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Abstract

In this paper closed-form expressions of the electroelastic field induced by a piezoelectric screw dislocation in a func-
tionally graded piezoelectric plane and half-plane are derived. The material properties are assumed to vary exponentially
along the x and y-directions. The solution for a screw dislocation in a functionally graded piezoelectric plane is obtained
through introduction of two generalized stress functions. The solution for a screw dislocation in a functionally graded pie-
zoelectric half-plane is derived by using the method of image. It is also found that the interaction between a piezoelectric
screw dislocation and a circular insulating hole in the functionally graded piezoelectric material can be solved by using
series expansion method.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded piezoelectric materials (FGPMs) usually refer to the pieozoelectric materials in which
the material properties vary smoothly in a given direction. FGPMs can be utilized to provide the desirable
thermal-mechanical and piezoelectric properties. Applications of FGPMs can be found in tribology, electronic
and biomechanics. Recent analysis (Almajid and Taya, 2001; Wu et al., 2002; Taya et al., 2003) and experi-
mental tests (Zhu et al., 2000; Almajid and Taya, 2001; Taya et al., 2003) have clearly shown the advantage of
FGPM actuator or sensor over the traditional ones. Due to their potential application in intelligent/smart
structures, FGPMs have attracted wide attention in recent years (see for example Jin and Zhong, 2002; Li
and Weng, 2002; Pan and Han, 2005; Collet et al., 2006). A review of the principal developments in function-
ally graded materials (FGMs) since 2000 can be found in the most recent work by Birman and Byrd (2007).

Most recently by means of the stress function technique, Lazar (2007) addressed a screw dislocation in an
elastic medium exponentially graded in the y-direction within the framework of the classical elasticity theory.
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Motivated by Lazar (2007), we investigate in this paper a piezoelectric screw dislocation in an FGPM plane
and half-plane within the framework of linear theory of piezoelectricity. Also discussed is a piezoelectric screw
dislocation near a circular insulating hole in an FGPM plane.

2. A piezoelectric screw dislocation in an FGPM plane

We first consider a static screw dislocation located at origin in an FGPM plane. The FGPM plane is trans-
versely isotropic with the poling direction parallel to the z-axis. The screw dislocation is assumed to be straight
and infinitely long in the z-direction, suffering a displacement jump b and an electric potential jump D/ across
the slip plane.

The engineering shear strains czx,czy and the electric fields Ex,Ey should satisfy the following incompatibility
conditions (Lazar, 2007):

oczy

ox
� oczx

oy
¼ bdðxÞdðyÞ; ð1Þ

oEy

ox
� oEx

oy
¼ �D/dðxÞdðyÞ; ð2Þ

where d() is the Dirac delta function.
In addition the strains and electric fields can be expressed in terms of stresses rzx,rzy and electric displace-

ments Dx,Dy as
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where c44, e15 and �11 are, respectively, the elastic modulus, the piezoelectric coefficient, and the dielectric per-
mittivity; ~c44 ¼ c44 þ e2

15=�11 P c44 is the piezoelectrically stiffened elastic coefficient. We remark that different
from the homogeneous material case, c44, e15 and �11 (and as a result ~c44) in this paper are all functions of the
coordinates x and y. In particular, we assume that

c44 ¼ expð2b1xþ 2b2yÞc0
44; e15 ¼ expð2b1xþ 2b2yÞe0

15; �11 ¼ expð2b1xþ 2b2yÞ�0
11; ð4Þ

where c0
44, e0

15, �0
11, b1 and b2 are material constants. It is noticed that the above assumption of exponential

variation for the material properties has been adopted by many authors (see for example, Jin and Zhong,
2002; Wang, 2003; Kwon, 2003; Collet et al., 2006) to simplify the analysis involved. Here it should be pointed
out that there exist explicit solutions for FGPMs with variations other than the exponential variations as-
sumed in this research (see for example, Collet et al., 2006).

