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This investigation addresses in detail a circular inhomogeneity with a viscoelastic interface subjected to remote

uniform antiplane shear stresses. Both the inhomogeneity and the surrounding matrix are assumed to be elastic and

quasi static, and the interface is viscoelastic, modeled by a linear spring and dashpot. Exact closed-form solutions for

both theKelvin- andMaxwell-type viscoelastic interfaces are obtainedbymeans of the complex variablemethod. It is

observed thatwhen thematrix is subjected to remote uniform shear stresses, the stressfield inside the inhomogeneity,

although time-dependent, is still uniform. The derived solutions are then used to predict the time-dependent effective

shear modulus of the composite based on the Mori–Tanaka mean-field approximation.

I. Introduction

C OMPOSITES under harsh environments could be damaged
during their service, and the need to repair these structures is

critical. Although composites can be repaired with adhesively
bonded joints, material behaviors of the joint and the bonded
composite (in particular, their time-dependent behavior) are
challenging [1]. Recently, He [2] and He and Lim [3] studied the
time-dependent mechanical responses of a particle- and fiber-
reinforced composite with a viscous interface in which the interface
model is based on the assumption that the two materials slide at a
relative velocity that is proportional to the interface shear stress [4]. It
is found that significant stress relaxation occurs, and the effective
elasticmoduli of the composites change remarkablywith time.When
time approaches infinity, the viscous interface will become a
complete sliding one and would lose the ability of transferring the
shear stress totally. As a result, the final overall modulus after
complete sliding is independent of the modulus of the fibers [2,3]. In
fact, viscoelastic interface, which is modeled by a linear spring and
dashpot, is more suitable to characterize the creep and relaxation
behavior of interlaminar bonding behavior under high-temperature
circumstances [5]. As pointed out by Fan and Wang [6], there exist
plenty of cases in which the interface should be considered as
viscoelastic. For example, epoxy has a melting temperature in the
range of about 340–380K andwhen used as an adhesive to join a pair
of metals with a high melting temperature (e.g., aluminum with a
melting temperature of about 1000 K), it may form an imperfect and
viscoelastic interface at room temperature of about 300 K. Most
recently, the topic of a composite with a viscoelastic interface has
attracted a considerable amount of attention [7–10].

In this work, we study the more practical and more complicated
case in which a circular inhomogeneity is connected to the matrix by

a viscoelastic interface modeled by a linear spring and dashpot [6].
Although both the Kelvin- and Maxwell-type interfaces are
considered here, the gradient interface effect will be addressed in a
separate paper. We first study an isolated circular inhomogeneity
with viscoelastic interface by using the complex variablemethod and
analytical continuation. The uniform far-field-induced stresses and
displacements are obtained for the two different viscoelastic
interfaces. Then the time-dependent shear modulus of the composite
with finite fiber concentration is derived by using the Mori–Tanaka
mean-field method [3,11,12]. It is verified that our results can be
reduced to those for viscous interface obtained byHe andLim [3] and
to those for a linear elastic spring-type interface [13]. Numerical
results are presented to illustrate the physics of the obtained
solutions.

II. Formulation

As shown in Fig. 1, an isolated circular inhomogeneity of radiusR
is embedded in an infinite matrix. The center of the circular
inhomogeneity is at the origin of the Cartesian coordinate system.
Both the inhomogeneity andmatrix are assumed to be homogeneous,
linearly elastic, and isotropic, with shear moduli �1 and �2,
respectively. The matrix is subjected to remote uniform antiplane
shear stresses �1zx and �1zy , and the inertia force in both the
inhomogeneity and matrix is neglected so that the analysis is
restricted to a quasi-static process, with the antiplane displacement
governed by the two-dimensional Laplace equation. As such, the
out-of-plane displacementw (i.e., uz), the stress components �zx and
�zy in the Cartesian coordinate system, and the stress components �zr
and �z� in the polar coordinate system can be expressed in terms of a
single analytic function f�z; t� Q3as [14]

w� Imff�z; t�g (1)

�zy � i�zx � �f0�z; t� (2)

�z� � i�zr � �ei�f0�z; t� (3)

where z� x� iy� Rei� is Qthe complex variable, and
f0�z; t� � �@f�z; t��=@z. Because of the effect of the viscoelastic
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interface, f�z; t� is not only a function of the complex variable z, but
also a function of the real-time variable t. In the following the
superscripts (1) and (2) will be used to denote stresses and
displacement associated with the circular inhomogeneity and the
matrix, respectively. In addition, the analytic functions defined in the
inhomogeneity and the matrix are denoted by f1�z; t� (jzj � R) and
f2�z; t� (jzj � R), respectively.

