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Reflection and transmission coefficients of plane waves with oblique incidence to a mul-
tilayered system of piezomagnetic and/or piezoelectric materials are investigated in this
paper. The general Christoffel equation is derived from the coupled constitutive and
balance equations, which is further employed to solve the elastic displacements and
electric and magnetic potentials. Based on these solutions, the reflection and transmis-
sion coefficients in the corresponding layered structures are subsequently obtained by
virtue of the propagator matrix method. Two layered examples are selected to verify and
illustrate our solutions. One is the purely elastic layered system composed of aluminum
and organic glass materials. The other layered system is composed of the novel magne-
toelectroelastic material and the organic glass. Numerical results are presented to dem-
onstrate the variation of the reflection and transmission coefficients with different inci-
dent angles, frequencies, and boundary conditions, which could be useful to
nondestructive evaluation of this novel material structure based on wave propagations.
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Introduction

Starting from the work by Suchtelen �1� on magnetoelectroelas-
ic materials, some mechanics problems in structures made of
hese multiphase materials have generated great interests in recent
ears, including static deformation, vibration, and fracture �2–4�.
ore recently, behaviors of ultrasonic plane waves in piezomag-

etic and/or piezoelectric plates have also attracted wide attention
5–7�.

As the basic parameters of ultrasonic waves, reflection and
ransmission coefficients for plane waves, which are obliquely
ncident to the multilayered elastic or piezoelectric plates, have
een extensively studied for some time. For example, Thomson
erived the formulation for plane wave propagation in a multilay-
red solid structure in terms of the continuity of stresses and par-
icle velocities across the interfaces �8�. Haskell extended Thom-
on’s work to the more general multilayered case �9�, with later
ontribution by Brekhovskikh �10�. With the application of acous-
ic transducers in underwater sonar equipments, reflection and
ransmission of elastic waves at the boundary of and/or interface
etween piezoelectric and elastic materials and fluid were dis-
ussed carefully in a variety of papers and books �11–18�, includ-
ng also those for electromagnetic materials �19,20�. More re-
ently, sound propagation and power transmission issues �21,22�
ere investigated, and a spectral finite element model was also
roposed for wave analysis in laminated composite �23�. To the
est knowledge of the authors, however, reflection and transmis-
ion of wave incidence on the multilayered magnetoelectroelastic
tructure have not been investigated so far, which motivates the
resent study. Wave propagation feature in the novel magnetoelec-
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troelastic material system is very important and it needs to be
fully understood before the material system’s real application in
practice.

In order to simplify our discussion, only the two dimensional
�2D� problem is considered. That is, the plane wave incident on
every layer is limited to the same vertical plane. The general
Christoffel equation is first derived by combining the coupled con-
stitutive equations and equilibrium equations. It is then employed
to yield the elastic displacements and electric and magnetic poten-
tials. Based on these solutions, the reflection and transmission
coefficients are subsequently solved for the corresponding layered
structure by virtue of the propagator matrix method along with the
given interface and boundary conditions. Finally, two numerical
examples are used to verify and illustrate our formulation. One is
a purely elastic layered system composed of aluminum and or-
ganic glass materials. The other layered model is composed of
magnetoelectroelastic materials and organic glass. Our numerical
results show clearly the variation of the reflection and transmis-
sion coefficients with different incident angles, frequencies, and
boundary conditions.

2 Governing Equations
Figure 1 shows a structure composed of a semi-infinite homo-

geneous elastic base and a magnetoelectroelastic and multilayered
plate. Layers 1 to N−1 are all made of magnetoelectroelastic ma-
terials with hexagon crystal structure of class 6 mm and the Nth
layer is the semi-infinite elastic base. The Cartesian coordinate
system is attached to the layered structures with x3 being the sym-
metry axis of the crystal. Since only 2D deformation in the x1ox3
plane is considered, there is no displacement in the x2 direction.
The elastic displacements in the x1ox3 plane are expressed as
follows:

u1 = u1�x1,x3,t� u3 = u3�x1,x3,t� �1�
Similarly, the electric and magnetic potentials can also be as-
sumed to be
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� = ��x1,x3,t� � = ��x1,x3,t� �2�
Assuming that there is no body force and no electric and mag-

etic charge in the magnetoelectroelastic system, the general gov-
rning equations are then given by �2�

