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Abstract

In this paper, we propose a bimaterial boundary element method (BEM) for the calculation of the strain energy density and the relative

strain energy in quantum wire (QWR) nanostructures. We first derive the bimaterial Green’s functions in terms of the Stroh formalism.

We then discretize the boundary of the problem with constant elements for which the involved Green’s function kernels can be exactly

integrated. Our bimaterial BEM program is finally applied to calculate the strain energy density and relative strain energy in free-

standing/embedded InAs QWR on/in GaAs substrate. For a square InAs (1 1 1) QWR, it is found that the magnitude of the relative

strain energy increases with increasing depth of the QWR with respect to the surface of the GaAs (1 1 1) substrate. For an isosceles

triangle of InAs (1 1 1) QWR free-standing on the surface of the GaAs (1 1 1) substrate, we found that the magnitude of the relative strain

energy increases with increasing base angle of the triangle QWR. Strain energy density inside the InAs QWR is also plotted to show its

strong dependence on the QWR shape. These results could be useful to the control of the QWR shape and size in epitaxial growth

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantum wire (QWR) semiconductor nanostructures
and their quantum-mechanical properties have been the
subjects of intensive study during the past decade [1,2].
Ross et al. studied the quantum dots (QDs) coarsening
in the presence of a shape transition [3]. Medeiros-Ribeiro
et al. also investigated the shape transition of the Ge
nanocrystals on Si (0 0 1) surface from pyramids to domes.
Daruka et al. further analyzed the equilibrium shape of
strained islands and showed that the QWR shape varies
with its size [4]. Analytical approaches have been proposed
for the strain and electric field analyses in QWRs
embedded semiconductor substrates, e.g. [5]. It has been
shown more recently that Green’s functions and boundary
element methods (BEMs) possess various advantages over

the domain-discretization methods [6,7]. However, for the
free-standing QWR case and particularly for a QWR
within a bimaterial substrate, the corresponding bimaterial
BEM is required. Even though the free-standing QWR case
could also be analyzed by a BEM formulation based on the
half-plane Green’s function, the bimaterial approach offers
more generality and flexibility.
Two-dimensional (2D) BEM is very convenient in

analyzing stress and fracture problems in bimaterial solids.
The bimaterial Green’s functions in transversely isotropic
piezoelectric solids [8], anisotropic elastic [9] and piezo-
electric bodies [10–12], and in magnetoelectroelastic solids
[13] were studied and applied to different mechanical and
piezoelectric problems. We remark that these Green’s
functions were presented in the Lekhnitskii formalism
(e.g., [9]). Applications of the 2D BEM also include the
determination of stress intensity factors for interfacial rigid
line inclusion [14], symmetric BEM formulation for
cohesive interface problem [15], and analysis of collinear
interfacial cracks interaction [16]. Another extended studies
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include thermomechanical closure of interfacial cracks [17],
fracture problems in magnetoelectroelastic composites [18],
and dynamic fracture problems involving bimaterial solids
[19–21].

In this paper, we develop the anisotropic bimaterial
Green’s functions in terms of the efficient and powerful
Stroh formalism [22] and the corresponding BEM program
for the analysis of the strain energy density and the relative
strain energy for a QWR free-standing on or embedded in
an anisotropic semiconductor substrate. To treat the misfit
lattice eigenstrain within the QWR, we first convert the
associated area integral to a line integral along the interface
of the QWR and its substrate. Then we discretize the
boundary with constant elements so that the involved
kernel integration can be carried out in an exact closed
form, which is solved for the boundary (interface) values.
The induced elastic field inside and outside the QWR can
be obtained using the solved interface values. We remark
that in order to apply our bimaterial program to the free-
standing QWR case, we only need to assume that the
material stiffness in the upper half-plane is much smaller
than that in the lower half-plane substrate.

