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Abstract

This research is concerned with the anti-plane strain problems of polarized ceramics with both the couple stress and electric
field gradient effects. This theory possesses two characteristic lengths l1 and l2 which are determined explicitly. In addition the two
characteristic lengths can be either positive real or complex conjugate with positive real part. We first investigate the electroelastic
field induced by a static line force and a line charge. It is found that the displacement and the electric potential are regular at the
point where the line force and line charge are located. We then consider the near-tip asymptotic electroelastic field for a mode III
crack. The analysis demonstrates that the near-tip asymptotic electroelastic field is governed by two parameters B and D. The total
stresses and in-plane electric displacements exhibit the stronger r−3/2 singularity near the crack tip; while the couple stresses, the
out-of-plane electric displacement, and those associated with electric quadrupole densities exhibit the weaker r−1/2 singularity
near the crack tip.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Up to now various continuum mechanics theories have been proposed to account for the size effect experimentally
observed in problems with a geometric length scale comparable to materials’ microstructural length. To name a few,
(i) micropolar and couple stress elasticity (see for example Mindlin and Tiersten, 1962; Muki and Sternberg, 1965;
Hartranft and Sih, 1965; Reddy and Venkatasubramanian, 1978; Jasiuk and Ostoja-Starzewski, 1995; Cheng and He,
1995, 1997; Lubarda, 2003; Shodja and Ghazisaeidi, 2007); (ii) nonlocal elasticity (see for example Eringen, 1983,
1992, 2002; Lazar et al., 2006); (iii) strain gradient elasticity (see for example Ru and Aifantis, 1993; Zhang et al.,
1998; Gutkin and Aifantis, 1999; Paulino et al., 2003; Lazar and Maugin, 2004, 2005; Zhang and Sharma, 2005) and
strain gradient plasticity (see for example Fleck and Hutchinson, 1993, 1997; Fleck et al., 1994; Nix and Gao, 1998a);
(iv) electric field gradient theory (see for example Mindlin, 1968; Kalpakides and Agiasofitou, 2002; Yang et al.,
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2004, 2006); (v) surface elasticity (see for example Nix and Gao, 1998b; Gurtin et al., 1998; Sharma and Ganti, 2004;
Yang, F.Q., 2004; Wang and Wang, 2006; Chen et al., 2007).

Most recently the electric field gradient theory (Yang, J.S., 2004; Yang et al., 2004, 2006) and the couple stress
elasticity (Shodja and Ghazisaeidi, 2007) have been individually applied to anti-plane strain problems in piezoelectric
materials, which exhibit intrinsic electromechanical coupling phenomenon, to account for the size effect of small
scale electronic devices. This research endeavors to combine the electric field gradient theory and the coupled stress
elasticity into a unified framework to study anti-plane problems in piezoelectric ceramics. We keep the notations used
for electric field gradient theory (Yang, J.S., 2004; Yang et al., 2004, 2006) and those for the couple stress elasticity
(Shodja and Ghazisaeidi, 2007) in order to make a connection between our results and the previous ones (Yang et
al., 2004, 2006; Shodja and Ghazisaeidi, 2007). In Section 2 we investigate the electroelastic field induced by a static
line force and a line charge in an unbounded piezoelectric plane. Then we further address in Section 3 the near-tip
asymptotic electroelastic field for a mode III semi-infinite crack.

2. Green’s functions

We consider a hexagonal piezoelectric material of 6 mm symmetry with poling in the x3 direction. Furthermore we
confine our attention to the anti-plane strain problems described by

u1 = u2 = 0, u3 = w(x1, x2), φ = φ(x1, x2). (1)

Within the context of couple stress elasticity (Shodja and Ghazisaeidi, 2007) and electric field gradient theory (Yang
et al., 2006), the non-trivial total stress components t13, t31, t23, t32 and the non-vanishing electric displacements D1,
D2, D3 can be expressed in terms of the displacement w and the electric potential φ as

t13 = c44
∂w

∂x1
+ e15

∂φ

∂x1
− k66

4

∂(∇2w)

∂x1
, t31 = c44

∂w

∂x1
+ e15

∂φ

∂x1
+ k66

4

∂(∇2w)

∂x1
,

t23 = c44
∂w

∂x2
+ e15

∂φ

∂x2
− k66

4

∂(∇2w)