�ij,j = �
�2ui

�t2 Dj,j = 0 Bj,j = 0 �3�

here �ij, Dj, and Bj are, respectively, the stresses, electric dis-
lacements, and magnetic inductions; and � and t are, respec-
ively, the density of the magnetoelectroelastic material and the
ime variable. For 2D deformation in the x1ox3 plane with the
ymmetry axis of the material along the x3 direction, the coupling
onstitutive equations in Ref. �2� can then be simplified as

�11 = c11�11 + c13�33 − e31E3 − q31H3

�33 = c13�11 + c33�33 − e33E3 − q33H3

�13 = c55�13 − e15E1 − q15H1

D1 = e15�13 − �11E1 − d11H1 �4�

D3 = e31�11 + e33�33 − �33E3 − d33H3

B1 = q15�13 − d11E1 − �11H1

B3 = q31�11 + q33�33 − d33E3 − �33H3

here cij, �ij, �ij, eij, qij, and dij are the elastic stiffness, dielectric
oefficients, magnetic permeability, and piezoelectric, piezomag-
etic, and magnetoelectric constants; and �ij, and Ej and Hj are
he elastic strain, and the electric and magnetic fields, respectively.
hey are related to the elastic displacement �ui� and the electric

�� and magnetic ��� potentials as

�11 = u1,1 �13 = u1,3 + u3,1 �33 = u3,3 E1 = − �,1

E3 = − �,3 H1 = − �,1 H3 = − �,3 �5�
Substituting Eqs. �4� and �5� into Eq. �3�, the elastic displace-
ents and electric and magnetic potentials are found to satisfy the

ollowing magnetoelectroelastic coupling equations of motion:

c11u1,11 + c55u1,33 + �c13 + c55�u3,13 + �e31 + e15��,13 + �q31

+ q15��,13 = �ü1

�c13 + c55�u1,13 + c55u3,11 + c33u3,33 + e15�,11 + e33�,33 + q15�,11

+ q33�,33 = �ü3

�e15 + e31�u1,13 + e15u3,11 + e33u3,33 − �11�,11 − �33�,33 − d11�,11

ig. 1 A semi-infinite elastic base „Nth layer… bonded to a lay-
red magnetoelectroelastic plate „Layer 1 to Layer N−1…
− d33�,33 = 0
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�q15 + q31�u1,13 + q15u3,11 + q33u3,33 − d11�,11 − d33�,33 − �11�,11

− �33�,33 = 0 �6�
Since the phase angle difference between the elastic displace-

ment along the x1 axis and that along the x3 axis is 90 deg, and the
phase angle of the electric and magnetic potentials is the same as
u3 �7�, we can write the general displacements �elastic displace-
ments and electric and magnetic potentials� in the vector form as

�
u1

u3

�

�
� = �

A

iB

iC

iD
�ebkx3eik�x1−ct� �7�

where i=�−1; A, B, C, and D are the amplitudes of the wave to be
determined; k is the wave number along the x1 direction; and c is
the phase velocity of the wave. Substituting Eq. �7� into Eq. �6�
yields �6�

�S = 0 �8�

where

� = �
c11 − c55b

2 − �c2 �c13 + c55�b �e31 + e15�b �q31 + q15�b
c33b

2 − c55 + �c2 e33b
2 − e15 q33b

2 − q15

�11 − �33b
2 d11 − d33b

2

sym �11 − �33b
2
�

S = �A B C D�T

Equation �8� is called the general Christoffel equation. It is appar-
ent that a nontrivial solution for A, B, C, and D requires that

��� = 0 �9�

For a given phase velocity c, there are eight eigenvalues for b,
each corresponding to a wave propagating in the magnetoelectro-
elastic layer and yielding a partial solution to the magnetoelectro-
elastic layer. These roots can be divided into two categories with
each having four eigenvalues representing the quasilongitudinal
wave and quasitransverse wave and those associated with the
electric and magnetic potentials. The following rules are utilized
in order to identify the wave mode for a given eigenvalue: �1�
because the electric and magnetic potentials must satisfy the
Laplace equation �in the uncoupled case�, the eigenvalues corre-
sponding to them are in general real, and �2� the eigenvalue cor-
responding to the longitudinal or transverse wave can be real or
complex. A real eigenvalue represents an attenuate wave, while a
complex one represents a general harmonic wave.