Our bimaterial BEM program is first tested against
various existing results. It is then applied to calculate the
strain energy density and the relative strain energy in the
InAs (1 1 1) QWR which is free-standing on or embedded
in the GaAs substrate. Our numerical results show that, for
the case of an isosceles triangle QWR on the substrate, the
strain energy density within the QWR strongly depends on
the base angle of the triangle. We also observe that the
magnitude of the relative strain energy for this case
increases with increasing side angle. For a square QWR
either free-standing on or embedded in the substrate, we
found that the magnitude of the relative strain energy
increases with increasing depth of the QWR to the
substrate surface. Our numerical examples demonstrate
the significant influence of the QWR shape and the
QWR location on both the strain energy density and
the relative strain energy in the QWR, which should be
particularly useful to the successful growth of QWRs via
epitaxial approach.

This paper is organized as follows: In Section 2, the basic
equations are presented. In Section 3, the boundary
integral equation and the required four sets of
Green’s functions for the bimaterial matrix are presented,
including also the formulation of elastic strain energy
density and the relative strain energy. Numerical examples
are presented in Section 4, and conclusions are drawn in
Section 5.

2. Problem description

We assume that there is a QWR of arbitrary shape
within a bimaterial substrate. A uniform eigenstrain g�ij field
is applied inside the QWR as shown in Fig. 1. The elastic
moduli in the QWR, material 1, and material 2 are
denoted, respectively, as cw

ijkl , c1ijkl , and c2ijkl .

In each domain, the constitutive relation can be written as

sij ¼ Cijklgkl , (1)

where gij is the strain, sij the stress, and Cijkl the elastic
stiffness.
The strain–displacement relation for small deformation is

gij ¼ 0:5ðui;j þ uj;iÞ, (2)

where ui is the elastic displacement.
The total strain can be written as

gij ¼ ge
ij þ g�ij, (3)

where ge
ij is the strain as shown in the constitutive relation.

Substituting (3) into (1), we have

sij ¼ Cijklðgkl � wg�klÞ, (4)

where w is equal to 1 if the field point is within the QWR
domain V and to 0 otherwise (Fig. 1).
Therefore, substituting Eq. (4) into the equilibrium

equation of zero body force

sij;i ¼ 0 (5)

results in

Cijkluk;li � wCw
ijklg
�
kl;i ¼ 0, (6)

where the second term in Eq. (6) is the equivalent body
force of the eigenstrain in the QWR domain defined as
[23,24]

f
ðwÞ
j ¼ �Cw

ijklg
�
kl;i. (7)

3. Boundary integral equations and bimaterial Green’s

functions

3.1. Boundary integral equations

The boundary integral formulation can be expressed as

bijðXÞu
ðmÞ
j ðXÞ ¼

Z
G
½U
ðmÞ
ij ðX ; xÞt

ðmÞ
j ðxÞ

� T
ðmÞ
ij ðX ;xÞu

ðmÞ
j ðxÞ�dGðxÞ ð8Þ

for the matrix (or substrate), and

bijðXÞu
ðwÞ
j ðXÞ ¼

Z
G
fU
ðwÞ
ij ðX ;xÞ½t

ðwÞ
j ðxÞ þ t

ðfwÞ
j ðxÞ�

� T
ðwÞ
ij ðX ;xÞu

ðwÞ
j ðxÞgdGðxÞ ð9Þ
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Fig. 1. A general QWR within a bimaterial substrate: an eigenstrain g�ij is
applied to the QWR which is an arbitrarily shaped polygon.
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for the QWR. The superscripts ðmÞ and ðwÞ denote the
quantities with respect to the matrix (substrate) and QWR,
respectively. In Eqs. (8) and (9), X and x stand for the
source and field points, respectively, Uij and Tij are the
displacement and traction Green’s functions, respectively.
ui and ti are the displacement and traction components
along the boundary. The coefficient bij is equal to dij if the
source point X is an interior point and dij=2 if X is at a
smooth boundary. t