Due to the fact that the stresses and electric displacements satisfy the following equilibrium equations:

orzx

ox
þ orzy

oy
¼ 0; ð5Þ

oDx

ox
þ oDy

oy
¼ 0; ð6Þ

then it’s convenient to introduce the following generalized stress functions f and g which are related to the
stresses and electric displacements through

rzy ¼
of
ox
; rzx ¼ �

of
oy
;

Dy ¼
og
ox
; Dx ¼ �

og
oy
:

ð7Þ

As a result the strains and electric fields can be expressed in terms of the two introduced generalized stress
functions f and g as
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Inserting (8a) and (8b) into Eqs. (1) and (2) yields

r2f � 2b1f;x � 2b2f;y ¼ ðc0
44bþ e0

15D/ÞdðxÞdðyÞ;
r2g � 2b1g;x � 2b2g;y ¼ ðe0

15b� �0
11D/ÞdðxÞdðyÞ;

ð9Þ

We now introduce two new functions u and w which are related to f and g through

f ¼ expðb1xþ b2yÞu; g ¼ expðb1xþ b2yÞw; ð10Þ

As a result Eq. (9) can be rewritten in terms of u and w as

r2u� b2u ¼ ðc0
44bþ e0

15D/ÞdðxÞdðyÞ;
r2w� b2w ¼ ðe0

15b� �0
11D/ÞdðxÞdðyÞ;

ð11Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

q
. The solutions to the two inhomogeneous Helmholtz equations in Eq. (11) can be expe-

diently given by (Lazar, 2007)

u ¼ � c0
44bþ e0

15D/
2p

K0ðbrÞ;

w ¼ �
0
11D/� e0

15b
2p

K0ðbrÞ;
ð12Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and Kn is the nth order modified Bessel function of the second kind.

In view of Eqs. (10) and (12), the explicit expressions of f and g are given by

f ¼ � c0
44bþ e0

15D/
2p
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g ¼ �
0
11D/� e0

15b
2p
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ð13Þ

Substituting Eq. (13) into Eq. (7), we arrive at the expressions of stresses and electric displacements as
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44bþ e0
15D/
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r

K1ðbrÞ
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r
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; ð14Þ
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Using Eqs. (3a) and (3b), the strains and electric fields can be derived to be
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b
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e�b1x�b2y b2K0ðbrÞ � b

y
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K1ðbrÞ
h i

;
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; ð16Þ
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: ð17Þ
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It is observed from Eqs. (16) and (17) that the displacement jump b can only induce the mechanical
strains czx,czy; whilst the electric potential jump D/ can only induce the electric fields Ex,Ey. In addition
the strains and electric fields are independent of the specific values of the three material constants c0

44; e
0
15

and �0
11.

Furthermore the stresses and electric displacements can be expressed in the polar coordinate system as

rzh ¼
of
or
¼ c0

44bþ e0
15D/

2p
erðb1 cos hþb2 sin hÞ bK1ðbrÞ � ðb1 cos hþ b2 sin hÞK0ðbrÞ½ �;

rzr ¼ �
of
roh
¼ c0

44bþ e0
15D/

2p
ðb2 cos h� b1 sin hÞerðb1 cos hþb2 sin hÞK0ðbrÞ; ð18Þ

Dh ¼
og
or
¼ e0

15b� �0
11D/

2p
erðb1 cos hþb2 sin hÞ bK1ðbrÞ � ðb1 cos hþ b2 sin hÞK0ðbrÞ½ �;

Dr ¼ �
og
roh
¼ e0

15b� �0
11D/

2p
ðb2 cos h� b1 sin hÞerðb1 cos hþb2 sin hÞK0ðbrÞ: ð19Þ

It can be easily checked that when we ignore the piezoelectric effect, i.e., e15 = 0 and let the material be
graded only in the y-direction, i.e., b1 = 0, Eqs. (14), (16) and (19) reduce to those derived by Lazar (2007).
On the other hand if we ignore the material gradation, i.e., b1 = b2 = 0, Eqs. (14)–(19) will reduce to those
derived by Pak (1990) (also see Lee et al., 2000) by observing the following asymptotic behaviors for K0(x)
and K1(x)

