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Strain Energy on the Surface of an Anisotropic Half-Space Substrate:
Effect of Quantum-Dot Shape and Depth
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Abstract: Quantum-dot (QD) semiconductor
synthesis is one of the most actively investigated
fields in strain energy band engineering. The in-
duced strain fields influence ordering and align-
ment, and the subsequent surface formations de-
termine the energy bandgap of the device. The
effect of the strains on the surface formations is
computationally expensive to simulate, thus an-
alytical solutions to the QD-induced strain fields
are very appealing and useful. In this paper we
present an analytical method for calculating the
QD-induced elastic field in anisotropic half-space
semiconductor substrates. The QD is assumed to
be of any polyhedral shape, and its surface is ap-
proximated efficiently by a number of flat trian-
gles. The problem is formulated as an Eshelby in-
clusion problem in continuum mechanics whose
solution can be expressed by a volume-integral
equation involving the Green’s functions and the
equivalent body-force of eigenstrain. By virtue of
the point-force Green’s function solution, this vol-
ume integral is subsequently reduced to a line in-
tegral over [0,π] which is numerically integrated
by the Gaussian quadrature.

Numerical examples are presented for cubic,
pyramidal, truncated pyramidal and point QDs in
GaAs (001) and (111) half-space substrates. The
strain energy distribution on the surface of the
substrate indicates clearly the strong influence of
the QD shape and depth on the induced strain en-
ergy. This long-range strain energy on the surface
has been found to be the main source for deter-
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mining QD surface size and pattern.
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1 Introduction

Novel superlattice-based semiconductor devices
have attracted considerable attention in recent
years [Bimberg, Grundmann, and Ledentsov
(1998); Stangl, Holy, and Bauer (2004); Jalabert,
Coraux, Renevier, and Daudin (2005); Ferdous
and Haque (2007)] where semiconductor quan-
tum dots (QDs), nanowires and nanorods have
been intensively investigated [Leonard, Krishna-
murthy, Reaves, Denbaars, and Petroff (1993);
Gosling and Willis (1995); Baxter and Aydil
(2005)]. Self-assembled quantum dots have
been of particular interest because of their three-
dimensional (3D) confinement of charge carriers
and excitons, and hence their potential in nano-
scale electronic devices [Petroff (2003); Friedman
(2007); Levine, Golovin, and Davis (2007)].

It is well known that the elastic fields produced by
QDs substantially influence surface feature for-
mations that consequently affect the electronic
band structure. As either a detector or emitter of
electromagnetic signals, the bandgap energy de-
termines the operational wavelength in say, the
photovoltaic mode, of the semiconductor element.
Hence, the elastic fields induced by QDs have
to be studied in order to obtain a well ordered
QD structure. To analyze the elastic fields in
and around the QDs and other quantum struc-
tures, several methods have been proposed, such
as the finite element and finite difference methods
[Grundmann, Stier, and Bimberg (1995); Ben-
abblas (1996); Matagne, Leburton, Destine, and
Cantraine (2000); Liu and Quek (2002); Pei, Lu,
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and Wang (2003); Jonsdottir, Halldorsson, Beltz,
and Romanov (2006)], atomistic modeling [Pryor,
Kim, Wang, Williamson, and Zunger (1998); Cal-
ifano and Harrison (2000); Kikuchi, Sugii, and
Shintani (2001); Makeev and Madhukar (2001)],
and analytical approaches [Jogai (2000); Glas
(2001); Pan and Jiang (2004); Zhang and Sharma
(2005)]. In particular, the Green’s function solu-
tions have been proposed and applied to QD stud-
ies [Pan and Yang (2001)]. Because of their accu-
racy and efficiency, the analytical methods, partic-
ularly the Green’s function method, are arguably
more appealing to experimentalists and physical
device designers in the studies of QD structures
[Andreev, Downes, Faux, and O’Reilly (1999);
Pearson and Faux (2000)]. There are also other
multiscale approaches which can be employed to
the QD modeling [e.g., Ghoniem and Cho (2002);
Ma, Liu, Lu, and Komanduri (2006); Ma, Lu,
Wang, Hornung, Wissink, and Komanduri (2006);
Orsini, Power, and Morvan (2008)]. More re-
cently, the multiscale Green’s functions have been
also introduced to model QD- or other defects-
induced strain field [Tewary (2004); Tewary and
Read (2004); Yang and Tewary (2005); Yang and
Tewary (2006); Read and Tewary (2007)], which
have been shown to be computationally efficient.
However, while the lattice Green’s functions have
been well-developed so far, the corresponding
continuum Green’s functions still require further
study, particularly when considering semiconduc-
tor anisotropy.