In this paper, we address both the Kelvin- and Maxwell-type
viscoelastic interfaces. The boundary conditions for the Kelvin
model, in which a linear spring and a linear dashpot are parallel-
connected, are given by [6]

��1�zr � ��2�zr

��1�zr � k�w�2� 	 w�1�� � �
@

@t
�w�2� 	 w�1��; on r� R

(4)

where k is the spring constant of the interface and � is the viscosity
coefficient.

The boundary conditions for theMaxwell model, in which a linear
spring and a linear dashpot are connected in series, are given by [6]

��1�zr � ��2�zr ;
@

@t
�w�2� 	 w�1�� � �

�1�
zr

�
� 1

k

@��1�zr

@t
; on r� R

(5)

In the next two sections, we will derive the analytic solutions for
the two kinds of viscoelastic interfaces.

III. Solution for a Kelvin-Type Viscoelastic Interface

Equation (4) for the boundary conditions of a Maxwell-type
viscoelastic interface can be expressed in terms of two analytic
functions f1�z; t� and f2�z; t� as

�1f
�
1 �z; t� � �1

�f	1

�
R2

z
; t

�
� �2f

	
2 �z; t� � �2

�f�2

�
R2

z
; t

�
(6a)

k

�
f	2 �z; t� 	 �f�2

�
R2

z
; t

�
	 f�1 �z; t� � �f	1

�
R2

z
; t

��

� � @
@t

�
f	2 �z; t� 	 �f�2

�
R2

z
; t

�
	 f�1 �z; t� � �f	1

�
R2

z
; t

��

� �1

R

�
zf0�1 �z; t� 	

R2

z
�f0	1

�
R2

z
; t

��

jzj � R (6b)

It then follows from Eq. (6a) that

f2�z; t� �
�1

�2

�f1

�
R2

z
; t

�
�
�1zy � i�1zx

�2

z	
R2
�
�1zy 	 i�1zx

�
�2

1

z

�f2

�
R2

z
; t

�
� �1

�2

f1�z; t� 	
�1zy � i�1zx

�2

z�
R2
�
�1zy 	 i�1zx

�
�2

1

z

(7)

Substituting Eq. (7) into Eq. (6b) and eliminating f	2 �z; t� and
�f�2 ��R2=z�; t� results in

k
�1 � �2

�2

f�1 �z; t� �
�1

R
zf0�1 �z; t� � �

�1 � �2

�2

@

@t
f�1 �z; t�

	 k
2
�
�1zy � i�1zx

�
�2

z� k�1 � �2

�2

�f	1

�
R2

z
; t

�

� �1

R

R2

z
�f0	1

�
R2

z
; t

�
� ��1 � �2

�2

@

@t
�f	1

�
R2

z
; t

�

	 k
2
�
�1zy 	 i�1zx

�
�2

R2

z
; jzj � R (8)

It is apparent that the left-hand side of Eq. (8) is analytic within the
circle r� R, whereas the right-hand side is analytic outside the
circle, including the point at infinity. Consequently, the continuity
condition in Eq. (8) implies that the left- and right-hand sides of
Eq. (8) are identically zerowithin and outside the circle r� R. It then
follows that

�f1�z; t� � z
@f1�z; t�
@z

� � @f1�z; t�
@t

�
2�
�
�1zy � i�1zx

�
�1 � �2

z; jzj � R (9)

where � and � are, respectively, the interface rigidity and the
characteristic time, given by

�� kR�1 � �2

�1�2

; � � �R�1 � �2

�1�2

(10)

At time t� 0, the displacement across the interface has no time to
experience any jump, due to the dashpot [3,6]. Therefore, at the initial
time t� 0, the interface is a perfect one. As a result, we have

f1�z; 0� �
2
�
�1zy � i�1zx

�
�1 � �2

z (11)

When t!1, the interface should be at a steady state and there is no
time effect. Then it follows from Eq. (9) that

�f1�z;1�� z
@f1�z;1�

@z
�

2�
�
�1zy � i�1zx

�
�1 � �2

z (12)

for which the solution is expediently given by

f1�z;1��
2�
�
�1zy � i�1zx

�
��� 1���1 � �2�

z (13)

In view of Eqs. (11) and (13), the solution to Eq. (9) can be given
by

x1

x2

Circular Inhomogeneity (µ1)

Matrix (µ2)

Viscoelastic Interface 

R

Fig. 1 A circular inhomogeneity within an infinitematrix connected by

a viscoelastic interface.
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f1�z; t�

�
2
�
�1zy � i�1zx

�
��� 1���1 � �2�

�
�� exp

�
	�� 1

�
t

��
z; jzj � R

(14)