ðfwÞ
j is the traction associated with the

misfit eigenstrain inside the QWR, obtained from Eq. (7),
as t

ðfwÞ
j ¼ �Cw

ijklg
�
klni, with ni being the outward normal of

the boundary.
We now divide the boundary into N constant elements,

resulting in the discretized boundary integral equations

biju
ðmÞ
j þ

XN

n¼1

Z
Gn

T
ðmÞ
ij dG

� �
ujn ¼

XN

n¼1

Z
Gn

U
ðmÞ
ij dG

� �
tjn (10)

for the matrix (substrate), and

biju
ðwÞ
j þ

XN

n¼1

Z
Gn

T
ðwÞ
ij dG

� �
ujn

¼
XN

n¼1

Z
Gn

U
ðwÞ
ij dG

� �
ðtjn þ C

ðwÞ
ijklg
�
klnjÞ ð11Þ

for the QWR. In Eqs. (10) and (11), ujn and tjn are the
center values on the nth element.

3.2. Bimaterial Green’s functions

It is noted that in order to solve the discretized boundary
integral equations (10) and (11), the involved Green’s
functions Uij and Tij and their integrations on each
element are required. These are presented below.

In the boundary integral equation (11) for the QWR
domain, only the full-plane Green’s functions are required,
which can be expressed as [25]

UjkðX ; xÞ ¼
1

p
ImfAjr lnðzr � srÞAkrg (12)

for the displacement, and

TjkðX ;xÞ ¼ �
1

p
Im Bjr

prn1 � n3

zr � sr

Akr

� �
(13)

for the traction. In Eqs. (12) and (13), n1 and n3 are the
outward normal components at point x, and the complex
variables zr and sr ðr ¼ 1; 2; 3Þ are defined by

zr ¼ xþ prz (14)

and

sr ¼ X þ prZ. (15)

In Eqs. (14) and (15), pr ðr ¼ 1; 2; 3Þ are the eigenvalues of
the QWR material, which are related to the elastic moduli
only, and A and B are the corresponding eigenmatrices
[22,25].

For the matrix domain (i.e., the bimaterial substrate),
due to the relative locations of the source and field points,

there are four sets of Green’s functions. Again, these
Green’s functions were derived in terms of the Lekhnitskii
formalism, e.g., by Pan [10]. However, the Stroh formalism
is more convenient and efficient [22]. Therefore, we first
present these bimaterial Green’s functions in the Stroh
formalism. We refer to Fig. 1 where materials 1 and 2
occupy the half-plane z40 and zo0, respectively.
First, let the source point X ¼ ðX ;ZÞ be in material 1
ðz40Þ. Then, if the field point x ¼ ðx; zÞ is in the z40 half-
plane, the displacement and traction Green’s functions can
be expressed as

U1
kj ¼

1

p
Im A1

jr lnðzr � srÞA
1
kr þ

X3
v¼1

½A1
jr lnðzr � svÞQ

11;v
rk �

( )
,

(16)

T1
kj ¼ �

1

p
Im B1

jr

p1
r n1 � n3

zr � sr

A1
kr þ

X3
v¼1

B1
jr

p1
r n1 � n3

zr � sv

Q11;v
rk

� �( )
.

(17)

On the other hand, if the field point is in the zo0 half-
plane, then

U2
kj ¼

1

p
Im
X3
v¼1

½A2
jr lnðzr � svÞQ

12;v
rk �, (18)

T2
kj ¼ �

1

p
Im
X3
v¼1

B2
jr

p2
r n1 � n3

zr � sv

Q12;v
rk

� �
. (19)

Now, let the source point ðX ;ZÞ be in material 2 ðzo0Þ.
Then, if the field point ðx; zÞ is in the z40 half-plane,
we have

U1
kj ¼

1

p
Im
X3
v¼1

½A1
jr lnðzr � svÞQ

21;v
rk �, (20)

T1
kj ¼ �

1

p
Im
X3
v¼1

B1
jr

p1
r n1 � n3

zr � sv

Q21;v
rk

� �
. (21)

On the other hand, if the field point is in the zo0 half-
plane,

U2
kj ¼

1

p
Im A2

jr lnðzr � srÞA
2
kr þ

X3
v¼1

½A2
jr lnðzr � svÞQ

22;v
rk �

( )
,

(22)

T2
kj ¼ �

1

p
Im B2

jr

p2
r n1 � n3

zr � sr

A2
kr þ

X3
v¼1

B2
jr

p2
r n1 � n3

zr � sv

Q22;v
rk

� �( )
.