∂x2
, t32 = c44

∂w

∂x2
+ e15

∂φ

∂x2
+ k66

4

∂(∇2w)

∂x2
,

D1 = e15
∂w

∂x1
− ε11

∂φ

∂x1
+ ε0α

∂(∇2φ)

∂x1
, D2 = e15

∂w

∂x2
− ε11

∂φ

∂x2
+ ε0α

∂(∇2φ)

∂x2
,

D3 = −ε0(γ31 − γ15)∇2φ − f36

2
∇2w,

(2)

where ∇2 is the two-dimensional Laplacian; ε0 is the dielectric permittivity constant of free space; c44, e15 and ε11
are respectively the elastic, piezoelectric and dielectric coefficients of the piezoelectric material; k66 (> 0) and f36
are new material constants due to the introduction of the couple stress, while α = α11 (> 0), γ31 and γ15 are also new
material constants due to the introduction of the electric field gradient.

In addition the couple stress components m11, m22, m12 and m21 are related to w through

m11 = −m22 = k11 − k12

2

∂2w

∂x1∂x2
,

m12 = −k66

2

∂2w

∂x2
1

+ k69

2

∂2w

∂x2
2

,

m21 = −k69

2

∂2w

∂x2
1

+ k66

2

∂2w

∂x2
2

,

(3)

and Π11, Π22, Π12, which are associated with electric quadrupole densities (Yang et al., 2006), can be expressed as

Π11 = −ε0

(
α11

∂2φ

∂x2
1

+ α12
∂2φ

∂x2
2

)
,

Π22 = −ε0

(
α12

∂2φ

∂x2
1

+ α11
∂2φ

∂x2
2

)
,

Π12 = Π21 = −2ε0α66
∂2φ

∂x1∂x2
,

(4)
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where k11, k12, k69 are new material constants due to the introduction of the couple stress, while α12 and α66 are also
new material constants due to the introduction of the electric field gradient.

In polar coordinates (r, θ), the non-vanishing total stress components tr3, t3r , tθ3 and t3θ , the electric displacements
Dr , Dθ , the couple stresses mrr , mθθ , mrθ , mθr and Πrr , Πθθ , Πrθ associated with electric quadrupole densities are
expressed as

tr3 = c44
∂w

∂r
+ e15

∂φ

∂r
− k66

4

∂(∇2w)

∂r
, t3r = c44

∂w

∂r
+ e15

∂φ

∂r
+ k66

4

∂(∇2w)

∂r
,

tθ3 = c44

r

∂w

∂θ
+ e15

r

∂φ

∂θ
− k66

4r

∂(∇2w)

∂θ
, t3θ = c44

r

∂w

∂θ
+ e15

r

∂φ

∂θ
+ k66

4r

∂(∇2w)

∂θ
,

Dr = e15
∂w

∂r
− ε11

∂φ

∂r
+ ε0α

∂(∇2φ)

∂r
, Dθ = e15

r

∂w

∂θ
− ε11

r

∂φ

∂θ
+ ε0α

r

∂(∇2φ)

∂θ
,

(5)

mrr = −mθθ = k11 − k12

2

∂

∂r

(
1

r

∂w

∂θ

)
,

mrθ = −k66 + k69

2

∂2w

∂r2
+ k69

2
∇2w,

mθr = −k66 + k69

2

∂2w

∂r2
+ k66

2
∇2w,

(6)

Πrr = −ε0

[
(α11 − α12)

∂2φ

∂r2
+ α12∇2φ

]
,

Πθθ = −ε0

[
(α12 − α11)

∂2φ

∂r2
+ α11∇2φ

]
,

Πrθ = Πθr = −2ε0α66
∂

∂r

(
1

r

∂φ

∂θ

)
.

(7)

In the presence of a static antiplane line force p and line charge q both located at the origin, the static equilibrium
equations for the piezoelectric body are given by

t13,1 + t23,2 = −pδ(x1)δ(x2),

D1,1 + D2,2 = qδ(x1)δ(x2),
(8)

where δ(·) is the Dirac delta function.
Substitution of Eq. (2) into the above expression will lead to the following set of coupled inhomogeneous partial

differential equations for w and φ

c44∇2w + e15∇2φ − k66

4
∇4w = −pδ(x1)δ(x2),

e15∇2w − ε11∇2φ + ε0α∇4φ = qδ(x1)δ(x2).