K0ðxÞ ! � lnðx=2Þ � 0:57721;K1ðxÞ ! x�1; when x! 0þ ð20Þ

We point out that with the derived full-field expressions for the stresses and electric displacements, the gen-
eralized Peach-Koehler force acting on the piezoelectric screw dislocation can be obtained by using the Peach-
Koehler formulation (Lee et al., 2000). As expected the Peach-Koehler force is no longer a central force due to
the existence of the tangential component of the force in the polar coordinates (Lazar, 2007).

3. A piezoelectric screw dislocation in an FGPM half-plane

3.1. An FGPM half-plane with a traction-free and charge-free surface

We now consider the case where the piezoelectric screw dislocation is located at (0, d), (d > 0) in an
FGPM half-plane y P 0. The material properties of the FGPM half-plane are also assumed to vary expo-
nentially as described by Eq. (4). The boundary conditions on the surface of the FGPM half-plane is
assumed to be traction-free and charge-free, i.e., rzy = Dy = 0 at y = 0. By using the image method (Pak,
1990), the two generalized stress functions f and g for a half-plane with a traction-free and charge-free sur-
face are found to be

f ¼ � c0
44bþ e0

15D/
2p

eb1xþb2ðyþdÞ K0½b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy � dÞ2

q
� � K0½b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q
�

� �
;

g ¼ �
0
11D/� e0

15b
2p

eb1xþb2ðyþdÞ K0½b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy � dÞ2

q
� � K0½b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q
�

� �
:

ð21Þ

It can be easily checked that Eq. (21) satisfies the traction-free and charge-free boundary conditions
rzy = Dy = 0 (or equivalently f = g = 0) on the surface y=0. Eq. (21) can be physically interpreted as the sum-
mation of the electroelastic field caused by a piezoelectric screw dislocation with displacement jump b and elec-
tric potential jump D/ located at (0, d) and another one by an image piezoelectric screw dislocation with
displacement jump �e2b2db and electric potential jump �e2b2dD/ located at the image point (0, �d). It is
noticed that the magnitudes of the displacement and electric potential jumps for the image screw dislocation
at (0, �d) are influenced by the gradient parameter b2d. Therefore with the derived generalized stress functions
f and g, we can easily find all the electroelastic quantities. One special case is for the one when the material is
graded only in one coordinate. For example, if we ignore the gradation in the x-direction, i.e., b1 = 0, the
stress component rzy and the electric displacement Dy can be expressed as
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rzy ¼
c0

44bþ e0
15D/

2pd
Xðx; y; b2Þ;

Dy ¼
e0

15b� �0
11D/

2pd
Xðx; y; b2Þ;

ð22Þ

where the function X(x, y, b2) is defined by

Xðx; y; b2Þ ¼ djb2jeb2ðyþdÞx
K1½jb2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy � dÞ2

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy � dÞ2
q �

K1½jb2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy þ dÞ2
q

8><
>:

9>=
>;: ð23Þ

It can also be easily checked that the results derived in this section can be reduced to those derived by
Pak (1990) for a screw dislocation interacting with a traction-free and charge-free surface if we ignore the
material gradation, i.e., b1 = b2 = 0. We present in Fig. 1 the contour plots of the function X(x, y, b2) in Eq.
(23) for b2d = �3, �1, 1, 3. It is observed that the gradient parameter b2 can significantly influence the val-
ues of the function X(x,y,b2), and consequently influence the stress component rzy and the electric displace-
ment Dy.

