.1187

4.1403 (2) 6.4603 (7) 3.5711 4.0102 (3) 2.1552 2.3119 (2)

4.3769 (3) 6.7849 (3) 4.0434 (3) 4.4718 (3) 2.1606 2.3865

4.4055 (3) 7.0311 (13) 4.0858 4.4744 (3) 2.1728(2) 2.4661

4.4552 7.1366 (5) 4.1622 (3) 4.5191 (3) 2.1853 2.4823 (2)

4.6257 (2) 7.4043 (13) 4.2556 (3) 4.5708 2.2442(2) 2.4953

4.6328 (2) 7.7538 (3) 4.2643 (2) 4.6239 (2) 2.3146 2.5152

4.6672 (3) 8.0068 (15) 4.4268 (2) 4.9306 (2) 2.3707(2) 2.7174 (2)

4.7999 (3) 8.0724 (9) 4.4802 (3) 5.0713 (3) 2.6875(2) 2.7821 (2)

4.8215 (3) 8.3469 (5) 4.6437 (3) 5.1873 (2) 2.6981 2.8825

5.0210 8.4621 (7) 4.7181 (2) 5.2424 (3) 2.7693 3.0245

5.3289 (3) 8.5751 (15) 4.7443 (3) 5.3172 (3) 2.8280 3.0949

5.3815 (3) 9.1396 (3) 4.7531 (2) 5.4305 (2) 2.9087 3.1906

5.4233 (3) 9.4571 (5) 4.8686 (3) 5.5126 (3) 2.9692(2) 3.2320

5.5090 (3) 9.6592 (11) 5.1807 5.5656 (3) 3.0183 3.2526 (2)

5.5192 (2) 5.1957 (3) 5.6151 3.0924 3.4162 (2)

5.6649 (3) 5.2798 (3) 5.6432 (3) 3.1420 3.4960

5.6693 (2) 5.3147 (3) 5.6551 (3) 3.1756(2) 3.5510 (2)

5.7605 (3) 5.3587 (3) 5.8170 (3) 3.2122(2) 3.6068
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The results of the present study indicate that the true physical problem for free-standing particles (i.e. the
pyramid structure with cubic material symmetry) possess vibrational spectra dramatically different than those
of an isotropic sphere. Although these simplifying assumptions are useful, the significant differences in
quantitative response for the free-standing particles suggest that inclusion of actual physical geometry and
material stiffnesses must be modeled for an accurate representation of frequency spectra.

4. Summary and conclusions

The acoustic spectra of free-standing particles were calculated using an approximate Ritz model. The
physical representations of the dots as spheres, cubes, and pyramids with both cubic and isotropic material
symmetry. Our results indicate that for particles of equal mass composed of Ge, Si, Ag, Au, GaSb, AlSb,
GaN, AlN, and AlAs:
1.
 Frequencies for sphere geometries are up to 25% higher than those for cube geometries and about
3–4 times higher than those of pyramids.
2.
 The large number of degenerate frequencies for the sphere and cube geometries lead to a general increase in
frequency when the assumption of isotropic material symmetry is invoked.
3.
 For pyramid geometries, the assumption of material isotropy as computed by effective polycrystalline
elastic constants leads to an increase in frequency over those computed using the cubic material elastic
constants. For the lowest five frequencies, this increase varies approximately linearly with the degree of
material anisotropy.
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Fig. 2. Average error measures from an assumption of material isotropy as a function of the level of anisotropy for pyramids with cubic

material symmetry.
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In addition to these conclusions, the model used for the traction-free vibration of pyramids provide what
are believed to be among the first published results of the vibrational response of free-standing pyramids. Our
results compare quite favorably with those computed using a three-dimensional finite element model, and give
more accurate results for a given number of degrees of freedom. The results presented in this work can be
scaled to apply to structures with any dimension for purposes of comparison, but reductions to the nanoscale
may be restricted by limitations of continuum theory.
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