In this paper, we present an analytical method for
the QD-induced strain field in half-space semi-
conductor substrates under the assumption of con-
tinuum elasticity. We point out that, under the
epitaxial growth, the misfit strain within the QD
could be gradient, instead of uniform distribution
[Malachia, Kycia, Medeiros-Ribeiro, Magalhaes-
Paniago, Kamins, and Williams (2003)], and as
such, the material property in the QD could be
difficult to calibrate [Zhu, Pan, Chung, Cai, Liew
and Buldum (2006)]. Thus, the simplified well-
known inclusion model will be adopted in this
paper. It was verified recently that the inclu-
sion model could predict slightly different results
as compared to the inhomogeneity model using

the bulk property of the QD (about 10% within
the strained quantum structures, see, e.g., [Yang
and Pan (2002); Pan, Han, and Albrecht (2005)]).
Under these assumptions, we derive our solution
based on the Green’s function method in terms of
the Stroh formalism with the corresponding exact
integration of the Green’s functions over the QD
surface (composed of piece-wise flat triangles).
This paper is organized as follows: In section 2,
the strained QD system is described. In section 3,
the surface of the QD is approximated by a num-
ber of flat triangles over which the area integration
is carried out exactly so that the induced elastic
fields can be expressed in terms of a simple line
integral over [0,π]. If the QD is a point source,
then the QD-induced elastic fields can be analyt-
ically expressed by the point-force Green’s func-
tions in the half-space. In section 4, numerical
examples are carried out for buried cubic, pyra-
midal, truncated pyramidal, and point QDs in the
GaAs half-space substrate with different growth
orientations. The effects of the QD shape and
depth on the strain energy are discussed. Conclu-
sions are drawn in section 5.

2 Problem Description and Boundary Inte-
gral Expressions of the Misfit-strain In-
duced Elastic Field in Anisotropic Semi-
conductors

We assume that the QD and its substrate are both
linear elastic. Therefore, the governing equa-
tions for the QD semiconductor system can be de-
scribed by

σi j,i + f j = 0 (1)

σi j = Ci jklγkl (2)

γi j =
1
2
(ui, j + u j,i) (3)

whereui, σi j andγi j are the displacement, stress
and strain, respectively,Ci jlm the elastic stiffness
tensor, andf j the body force.

The lattice mismatch between the dot and the sub-
strate manifests itself through a misfit strainγ∗i j
inside the QD. The constitutive equation (2) is
therefore modified as

σi j = Ci jkl(γkl − γ∗kl) (4)
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Substitution of (4) into the equilibrium equation
(1) leads to

Ci jkluk,li = Ci jklγ∗kl,i (5)

The right-hand side of Eq. (5), defined as

f j = −Ci jklγ∗kl,i (6)

is the equivalent body force of the misfit-strain or
eigenstrainγ∗i j within the QD domain.

We now assume that the 3D point-force Green’s
functions are given for the half-space substrate,
then for the general eigenstrainγ∗i j at xxx =
(x1,x2,x3) within the QD domainV , the induced
displacement atddd = (d1,d2,d3) can be found us-
ing the method of superposition. That is, the re-
sponse is an integral, overV , of the equivalent
body force defined by (6), multiplied by the point-
force Green’s functions, as

uk(ddd) = −
∫

V

U k
j (xxx;ddd)[Ci jlmγ∗lm(xxx)],idV (xxx) (7)

where U k
j (xxx;ddd) is the j-th Green’s elastic dis-

placement atxxx due to a point force in thek-th di-
rection applied atddd.

Integrating by parts and noting that the eigenstrain
is nonzero only in the QD domainV , Eq. (7) can
be expressed alternatively as

uk(ddd) =
∫

V

U k
j,xi

(xxx;ddd)Ci jlmγ∗lm(xxx)dV (xxx) (8)

If we further assume that the eigenstrain is con-
stant within the QD domainV , then the domain
integration can be transformed to the boundary in-
tegration. That is

uk(ddd) = Ci jlmγ∗lm
∫

∂V

U k
j (xxx;ddd)ni(xxx)dS(xxx) (9)

whereni(xxx) is the outward normal on the bound-
ary ∂V of the QD.

In order to find the elastic strain, we take the
derivatives of Eq. (9) with respect to the obser-
vation pointddd (i.e., the source point of the point-
force Green’s function), which yields (k, p=1,2,3)

γkp(ddd) =
1
2

γ∗lmCi jlm

∫

∂V

[

U k
j,dp

(xxx;ddd)+U p
j,dk

(xxx;ddd)
]

ni(xxx)dS(xxx) (10)

The stresses inside the QD are obtained from Eq.
(4), and outside from Eq. (2).