(23)

In Eqs. (16)–(23), the superscript 1 or 2 to p, A, and B,
denotes that these eigenvalues and the corresponding
eigenmatrices belong to material 1 or 2. The matrix Q
depends on the relative locations of the source and field
points, and its expression is given in Appendix A.
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3.3. Integration of infinite-plane and bimaterial Green’s

functions

In order to carry out the line integral of the involved
Green’s functions over each constant element (e.g., along
the nth element GnÞ, we let the generic element start from
point 1 ðx1; z1Þ and end at point 2 ðx2; z2Þ, with length

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ

2
þ ðz2 � z1Þ

2
q

. Then, the integration of the

involved Green’s displacements and tractions (only the
integral variable-dependent function) for the QWR (which
requires only the infinite-plane Green’s functions) can be
expressed as

hrðx; zÞ ¼

Z
Gn

lnðzr � srÞdGn

¼ l
ðx1 þ prz1Þ � sr

ðx2 � x1Þ þ prðz2 � z1Þ
ln
ðx2 þ prz2Þ � sr

ðx1 þ prz1Þ � sr

� ��
þ lnðx2 þ prz2 � srÞ � 1

	
, ð24Þ

grðx; zÞ ¼

Z
Gn

1

zr � sr

dGn

¼ l
1

ðx2 � x1Þ þ prðz2 � z1Þ
ln

x2 þ prz2 � sr

x1 þ prz1 � sr

� �� �
.

ð25Þ

We point out that similar expressions can be found for
the integration of the bimaterial Green’s functions in the
substrate.

3.4. Derivatives of infinite-plane and bimaterial Green’s

functions

In order to obtain the strain and stress fields, we also
need to take the derivative of Green’s displacement and
traction with respect to the source point, and then find the
corresponding integration. The integration of the involved
Green’s function derivatives for the QWR domain can be
written as

hr;x ¼

Z
Gn

q lnðzr � srÞ

qx
dGn

¼ �
l

ðx2 � x1Þ þ prðz2 � z1Þ
ln

x2 þ prz2 � sr

x1 þ prz1 � sr

� �
, ð26Þ

hr;z ¼ prhr;x, (27)

gr;x ¼

Z
Gn

q
qx

1

zr � sr

dGn

¼
l

ðx2 � x1Þ þ prðz2 � z1Þ

� �
1

x2 þ prz2 � sr

þ
1

x1 þ prz1 � sr

� �
, ð28Þ

gr;z ¼ prgr;x. (29)

Again, similar expressions can be found for the corre-
sponding bimaterial substrate.

3.5. Strain energy density and relative strain energy

During growth of QWR nanostructures, strain energy in
the QWR plays an important role. Therefore, its calcula-
tion and prediction are of great interest. Following [23], the
strain energy in the QWR can be expressed as

W ¼
1

2

Z
V

sijðgij � g�ijÞdV . (30)

We remark that the integrand 1
2
sijðgij � g�ijÞ is the strain

energy density within the QWR, which will be also
calculated and studied.
Applying the Gauss divergence theorem and assuming

that the eigenstrain is uniform inside the QWR, the total
elastic strain energy of QWR in Eq. (30) can be expressed
alternatively as