Consequently, the expression of f2�z; t� is

f2�z; t� �

�
�1zy 	 i�1zx

�
�2

�
���1 	 �2� 	 ��1 � �2�
��� 1���1 � �2�

� 2�1

��� 1���1 � �2�
exp

�
	�� 1

�
t

��
R2

z

�
�1zy � i�1zx

�2

z; jzj � R (15)

Inserting the preceding two expressions for f1�z; t� and f2�z; t�
into Eq. (1), we can obtain the time-dependent displacement and
stress fields in the inhomogeneity and the matrix as

w�1� � 2

��� 1���1 � �2�



�
�� exp

�
	�� 1

�
t

��
r
�
�1zy sin �� �1zx cos �

�

w�2� �
�
1� �1 � �2 � ���2 	 �1�

��� 1���1 � �2�

�
R

r

�
2

	 2�1

��� 1���1 � �2�

�
R

r

�
2

exp

�
	�� 1

�
t

��



r
�
�1zy sin �� �1zx cos �

�
�2

(16)

��1�zy � i��1�zx �
2�1

�
�1zy � i�1zx

�
��� 1���1 � �2�

�
�� exp

�
	�� 1

�
t

��
(17a)

��2�zy � i��2�zx � �1zy � i�1zx

�
�
�1zy 	 i�1zx

���1 � �2 � ���2 	 �1�
��� 1���1 � �2�

	 2�1

��� 1���1 � �2�
exp

�
	�� 1

�
t

��
R2

z2
(17b)

It is observed from Eq. (17a) that the stress field inside the circular
inhomogeneity with the Kelvin-type interface is still uniform,
although the uniform stress field is time-dependent. We further
remark that our general solution contains various existing results as
special cases, as presented next.

1) When k� 0 for a viscous interface, we have �� 0. Then
Eqs. (16) and (17) reduce to

w�1� � 2

�1 � �2

exp

�
	 t
�

�
r
�
�1zy sin �� �1zx cos �

�

w�2� �
�
1�

�
R

r

�
2

	 2�1

�1 � �2

�
R

r

�
2

exp

�
	 t
�

�� r��1zy sin �� �1zx cos �
�

�2

(18)

��1�zy � i��1�zx �
2�1

�
�1zy � i�1zx

�
�1 � �2

exp

�
	 t
�

�

��2�zy � i��2�zx � �1zy � i�1zx �
�
�1zy 	 i�1zx

�



�
1 	 2�1

�1 � �2

exp

�
	 t
�

��
R2

z2

(19)

which are in agreement with those derived byHe andLim [3] if we let
�1zx � 0.

2) When �� 0 for a linear-spring model, we have � � 0. In this
case, Eqs. (16) and (17) reduce to

w�1� �
2�r

�
�1zy sin �� �1zx cos �

�
��� 1���1 � �2�

w�2� �
�
1� �1 � �2 � ���2 	 �1�

��� 1���1 � �2�

�
R

r

�
2
�



r
�
�1zy sin �� �1zx cos �

�
�2

(20)

��1�zy � i��1�zx �
2�1�

�
�1zy � i�1zx

�
��� 1���1 � �2�

��2�zy � i��2�zx � �1zy � i�1zx

�
�
�1zy 	 i�1zx

��1 � �2 � ���2 	 �1�
��� 1���1 � �2�

R2

z2

(21)

which coincide with those derived by Ru and Schiavone [13].
In Fig. 2, to show the basic feature of the obtained solution, we

demonstrate the continuous variation of �zx along the positive real
axis at four different moments [t� 0, �=��� 1�, 1:6094�=��� 1�,
and1] for the Kelvin-type interface. The matrix is subjected to �1zx
and the other fixed parameters are �� 1 and �1 � 5�2. It is
observed that at the initial time (t� 0), the stress level within the

fiber is rather high (��1�zx � 5
3
�1zx > �

1
zx ). With increasing time, the

stress level within the inhomogeneity decreases. When
t� 1:6094�=��� 1�, the stress is just equal to �1zx everywhere
along the real axis. At this moment, the existence of the stiff
inhomogeneity does not disturb the uniform stress field in thematrix,
due to the viscoelastic interface.When t!1, the stress approaches

the steady state ��1�zx � 5
6
�1zx < �

1
zx : namely, the result for a linear-

spring-type interface.
By using the Mori–Tanaka mean-field method [3,11,12] with the

intermediate procedures ignored, the time-dependent effective shear
modulus of a composite containing randomly aligned fibers of the
same radius with a Kelvin-type interface on the x–y plane can be
derived to be