It is obvious that in order to solve the QD-induced
elastic field, the key is to carry out the surface
integration involved in (9) and (10). This re-
quires the integral of the corresponding half-space
Green’s functions, which is discussed below.

3 Analytical Integration of the Half-space
Green’s Function over a Flat Triangle

We assume that the boundary of the QD can be ap-
proximated by a number of flat triangles. We want
to analytically integrate the half-space Green’s
functions over one of the flat triangles. To do
so, we first briefly review the half-space Green’s
functions in general anisotropic semiconductors.

The half-space point-force Green’s function with
source point atddd and field point atxxx can be ex-
pressed as a sum of an explicit infinite-space so-
lution and a complementary part in terms of a line
integral over [0,π] [Pan ( 2002)]

UUU(xxx;ddd) =UUU∞(xxx;ddd)+
1

2π2

∫ π

0
AAAGGG1AAA

T dθ (11)

where the overbar means complex conjugate, su-
perscriptT denotes matrix transpose, and

(GGG1)i j =

(BBB
−1

BBB)i j

−pix3+p jd3−[(x1−d1)cosθ+(x2−d2)sinθ ]

(12)

We point out that, on the right-hand side of Eq.
(11), the first term corresponds to the Green’s dis-
placement tensor in an anisotropic infinite space.
Its integration over a flat triangle was presented
by Wanget al. [Wang, Denda, and Pan (2006)].
Also in Eqs. (11) and (12), the Stroh eigenvalues
p j, and eigenmatricesAAA andBBB are all functions
of θ , as well as the elastic stiffness tensor of the
semiconductor materials.

In order to find the misfit strain-induced elastic
fields, we also need the derivatives of the Green’s
displacement tensor with respect to the field point
(x1,x2,x3) of the Green’s function [Pan (1999)].
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They are found to be (j=1, 2, 3)

∂UUU(xxx;ddd)

∂x j
=

∂UUU∞(xxx;ddd)

∂x j
−

1
2π2

∫ π

0
AAAGGG2

〈

g j
〉

AAAT dθ

(13)

where

(GGG2)i j =

(BBB
−1

BBB)i j

{−pix3+p jd3−[(x1−d1)cosθ+(x2−d2)sinθ]}2

(14)

〈g1〉 = diag[cosθ ,cosθ ,cosθ ]

〈g2〉 = diag[sinθ ,sinθ ,sinθ ]

〈g3〉 = diag[p1, p2, p3]

(15)

Again, since the integration on a flat triangle has
already been presented for the infinite part of the
half-space Green’s function [Wang, Denda, and
Pan (2006)], we only need to present the inte-
gration of the complementary part of the Green’s
function, i.e., the integration of the second term
on the right-hand side of Eq. (13).

We consider first the integration of the Green’s
displacement tensor. Again, we assume that the
QD surface can be effectively approximated by a
number of flat triangles. Therefore, the integral
expression of Eq. (9) over a flat triangle,∆, is

uk(ddd) = Ci jlmγ∗lmni

∫

∆

U k
j (xxx;ddd)dA(xxx) (16)

whereni is the outward normal to the flat triangle
∆. Substituting Eq. (11) into (16) and changing
the integration orders, the contribution from the
complementary part can be expressed as

uk(ddd) =
1

2π2Ci jlmγ∗lmni

∫ π

0
AAA





∫

∆

GGG1d∆(xxx)



AAAT dθ

(17)

While the outside line integration can be easily
carried out by employing Gaussian quadrature,
we discuss the area integration over the flat tri-
angle, which can be done analytically as will be
shown below. Actually, since in the expression

for GGG1 in Eq. (12), its numerator is a function ofθ
only, the integration over the flat triangle∆ needs
to be carried out for the following expression only

F1(d j,θ) =
∫

∆

d∆(xxx)
−pix3+p jd3−[(x1−d1)cosθ+(x2−d2)sinθ ]

(18)

Similarly, in order to find the QD-induced strain
field, (Eqs. (10) and (13)), one needs only to carry
out the following area integration over the flat tri-
angle.