Fig. 1. Contours of the function X(x, y, b2) in Eq. (23) for b2d = �3, �1,1,3.
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3.2. An FGPM half-plane bonded by a rigid conductor

It shall be mentioned that in general the image method cannot be easily applied to address the problem of a
piezoelectric screw dislocation located at (0, d), (d > 0) in an FGPM half-plane y P 0 bonded by a rigid con-
ductor, i.e., czx = Ex = 0 on y = 0. However when we ignore the gradation in the y-direction, i.e., b2 = 0 in Eq.
(4), the two generalized stress functions f and g for a half-plane bonded by a rigid conductor can still be easily
obtained by using the image method as follows

f ¼ � c0
44bþ e0

15D/
2p

eb1x K0½jb1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy � dÞ2

q
� þ K0 jb1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q� �� �
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g ¼ �
0
11D/� e0

15b
2p

eb1x K0 jb1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy � dÞ2

q� �
þ K0 jb1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q� �� �
;

ð24Þ

which can be interpreted as the summation of the electroelastic field caused by a piezoelectric screw dislocation
with displacement jump b and electric potential jump D/ located at (0, d) and another one by an image pie-
zoelectric screw dislocation with displacement jump b and electric potential jump D/ located at the image
point (0, �d). In this case the full field expressions of czx and Ex are given by

czx ¼ �
jb1jb
2p

e�b1x
ðy � dÞK1½jb1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q
8>><
>>:

9>>=
>>;;
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q þ
ðy þ dÞK1 jb1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy þ dÞ2

q
8>><
>>:

9>>=
>>;;

ð25Þ

which satisfy the boundary conditions czx = Ex = 0 on y = 0.

4. Conclusion and discussion

In this paper we derived closed-form solutions for a straight piezoelectric screw dislocation with a displace-
ment jump b and an electric potential jump D/ in an FGPM plane by using the stress function technique and
in an FGPM half-plane by using the stress the method of image. The solutions were verified by comparison
with existing solutions (Pak, 1990; Lazar, 2007). It’s expected that the derived solutions for a screw dislocation
can be further applied to investigate crack problems in FGPM. In fact by using the general solution to the
Helmholtz equations in Eq. (11) in polar coordinates, we can discuss more complex interaction problems.
For example, as shown in Fig. 2, we consider the case in which there is a circular insulating (or charge-free)
hole of radius R in an FGPM plane described by Eq. (4). The center of the circular hole is at the origin of the
coordinate system, and the piezoelectric screw dislocation is located at (d, 0), (d > R) on the positive real axis
in the matrix. The two generalized stress functions f and g for this case can be expressed in infinite series form
as

f ¼ � c0
44bþ e0

15D/
2p

eb1ðxþdÞþb2y K0ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 � 2dr cos h

p
Þ � A0K0ðbrÞ � 2

Xþ1
n¼1

AnKnðbrÞ cosðnhÞ
" #

;

g ¼ �
0
11D/� e0

15b
2p

eb1ðxþdÞþb2y K0ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 � 2dr cos h

p
Þ � A0K0ðbrÞ � 2

Xþ1
n¼1

AnKnðbrÞ cosðnhÞ
" #

; ðr P RÞ

ð26Þ

where A0, A1, A2, . . . are unknown constants to be determined.
By enforcing the traction-free and insulating boundary conditions rzr = Dr = 0 (or equivalently f = g = 0)

at r = R, and observing the following Graf’s addition theorem (Chew, 1995)
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K0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 � 2dr cos h

ph i
¼ K0ðbdÞI0ðbrÞ þ 2

Xþ1
n¼1

KnðbdÞInðbrÞ cosðnhÞ; for r < d ð27Þ

where In is the nth order modified Bessel function of the first kind, we can finally arrive at all the unknowns

A0 ¼
K0ðbdÞI0ðbRÞ

K0ðbRÞ ; An ¼
KnðbdÞInðbRÞ

KnðbRÞ ; n ¼ 1; 2; 3; . . . ;þ1; ð28Þ

In practice the series in Eq. (26) is truncated at a large integer n = N to get sufficiently accurate result.
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