W ¼
1

2

Z
G

tiui dG�
1

2

Z
G

t
ðfwÞ
k uk dGþ

1

2

Z
V

Cijklg�ijg
�
kl dV ,

(31)

where G is the boundary of QWR. While the first boundary
integration on the right-hand side of Eq. (31) represents the
work done by the traction acting on the boundary, the
second boundary integration represents the work done by
the traction associated with the eigenstrain as we recall that
t
ðfwÞ
k ¼ Cijklg�ijnl . The last volumetric integration corre-
sponds to the initial constant strain energy of the
eigenstrain field, i.e., the constant strain energy in the
wetting layer (i.e., the thin layer covers the substrate) due
to the misfit strain [26].
In QWR growth, one of the important parameters is the

relative strain energy L (e.g., [26,27]). Namely, the ratio of
the strain energy change relative to the constant strain
energy in the wetting layer due to the misfit strain over the
constant strain energy, as defined below

L �
W �

1

2

R
V

Cijklg�ijg
�
kl dV

1

2

R
V

Cijklg�ijg
�
kl dV

¼

1

2

R
G tiui dG�

1

2

R
G t
ðfwÞ
k uk dG

1

2

R
V

Cijklg�ijg
�
kl dV

, ð32Þ

where L is also called the relative strain energy, which will
be numerically examined in the next section. We remark
that while various energetic parameters were introduced for
characterizing defect dynamics [28], this relative strain
energy has been successfully applied in the prediction of
new QWR formation and QWR array patterns under the
Stranski–Krastanow growth mode [26,27,29].

4. Numerical examples

Before applying our solution to examine the strain
energy in QWR system, we have first checked our program
for the reduced cases with existing solutions [24]. We found
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that our solution can be reduced exactly to the existing
exact closed-form results [24]. Other numerical tests have
also been carried out, all showing that our solution and
program are correct. Therefore, after validation, we now
apply our solution to calculate the relative strain energy
and the distribution of the strain energy density. We
remark that while our BEM formulation can be applied to

more complicated situations, here we only study the
reduced case where the QWR is free-standing on or
embedded in the half-plane substrate. The half-plane
model is reduced from our bimaterial result by setting the
upper half-plane ðz40Þ with very low material stiffness as
compared to the lower half-plane substrate. (The material
stiffness in the upper half-space is equal to 10�10 times the
material stiffness in the lower half-space.)

4.1. Variation of relative strain energy with QWR depth

We first apply our bimaterial BEM program to study the
problem where a square InAs (1 1 1) QWR growing on a
GaAs (1 1 1) substrate (Fig. 2). The material properties of
InAs and GaAs in the (1 1 1)-direction are obtained by
coordinate transform from those in the (0 0 1)-directions
[30]. The QWR has a dimension of 20 nm� 20 nm and a
uniform misfit strain field g�xx ¼ g�yy ¼ g�zz ¼ 0:07. The
boundary condition on the surface of the substrate is
assumed to be traction-free. While a total free-standing

ARTICLE IN PRESS
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Fig. 2. Geometry of a square InAs QWR on or inside the GaAs substrate.

Shown in (a) to (c) are the three special cases: namely, totally free-standing

(a), half free-standing (half-in and half-out in (b)), and fully embedded (c).
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Table 1

Variation of relative strain energy with base angle of the isosceles triangle

of InAs (1 1 1) QWR, which is free-standing on the GaAs (1 1 1) substrate

Base angle (1) Relative strain energy

30 �5:88E� 03

37 �6:91E� 03

45 �7:90E� 03

52 �8:70E� 03

60 �9:76E� 03

67 �1:11E� 02

75 �1:43E� 02
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R
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-0.012

-0.014
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Fig. 4. Variation of relative strain energy with base angle of isosceles

triangle of InAs (1 1 1) QWR, which is free-standing on the GaAs (1 1 1)

substrate.
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QWR on the substrate is illustrated in Fig. 2(a), a fully
embedded QWR is shown in Fig. 2(c). We let d be the
depth of the QWR, measured from the bottom side of
the QWR to the surface of substrate (Fig. 2(b)). We then
calculate the relative strain energy (i.e., Eq. (32)) of
the QWR as a function of depth d, varying from �10 nm
(Fig. 2(a)) to 70 nm, at the interval of 5 nm. Fig. 3 shows
clearly that with increasing depth d, the magnitude of the
relative strain energy increases, reaching the value when the
QWR is within an infinite substrate ð¼ �0:19Þ. In other
words, bringing an embedded QWR to the surface will
decrease the relative strain energy. This is true since with
increasing surface area of the QWR to the air, more surface
energy will be released, resulting in small relative strain
energy. This important feature could represent the
competition between the surface and bulk energies, i.e.
[31,32], and should be particularly interesting to epitaxial
growth.