We further remark that, for the two types of the eigenvalues
discussed above, one describes the wave propagating along the
positive x3 direction, and the other along the negative direction.
The eigenvalues describing the wave along the positive x3 direc-
tion are either negative real �representing an attenuate wave� or
complex with positive image part �representing a harmonic wave�.
For the wave propagating along the opposite direction, the prop-
erties of the corresponding eigenvalues are just opposite. Thus, we
can assume that bm �m=1,2 ,3 ,4� represent the waves associated
with the two potentials and the longitudinal and transverse waves
propagating along the positive x3 direction, and bm �m
=5,6 ,7 ,8� represent those along the opposite direction.

For the semi-infinite elastic base, the general Christoffel equa-
tion �8� is reduced to the following simple eigenvalue problems:

��S� = 0 �10�

where

�� = 	c11� − c55� b�2 − ��c2 �c13� + c55� �b�

�c13� + c55� �b� c33� b�2 − c55� + ��c2 

T
S� = �A� B��
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In general, there are four eigenvalues from Eq. �10�. However,
ince in the semi-infinite base wave propagates only along the
ositive x3 direction, only two roots are reserved. These two roots
ave either a negative real part or a positive image part.

Reflection and Transmission Coefficients
Having stated the basic rules in solving the eigensystem, we

an now derive the reflection and transmission coefficients in the
rst magnetoelectroelastic layer �Layer 1� and the Nth elastic

ayer of the system. As for other layered systems, the propagator
atrix method can be employed �7�.
First, for any layer with the exception of the Nth layer �the

emi-infinite elastic base�, the general displacements can be ex-
ressed, with the subwave method, as

�
u1

u3

�

�
� = �

m=1

8

�m�
Am

iBm

iCm

iDm

�ebmkx3eik�x1−ct� �11�

here �m �m=1–8� are unknown coefficients to be determined.
ubstituting Eq. �11� into the general constitutive relation for the
agnetoelectroelastic material, we then find the stress, electric

isplacement, and magnetic induction as

�
�33

�13

	3


3

�
= �

m=1

8

�m�
ik�c13Am + c33Bmbm + e33Cmbm + q33Dmbm�

k�c55Ambm − c55Bm − e15Cm − q15Dm�
ik�e31Am + e33Bmbm − �33Cmbm − d33Dmbm�
ik�q31Am + q33Bmbm − d33Cmbm − �33Dmbm�

�
�ebmkx3eik�x1−ct� �12�

here �33 and �13 are the normal and shear stresses, and
3��D3� and 
3��B3� are, respectively, the electric displace-
ent and magnetic induction in the x3 direction.
Second, for the Nth layer �e.g., the semi-infinite elastic base�,

ince the ultrasonic wave propagates only along the positive x3
irection, the displacements and stresses are given by

	u1�

u3�

 = �

m=1

2

�m�	 Am�

iBm�

ebm� kx3eik�x1−ct� �13�

	�33�

�13�

 = �

m=1

2

�m�	 ik�c13� Am� + c33� Bm� bm� �
k�c55� Am� bm� − c55� B��m


ebm� kx3eik�x1−ct� �14�

here �m� �m=1,2� are new unknown coefficients to be deter-
ined.
Finally, in the layered structure, we assume that all the magne-

oelectroelastic layers �j=1 to N−1� are well bonded to each
ther. Therefore, the out-of-plane variables are continuous along
hese interfaces. In other words, at all interfaces, these quantities
atisfy

�
u1

u3

�

�
�

x =z

�j�

= �
u1

u3

�

�
�

x =z

�j+1�
3 j 3 j
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�
�33

�13

	3


3

�
x3=zj

�j�

= �
�33

�13

	3


3

�
x3=zj

�j+1�

j = 1 2, . . . ,N − 2 �15�

As for the interface between Layer N−1 and Layer N �the semi-
infinite elastic base�, both the open and short circuit conditions for
the electric and magnetic fields are assumed. In other words, for
the open circuit interface, the elastic displacements and tractions,
and the electrical displacement and magnetic induction should sat-
isfy the following continuity conditions:

	u1

u3



x3=zN−1

�N−1�

= 	u1�

u3�



x3=zN−1

�N� 	�33

�13



x3=zN−1

�N−1�

= 	�33�

�13�



x3=zN−1

�N�

�16�
�	3�x3=zN−1

�N−1� = 0 �
3�x3=zN−1

�N−1� = 0

For the short circuit interface, the above continuity conditions
are replaced by

	u1

u3



x3=zN−1

�N−1�

= 	u1�

u3�



x3=zN−1

�N� 	�33

�13



x3=zN−1

�N−1�

= 	�33�

�13�



x3=zN−1

�N�

�17�
���x3=zN−1

�N−1� = 0 ���x3=zN−1

�N−1� = 0

In summary, for a given phase velocity, we find that the total
number of unknowns is 5+8�N−2�+2 �from the above formula-
tion�. On the other hand, the total number of equations including
the continuity conditions and boundary conditions is 4+8�N−2�
+2, one less than the total number of unknowns. Therefore, it is
clear that the reflection and transmission coefficients can be
solved from these equations �i.e., the relative amplitude of the
induced wave over the incident wave�.

Using Eq. �11�, the amplitude of the incident wave in the first
layer is given by

uin = �4
�A4Ā4 + B4B̄4 �18�

where an overbar represents the conjugate of a complex variable.
Similarly, the amplitudes of the reflected longitudinal and trans-
verse waves in the first layer are

u7 = �7
�A7Ā7 + B7B̄7 u8 = �8

�A8Ā8 + B8B̄8 �19�
Making use of these expressions for the wave amplitudes, the

reflection coefficients of the longitudinal and transverse waves in
the first magnetoelectroelastic layer are found to be

RL =  u7

uin
 =  �7

�A7Ā7 + B7B̄7

�4
�A4Ā4 + B4B̄4


�20�

RT =  u8

uin
 =  �8

�A8Ā8 + B8B̄8

�4
�A4Ā4 + B4B̄4


Similarly, the transmission coefficients of the longitudinal and

transverse wave in the semi-infinite elastic base are given by

TL =  u1�

uin
 =  �1�

�A1�Ā1� + B1�B̄1�

�4
�A4Ā4 + B4B̄4


�21�

TT =  u2�

uin
 =  �2�

�A2�Ā2� + B2�B̄2�

�4
�A4Ā4 + B4B̄4


Furthermore, the general displacements and stresses at any
other interfaces can also be solved by the state space method �7�.
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t can be easily shown that the state vector of the second layer at
=z1 is related to that of Layer N−1 at z=zN−1 by the following
ropagating relation �7�:

X�N−1��zN−1� = TX�2��z1� �22�

here X= �u1 i	3 i
3 i�33 �13 i� i� iu3�T is the state vector �7�,
nd T is the global propagator matrix given as

T = PN−1�hN−1�PN−2�hN−2�, . . . ,P2�h2�

ith P j�hj� and hj being, respectively, the propagator matrix and
hickness of Layer j.

Noticing the interfaces between Layers N−1 and N, and be-
ween the first and second layers, the state vectors satisfy

X�N−1��zN−1� = X�N��zN−1� X�2��z1� = X�1��z1� �23�

he state vectors at these two interfaces can then be written as

X�N��zN−1� = �
a11 a12

0 0

0 0

a41 a42

a51 a52

¯ ¯

¯ ¯

a81 a82

�	�1�

�2�



�24�

X�1��z1� = B�
�4

�5

�6

�7

�8

� = �
b14 ¯ b18

b24 ¯ b28

b34 ¯ b38

b44 ¯ b48

b54 ¯ b58

b64 ¯ b68

b74 ¯ b78

b84 ¯ b88

�
8�5

�
�4

�5

�6

�7

�8

�
here

a1m = Am� ebm� kzN−1 a4m = − k�c13� Am� + c33� Bm� bm� �ebm� kzN−1

a5m = k�c55� Am� bm� − c55� Bm� �ebm� kzN−1 a8m = − Bm� ebm� kzN−1 �m = 1,2�

b1m = Am b2m = − k�e31Am + e33Bmbm − �33Cmbm − d33Dmbm�

b3m = − k�q31Am + q33Bmbm − d33Cmbm − �33Dmbm�

b4m = − k�c13Am + c33Bmbm + e33Cmbm + q33Dmbm�

b5m = k�c55Ambm − c55Bm − e15Cm − q15Dm� b6m = − Cm

b7m = − Dm b8m = − Bm �m = 4,5, . . . ,8�
Substituting Eq. �23� into Eq. �24�, and then into Eq. �22� leads