Fig. 2 Variation of �zx along the positive real axis at four different
moments [t� 0,�=��� 1�, 1:6094�=��� 1�, and1] for theKelvin-type

interface, in which the matrix is subjected to �1zx with the fixed

parameters �� 1 and �1 � 5�2.
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�� � �2

1 	 c
�
�1 � �2 � ���2 	 �1�
��� 1���1 � �2�

	 2�1

��� 1���1 � �2�
exp

�
	�� 1

�
t

��

1� c
�
�1 � �2 � ���2 	 �1�
��� 1���1 � �2�

	 2�1

��� 1���1 � �2�
exp

�
	�� 1

�
t

�� (22)

where�� is the time-dependent effective shear modulus, and c is the
volume fraction of thefiber. It is seen that the effectiveQ7 shearmodulus
is determined by the shear moduli of the fiber and the matrix, the
volume fraction c of the fiber, the interface rigidity �, and the
characteristic time �. The composite behaves macroscopically like
an anelastic body. When �� 0 for a viscous interface, Eq. (22)
reduces to

�� � �2

1 	 c
�
1 	 2�1

�1 � �2

exp

�
	 t
�

��

1� c
�
1 	 2�1

�1 � �2

exp

�
	 t
�

�� (23)

which is just the result derived by He and Lim [3].
In Fig. 3, we plot the variation of �� as a function of time t for the

Kelvin-type interface with �� 1 and �1 � 10�2. Comparing Fig. 3
for the Kelvin-type viscoelastic interfaceQ8 with Fig. 5 in He and Lim
[3] for a viscous interface (�� 0), it is found that the loss of the
overall shear modulus for a Kelvin-type viscoelastic interface is not
as large as that for a viscous interface, due to the fact that the Kelvin-
type viscoelastic interface will finally evolve into a liner spring-type
interface, whereas a viscous interface will finally evolve into a
traction-free surface (or complete sliding interface).

IV. Solution for a Maxwell-Type Viscoelastic Interface

Equation (5) for the boundary conditions on a Maxwell-type
viscoelastic interface can be expressed in terms of the two analytic
functions f1�z; t� and f2�z; t� as

�1f
�
1 �z; t� � �1

�f	1

�
R2

z
; t

�
� �2f

	
2 �z; t� � �2

�f�2

�
R2

z
; t

�
(24a)

@

@t

�
f	2 �z; t� 	 �f�2

�
R2

z
; t

�
	 f�1 �z; t� � �f	1

�
R2

z
; t

��

� �1

R�

�
zf0�1 �z; t� 	

R2

z
�f0	1

�
R2

z
; t

��

� �1

Rk

@

@t

�
zf0�1 �z; t� 	

R2

z
�f0	1

�
R2

z
; t

��
(24b)

Similar to the analysis in the previous section, it follows from
Eq. (24a) that

f2�z; t� �
�1

�2

�f1

�
R2

z
; t

�
�
�1zy � i�1zx

�2

z	
R2
�
�1zy 	 i�1zx

�
�2

1

z

�f2

�
R2

z
; t

�
� �1

�2

f1�z; t� 	
�1zy � i�1zx

�2

z�
R2
�
�1zy 	 i�1zx

�
�2

1

z

(25)

Substituting Eq. (25) into Eq. (24b) and eliminating f	2 �z; t� and
�f�2 ��R2=v�; t� will result in

�1 � �2

�2

@

@t
f�1 �z; t� �

�1

R�
zf0�1 �z; t� �

�1

Rk
z
@

@t
f0�1 �z; t�

� �1 � �2

�2

@

@t
�f	1

�
R2

z
; t

�
� �1

R�

R2

z
�f0	1

�
R2

z
; t

�

� �1

Rk

R2

z

@

@t
�f0	1

�
R2

z
; t

�
(26)

It is apparent that the left-hand side of Eq. (26) is analytic within
the circle r� R, while the right-hand side is analytic outside the
circle, including the point at infinity. Consequently the continuity
condition in Eq. (26) implies that the left- and right-hand sides of
Eq. (26) are identically zero within and outside the circle r� R. It
then follows that

@f1�z; t�
@t

� 1

�
z
@f1�z; t�
@z

� 1

�
z
@2f1�z; t�
@z@t

� 0; jzj � R (27)

where

�� kR�1 � �2

�1�2

; � � �R�1 � �2

�1�2

(28)

At the initial time t� 0, the dashpot does not deform immediately,
and the spring responds to the loading with no time delay. Thus, the
displacement across the interface exhibits an immediate jump as the
response of a spring [6]. On the other hand, when t!1, the
interface becomes a traction-free surface. As a result,

f1�z; 0� �
2�
�
�1zy � i�1zx

�
��� 1���1 � �2�

z; f1�z;1�� 0 (29)