F2(d j,θ) =
∫

∆

d∆(xxx)
{−pix3+p jd3−[(x1−d1)cosθ+(x2−d2)sinθ]}2

(19)

We now carry out the area integration over a flat
triangle in Eqs. (18) and (19) exactly. To do
so, we introduce the following transformation be-
tween the global coordinate systemxxx (x1,x2,x3)
and local coordinate systemξ (ξ1, ξ2, ξ3) associ-
ated with the flat triangle (Fig. 1)




x1− x01

x2− x02

x3− x03



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









ξ1

ξ2

ξ3



 (20)

Then, the integration becomes (n=1,2)

Fn(d j,θ) =

h
∫

0

dξ2

l2−l2ξ2/h
∫

−l1+l1ξ2/h

dξ1

1
[ f1(d j,θ)ξ1 + f2(d j,θ)ξ2 + f3(d j,θ)]n

(21)

where

f1(d j,θ) = −(pia31+ a11cosθ + a21sinθ) (22)

f2(d j,θ) = −(pia32+ a12cosθ + a22sinθ) (23)

f3(d j,θ) =− pi(x03+ a33ξ3)+ p jd3 + d1cosθ
+ d2 sinθ − (x01+ a13ξ3)cosθ
− (x02+ a23ξ3)sinθ
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Table 1: Maximum strain energyEmax on the surface of the substrate GaAs (with orientations (001) and
(111)) for different QD shapes with different depths (unit of energy=118.8×1015Nm).

Depth Orientation/Location Cubic Truncated pyramid Pyramid

d=1nm
(001)

Emax 2.54 2.93 2.71
(x, y) (±1,±1) (±1,±1) (0,0)

(111)
Emax 2.55 2.75 2.05
(x, y) (1,0) (1,0) (0,0)

d=2nm
(001)

Emax 1.77 1.99 0.96
(x, y) (0,0) (0,0) (0,0)

(111)
Emax 1.31 1.34 0.75
(x, y) (0,0) (0,0) (0,0)

d=3nm
(001)

Emax 1.03 1.09 0.41
(x, y) (0,0) (0,0) (0,0)

(111)
Emax 0.70 0.70 0.36
(x, y) (0,0) (0,0) (0,0)

(24)

The integration can now be carried out, and the
results are

F1(d j,θ) =
1
f1

[

f1l2 + f3
f2− f1l2/h

ln

(

f2h+ f3
f1l2 + f3

)

−
− f1l1 + f3
f2 + f1l1/h

ln

(

f2h+ f3
− f1l1 + f3

)]

(25)

F2(d j,θ) =
1
f1

[

1
f2 + f1l1/h

ln

(

f2h+ f3
− f1l1 + f3

)

−
1

f2− f1l2/h
ln

(

f2h+ f3
f1l2 + f3

)]

(26)

With these exact expressions, the QD-induced
displacement and strain fields can be finally ex-
pressed in terms of the line integration over [0,
π] (e.g., Eq. (17) for the induced displacements).
Again, the line integration can be carried out nu-
merically using 8-point Gaussian quadrature.

4 Numerical Examples

We now apply our analytical solutions to calculate
the strain energy induced by a buried QD within
the GaAs half-space substrate. The surface of the
substrate is traction free. The QD is located at a
depthd below the surface (Fig. 2) and the misfit
strain is hydrostatic, i.e.,γ∗xx = γ∗yy = γ∗zz = 0.07.
We point out that this misfit strain is relatively

large and the corresponding nonlinear influence
will be pursued in the future using other methods,
such as the multiscale meshless method [Shen and
Atluri (2004)]. As for the QD shape, we assume
it to be either cubic, pyramidal, truncated pyrami-
dal, or point type. The QDs have the same height
h (=4nm, except for the point QD). To make all
the QDs (including the point QD) the same vol-
ume, we have the base length 2.155h for cubic
QD, upper length 1.79h and lower length 2.5h
for truncated pyramid QD, base length 3.732h for
pyramid QD (Fig.2). The point QD is located at
the middle height of the cubic QD (i.e., its verti-
cal distance to the surface isd + h/2). We study
the effect of the QD shape and depth on the strain
energy on the surface.

Shown in Figs. 3(a)-(d) are, respectively, con-
tours of the normalized strain energy on the sur-
face of GaAs (001) (top row) and GaAs (111)
(bottom row), induced by a buried cubic, trun-
cated pyramidal, pyramidal and point QD. In this
example, the depthd=2nm, heighth=4nm, and
the strain energy is normalized by 118.8×1015Nm
(this normalization factor is also used below for
the strain energy) (Table 1). It is clear that differ-
ent QD shapes (including point QD) induce dif-
ferent strain energy distributions on the surface
of the substrate. Besides the difference on the
contour shape, the strain energy values are also
different. For example, the contours with val-
ues 0.3, 0.6 and 0.9 (corresponding, respectively,
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Figure 1: Geometry of the flat triangle D (with corners 1,2,3), and transformation from the global (x1, x2,
x3) to local (ξ1, ξ2, ξ3) coordinates whereξ3 is along the outward normal direction of the flat triangle.