Table 1 Material constants

Material
c11

�N /m2�
c13

�N /m2�

Aluminum 108�109 51�109

Organic glass 8.41�109 5.05�109
o

31002-4 / Vol. 130, JUNE 2008
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�
a11 a12

0 0

0 0

a41 a42

a51 a52

¯ ¯

¯ ¯

a81 a82

�	�1�

�2�

 = �

c11 ¯ c15

c21 ¯ c25

c31 ¯ c35

c41 ¯ c45

c51 ¯ c55

c61 ¯ c65

c71 ¯ c75

c81 ¯ c85

�
8�5

�
�4

�5

�6

�7

�8

� = TB�
�4

�5

�6

�7

�8

�
�25�

Applying the open circuit condition and the interface continuity
condition described by Eq. �16�, we can rearrange Eq. �25� into
the following form:

�
a11 a12 − c12 − c13 − c14 − c15

0 0 − c22 − c23 − c24 − c25

0 0 − c32 − c33 − c34 − c35

a41 a42 − c42 − c43 − c44 − c45

a51 a52 − c52 − c53 − c54 − c55

a81 a82 − c82 − c83 − c84 − c85

��
�1�

�2�

�5

�6

�7

�8

� = �
c11

c21

c31

c41

c51

c81

��4 �26�

Similar expression can be found for the short circuit condition
�Eq. �17��. Therefore, for a fixed coefficient of incident wave �4,
this equation can be solved for the unknown coefficients on the
left-hand side. Particularly, we can assume that �4 is equal to 1,
which gives us the reflection and transmission coefficients of the
multilayered structure from Eqs. �20� and �21�.

4 Numerical Example
In this section, the above formulation is applied to analyze the

reflection and transmission coefficients of the multilayered plate.
The plate is composed of piezoelectric, magnetic, and purely elas-
tic materials. While BaTiO3 is selected for the piezoelectric layer,
CoFe2O4 is selected for the magnetostrictive layer. Before study-
ing the magnetoelectroelastic system, a purely elastic multilayered
structure composed of aluminum and organic glass is employed to
verify our formulation.

4.1 Purely Elastic Layered Structure. Our purely elastic
structure is similar to that of Rose �14�. As shown in Fig. 1, it is
assumed that the structure has four layers: three layers of alumi-
num with thickness of 0.001 m each, plus the organic glass base.
The elastic constants cij and density � of the materials are listed in
Table 1.

Figure 2 shows the variation of the reflection coefficients at the
interface of the first and second layers and the transmission coef-
ficients at the interface of the third aluminum layer and organic
glass base due to both transverse and longitudinal incident waves.
It is observed that the variation of these coefficients with the in-
cident angle is the same as that of Rose �14�.

We also observed from our numerical calculation that, among
these four coefficients, only the reflection coefficient of longitudi-
nal wave varies with the frequency of the incident wave. This is

luminum and organic glass

Constants

c33
�N /m2�

c55
�N /m2�

�
�kg /m3�

108�109 28.5�109 2700
8.41�109 1.48�109 1180
of a
shown in Fig. 3, where it is noticed that the reflection coefficient
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ecreases with increasing frequency when the incident angle is
arger than the first critical angle �about 30 deg�. Furthermore,
nstead of the reflected longitudinal wave, interfacial wave ap-
ears at the interface for this case, with a high incident frequency
orresponding to a wave with fast attenuate amplitude.

4.2 Magnetoelectroelastic Layered Structure. After validat-
ng our formulation for the purely elastic layered structure, we
ow apply it to a multilayered magnetoelectroelastic �MEE� struc-
ure, which composed of four layers. The first and third layers are

ade of piezoelectric material BaTiO3, and the second layer of
iezomagnetic material CoFe2O4, and the semi-infinite elastic
ase of organic glass. It is also assumed that the thicknesses of
iezoelectric and piezomagnetic layers are the same and equal to
.001 m. The material properties are listed in Table 2 �7�. Follow-
ng Refs. �24,25�, positive magnetic permeability is chosen in the
alculation. Again, the reflection coefficients are at the interface of

ig. 2 Variation of reflection and transmission coefficients of
he elastic wave in Al-glass structure: „a… transverse incident
ave and „b… longitudinal incident wave

ig. 3 Variation of reflection coefficient of longitudinal wave
ith incident angle and at different frequencies „transverse in-

ident wave, f1< f2< f3…

ournal of Vibration and Acoustics
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the first and second layers, and the transmission coefficients are at
the interface of the N−1th layer and the semi-infinite elastic base
�refer to Fig. 1�.