In view of the preceding, the solution to Eq. (27) can be given by

f1�z; t� �
2�
�
�1zy � i�1zx

�
��� 1���1 � �2�

exp

�
	 �t

���� 1�

�
z (30)

and the expression of f2�z; t� is
Fig. 3 Variation of �� as a function of time t for the Kelvin-type

viscoelastic interface with �� 1 and �1 � 10�2.
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�1zy 	 i�1zx

�
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���� 1�
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�
R2

z

�
�1zy � i�1zx

�2

z (31)

Now that we have obtained f1�z; t� and f2�z; t�, then it is easy to
write down the time-dependent displacement and stress fields as

w�1� � 2�

��� 1���1 � �2�
exp

�
	 �t

���� 1�

�



�
�1zy � i�1zx

�
r
�
�1zy sin �� �1zx cos �

�

w�2� �
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�
R

r

�
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	 2��1

��� 1���1 � �2�

�
R

r

�
2

exp
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���� 1�

��



r��1zy sin �� �1zx cos ��

�2

(32)

��1�zy � i��1�zx �
2��1

�
�1zy � i�1zx

�
��� 1���1 � �2�

exp

�
	 �t

���� 1�

�
(33a)

��2�zy � i��2�zx � �1zy � i�1zx

�
�
�1zy 	 i�1zx

��
1	 2��1

��� 1���1��2�
exp

�
	 �t

���� 1�

��
R2

z2

(33b)

Similarly, it is observed from Eq. (33a) that the stress field inside
the circular inhomogeneity with the Maxwell-type interface is still
uniform, although the uniform stress field is time-dependent. In
Fig. 4, we demonstrate the continuous variation of �zx along the
positive real axis at three differentmoments t� 0, ����� 1��=�, and
1 for theMaxwell-type interface. Thematrix is subjected to�1zx with
the other fixed parameters �� 1 and �1 � 5�2. At the initial time
t� 0, the result is the same as that for a linear-spring-type interface
(see Fig. 2 for t�1). With increasing time, the stress level within
the inhomogeneity decreases. When t!1, the stress within the
inhomogeneity approaches zero, due to the fact that as t!1, the
interface will become traction-free and cannot transfer load from the
matrix to the inhomogeneity.

Also, by using the Mori–Tanaka mean-field method, the time-
dependent effective shear modulus of a composite containing

randomly aligned fibers of the same radius with the Maxwell-type
interface on the x–y plane can be derived as

�� � �2

1 	 c
�
1 	 2��1

��� 1���1 � �2�
exp

�
	 �t

���� 1�

��

1� c
�
1 	 2��1

��� 1���1 � �2�
exp

�
	 �t

���� 1�

�� (34)

Apparently, when �!1, Eq. (34) is reduced to that derived by
He and Kim [3]. Figure 5 illustrates the variation of �� as a function
of time t for the Maxwell-type interface with �� 1 and �1 � 10�2.
As expected�� changes from the result for a linear spring at t� 0 to
that for a completely debonded interface at t�1.

V. Conclusions

We study an isolated circular inhomogeneity with a viscoelastic
interface under remote uniform antiplane shear stresses. Exact
closed-form solutions for both the Kelvin-and Maxwell-type
viscoelastic interfaces are derived by means of the complex variable
method. It is found that the complex variable method is very efficient
in treating this quasi-static problem. The time-dependent stress and
displacement fields in the inhomogeneity and the matrix are given.
The derived solutions are also used to predict the effective shear
modulus of the fiber-reinforced composite, which is important in the
study of the time-dependent response of composites. The method
presented here could be extended to address the interface described
by a standard linear solidmodel,which combines theMaxwellmodel
and a linear spring in parallel. In this study,we restrict our attention to
the simple case in which both the inhomogeneity and matrix are
assumed to be linearly elastic. A viscoelastic inhomogeneity and/or
matrix [15,16] still remains a challenge.

It is well known that the mismatch of material properties at the
fiber-matrix interface causes performance deterioration in
composites. For example, it causes stress rise at the interface,
phonon scattering in thermal transport, etc. The gradientmorphology
concept potentially provides a materials solution to address this
particular issue (e.g., [17]). The gradient materials property
distribution at the composite interface could be achieved through
nanotechnology (carbon nanotubes, nanofibers, nanolayers, and
buckypapers). This would require a functionally gradient interface to
also incorporate Q9the time-dependent behavior, which forms yet
another challenge problem for the further endeavor.
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