4.2. Effect of QWR shape on relative strain energy and

distribution of strain energy density

We assume now that there is an isosceles triangle of InAs
(1 1 1) QWR, free-standing on the GaAs (1 1 1) substrate.
The base angle of the triangle varies from 301 to 751 while
the area of triangle maintains the same. The misfit strain is
again uniform, i.e. g�xx ¼ g�yy ¼ g�zz ¼ 0:07. The boundary
condition on the surface of the substrate is traction-free.
Both the relative strain energy and strain energy density in
the QWR are investigated.
The relative strain energy for the triangular QWR with

different base angles are listed in Table 1and its variation
with the base angle are also shown in Fig. 4. It is observed
that the magnitude of the relative strain energy increases
with increasing base angle of the QWR triangle. In other
words, the steeper the QWR is, the larger the magnitude of
the relative strain energy becomes.
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The contours of the strain energy density for these free-
standing triangular QWRs are plotted in Fig. 5. It is clear
that the strain energy density distribution is strongly
influenced by the QWR shape. Particularly at the locations
near the vertex and base corners, the strain energy densities
are quite different among these triangles. We further
observed that the strain energy density near the vertex is
larger than those near the base corners. The magnitude of
strain energy density increases roughly from 2.15 to 2.35
ð109 kg=ms2Þ as the base angle varies from 301 to 751.

5. Conclusions

In the paper, we first derive the bimaterial Green’s
functions in anisotropic elastic media in terms of the
elegant Stroh formalism. The corresponding BEM for-
mulation is then presented. Since the involved Green’s
functions are in exact closed forms, the kernel integration
can be analytically carried out for the constant element
discretization. After testing our bimaterial BEM program
for various reduced simple cases, we then apply our
program to calculate the strain energy density and the
relative strain energy in InAs (1 1 1) QWR free-standing on
or embedded in GaAs (1 1 1) substrate. Our numerical
results showed that, for the case of an isosceles triangle of
InAs (1 1 1) QWR on the substrate, the strain energy
density within the QWR strongly depends on the base
angle of the triangle. We also observed that the magnitude
of the relative strain energy for this case increases with
increasing base angle. For a square QWR either free-
standing on or embedded in the substrate, we found that
the magnitude of the relative strain energy increases with
increasing depth of the QWR in the substrate, which
represents the competition between the surface and bulk
energies. Our numerical examples also demonstrate the
significant influence of the QWR shape and location on
both the strain energy density and the relative strain energy
in the QWR, which should be particularly useful to the
successful growth of QWRs via epitaxial approach.
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Appendix A. Expression of matrix Q

We assume that the source point is in the half-plane of
material l ðl ¼ 1 or 2Þ. Then Q can be expressed as

Qll;v
rk ¼ Kll

rj ðIvÞjA
l
kj (A.1)

if the field point is in the half-plane of material l, and

Q
lm;v
rk ¼ K

lm
rj ðIvÞjA

l
kj (A.2)

if the field point is in the other half-plane of material
m ðmalÞ. In Eqs. (A.1) and (A.2), the matrix K is given by

Kll ¼ ðAl
Þ
�1
ðMl þMmÞ

�1
ðMm �MlÞAl,

Klm ¼ ðAm
Þ
�1
ðMm þMlÞ

�1
ðMl þMlÞAl, (A.3)

with Ml ¼ �iBlðAl
Þ
�1
ðl ¼ 1 or 2Þ and the diagonal

matrix Iv has the following expression for different indexes
v:

I1 ¼ diag½1; 0; 0�; I2 ¼ diag½0; 1; 0�; I3 ¼ diag½0; 0; 1�.

(A.4)
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