Figure 4 presents the three-dimensional plot for the four coef-
ficients as functions of the incident angle �varying from
0 deg to 90 deg� and the dimensionless frequency �H��max /cmax
�herein �=kc, �max and cmax are the maximum density and elastic
constant of the system, H is the total thickness of magnetoelectro-
elastic layered plate, and the dimensionless frequency varies from
0 to 2�. The incident wave is transverse. From Fig. 4, we observed
that near the critical incident angle, the coefficients are very large
at low frequencies except for the reflection coefficient of the trans-
verse wave �Fig. 4�b��. Furthermore, these coefficients decrease
rapidly with increasing frequency. On the other hand, if the inci-
dent angle is much smaller or much larger than the critical inci-
dent angle, these coefficients are, in general, insensitive to the
frequency of the incident wave. When the incident angle is equal
to 90 deg �corresponding to a sweeping incident wave�, the reflec-
tion coefficient of transverse wave is equal to 1, while other co-
efficients are equal to zero. In this case, all energy is reflected in
the form of transverse polarization.

Figure 5 shows the three-dimensional plot for the four coeffi-
cients as the function of the incident angle and the dimensionless
frequency when the incident wave is longitudinal. Similar to the
transverse incident wave, the variation of the reflection and trans-
mission coefficients due to longitudinal incident wave is also sen-
sitive to the frequency of incident wave. However, different from
Fig. 4, we observed from Figs. 5�b� and 5�d� that the reflection
and transmission coefficients of transverse wave increase with in-
creasing frequency. We further remark that when the incident
angle is equal to 90 deg, the reflection coefficient of the longitu-
dinal wave is equal to 1, which is independent of the incident
frequency. This phenomenon is also consistent with that observed
in the purely elastic structure.

In order to investigate the effects of the electric circuit condi-
tion on the reflection and transmission coefficients, the four coef-
ficients due to a longitudinal incident wave under open and short
circuits are presented in Fig. 6. It is clear that the circuit boundary
condition has only slight effect on the reflection and transmission
coefficients.

5 Conclusions
The reflection and transmission coefficients for plane waves at

oblique incidence on a multilayered system of piezomagnetic
and/or piezoelectric materials are analyzed. The proposed proce-
dure and formulation is simple and universal �e.g., as compared to
the potential function method �26��. Typical numerical examples
are presented for both purely elastic and magnetoelectroelastic
layered structures. For the purely elastic structure, the reflection
and transmission coefficients obtained by the present formulation
are exactly the same as previously published results. For the mag-
netoelectroelastic structure, our three-dimensional plots of the re-
flection and transmission coefficients clearly demonstrate the de-

Table 2 Material properties „cij in N/m2, eij in C/m2, qij in
N/A m, �ij in C2/ „N m2

…, �ij in N s2/C2, and � in kg/m3
…

Properties BaTiO3 CoFe2O4 Properties BaTiO3 CoFe2O4

c11 166�109 286�109 q31 0 580.3
c13 78�109 170.5�109 q33 0 699.7
c33 162�109 269.5�109 q15 0 550
c55 43�109 45.3�109 �11 11.2�10−9 0.08�10−9

e31 −4.4 0 �33 12.6�10−9 0.093�10−9

e33 18.6 0 �11 5�10−6 590�10−6

e15 11.6 0 �33 10�10−6 157�10−6

� 5800 5300
pendence of these coefficients on the incident angle and
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Fig. 5 Variation of reflection and transmission coefficients
with incident angle and frequency for a longitudinal incident
wave in MEE system: „a… reflection coefficient of longitudinal
wave, „b… reflection coefficient of transverse wave, „c… trans-
mission coefficient of longitudinal wave, and „d… transmission
coefficient of transverse wave
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requencies of the incident wave. Furthermore, we also observe
hat the electric circuit condition �open or short circuit� has only
light effect on these wave coefficients. These basic features are
mportant to wave studies in real structures where the magneto-
lectroelastic material serves as one of their members, e.g., for
nergy conversion among mechanical, electric, and magnetic
elds.
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