(a) (b) (c) (d)

Figure 2: Geometry for (a) a cubic QD, (b) a truncated pyramidQD, (c) a pyramid QD, and (d) a point QD.
Top row is the 3D view and bottom row is the vertical x-z plan view. All these QDs have the same volume.

Figure 3: Normalized strain energy on the surface of the half-space substrate of GaAs (001) (top row) and
GaAs (111) (bottom row) induced by (a) a cubic, (b) a truncated pyramid, (c) a pyramid, and (d) a point
QD, where the heavy blue, red and black lines correspond to the normalized strain energy values of 0.3, 0.6
and 0.9 respectively. The QD is embedded within the substrate with its top side at depth d=2nm from the
surface.
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Figure 4: Geometry of a cubic QD within a half-space substrate with different depthd: the vertical x-z plan
view (top row), and the strain energy induced by the cubic QD in substrate GaAs (001) (middle row) and
GaAs (111) (bottom row): (a)d=1, (b)d=2, and (c)d=3. The heavy blue, red and black lines correspond to
the normalized strain energy values of 0.3, 0.6 and 0.9, respectively.

Figure 5: Geometry of a truncated pyramid QD within a half-space substrate with different depthd: the
vertical x-z plan view (top row), and the strain energy induced by the truncated pyramid QD in substrate
GaAs (001) (middle row) and GaAs (111) (bottom row): (a)d=1, (b)d=2, and (c)d=3. The heavy blue, red
and black lines correspond to the normalized strain energy values of 0.3, 0.6 and 0.9, respectively.
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Figure 6: Geometry of a pyramid QD within a half-space substrate with different depthd: the vertical x-z
plan view (top row), and the strain energy induced by the pyramid QD in substrate GaAs (001) (middle row)
and GaAs (111) (bottom row): (a)d=1, (b)d=2, and (c)d=3. The heavy blue, red and black lines correspond
to the normalized strain energy values of 0.3, 0.6 and 0.9, respectively.

to the heavy blue, red and black curves) move
towards the center when the QD shape changes
from left to right (i.e., cubic, truncated pyramid,
and pyramid, except for the point QD which has a
much large strain energy magnitude as compared
to other finite-size QDs). Table 1 lists the maxi-
mum strain energy values corresponding to differ-
ent QD shapes at different depths within the GaAs
substrate with both (001) and (111) orientations.
It is clear, from Table 1, that while the induced
maximum strain energy value decreases with in-
creasing depth, its value on the substrate GaAs
(001) is always larger than that on the correspond-
ing inclined substrate GaAs (111). Furthermore,
the effect of the QD shapes (cubic, truncated pyra-
mid, pyramid, and point QD) on the strain energy
is complicated, as can be seen from Figs. 3(a)-(d).
Also from Figs. 3(a)-(d), it is observed, by com-
paring the top row to the bottom row, that the con-
tour shapes of the strain energy over GaAs (001)
are sharply different to those over GaAs (111).

We now study the effect of QD depth on the strain
energy distribution on the surface where the maxi-
mum strain energy values for different QD depths
are listed in Table 1. The top row of Fig. 4 shows
the depths of the cubic QD within the substrate
with d=1nm, 2nm, and 3nm, whilst the strain en-
ergy distributions on the surface of GaAs (001)
and (111) are shown, respectively, in the middle
and bottom rows. Again, the heavy blue, red and
black contour lines correspond, respectively, to
the strain energy values of 0.3, 0.6, and 0.9. It is
apparent from Fig. 4 that as the QD moves away
from the surface, the strain energy contour shape
approaches to those due to a point QD with equal
volume.

Similar numerical results are shown in Figs. 5 and
6, respectively, for the truncated pyramidal and
pyramidal QDs. While the strain energy distribu-
tions induced by the pyramidal QD are similar to
those by an equivalent-volume QD, those by cubic
and truncated pyramidal QD are different. These
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again demonstrate the effect of the QD shape and
depth on the misfit-lattice induced strain energy in
the QD system.

5 Conclusions

In this paper, we presented an analytical method
for calculating the QD-induced strain energy
fields in half-space semiconductor substrates. The
QD is assumed to be of any polyhedral shape
which can be efficiently approximated by a num-
ber of flat triangles. We studied cubic, pyrami-
dal, truncated pyramidal and point QDs within
the GaAs (001) and GaAs (111) half-space sub-
strates. Numerical results illustrate that the shape
of the QDs has apparent influence on the strain
energy distribution on the surface, so is the depth
of the QDs. These results should be interesting to
the overgrowth of QDs on the substrate where the
long-range strain energy on the surface plays an
important role in controlling the new QD shapes
and patterns.
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