(9)

In order to solve the above set of coupled differential equations, we consider the following eigenvalue problem:([ k66
4 0

0 −ε0α

]
− l2

[
c44 e15

e15 −ε11

])
v = 0, (10)

where l and v are respectively the eigenvalue and the associated eigenvector.
When k66 and α satisfy the following inequality√

k66

4ε0α
�

√
c44ε11 + e2

15 − |e15|
ε11

or

√
k66

4ε0α
�

√
c44ε11 + e2

15 + |e15|
ε11

, (11)

then Eq. (10) possesses two positive real eigenvalues given by

l1 = √
ξ

[
1

2
(ρ + 1)

]1/2

+ √
ξ

[
1

2
(ρ − 1)

]1/2

,

l2 = √
ξ

[
1

2
(ρ + 1)

]1/2

− √
ξ

[
1

2
(ρ − 1)

]1/2

,

(ρ � 1) (12)
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where l1 � l2 > 0, and

ξ = 1

2

√
k66ε0α

c44ε11 + e2
15

, ρ = 4c44ε0α + k66ε11

4
√

k66ε0α(c44ε11 + e2
15)

. (13)

When k66 and α satisfy the following inequality√
c44ε11 + e2

15 − |e15|
ε11

<

√
k66

4ε0α
<

√
c44ε11 + e2

15 + |e15|
ε11

, (14)

then Eq. (10) possesses two complex conjugate eigenvalues given by

l1 = √
ξ

[
1

2
(1 + ρ)

]1/2

+ i
√

ξ

[
1

2
(1 − ρ)

]1/2

,

l2 = √
ξ

[
1

2
(1 + ρ)

]1/2

− i
√

ξ

[
1

2
(1 − ρ)

]1/2

,

(0 < ρ < 1) (15)

where Re{l1} = Re{l2} > 0 with ξ and ρ being defined by Eq. (13).
It is mentioned that in deriving the explicit expressions (12) and (15) for l1 and l2, we adopt an approach similar to

that used by Suo (1990) and Yang et al. (1991) in deriving the Stroh eigenvalues for elastically orthotropic materials.
The two eigenvectors associated with the two eigenvalues are

v1 =
[

e15l
2
1

k66
4 − c44l

2
1

]
, v2 =

[
e15l

2
2

k66
4 − c44l

2
2

]
. (16)

Since the fact that the two matrices [ c44 e15
e15 −ε11

] and [ k66
4 0
0 −ε0α

] are real and symmetric, then it can be easily verified that

when l1 �= l2 the following orthogonal relationships with respect to the two symmetric matrices hold[
vT

1

vT
2

][
c44 e15

e15 −ε11

]
[ v1 v2 ] =

[
δ1 0

0 δ2

]
,

[
vT

1

vT
2

][ k66

4
0

0 −ε0α

]
[ v1 v2 ] =

[
l2
1δ1 0

0 l2
2δ2

]
,

(17)

where the two constants δ1 and δ2 are given by

δ1 = k66e
2
15l

2
1

4
− ε0αl−2

1

(
c44l

2
1 − k66

4

)2

,

δ2 = k66e
2
15l

2
2

4
− ε0αl−2

2

(
c44l

2
2 − k66

4

)2

.

(18)

Now we introduce two new functions f and g, which are related to w and φ through[
w

φ

]
= [ v1 v2 ]

[
f

g

]
. (19)

In view of Eqs. (9), (17) and (19), the two new functions f and g satisfy the following two independent inhomo-
geneous partial differential equations

∇2f − l2
1∇4f = q(k66/4 − c44l

2
1) − e15l

2
1p

δ1
δ(x1)δ(x2), (20)

∇2g − l2
2∇4g = q(k66/4 − c44l

2
2) − e15l

2
2p

δ2
δ(x1)δ(x2). (21)

It is observed that the two parameters l1 and l2, which depend on the electromechanical properties of the piezoelec-
tric material (or more specifically depend on ξ with the dimension of (length)2 and the dimensionless parameter ρ),
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have the dimension of length and are called the characteristic lengths. Thus for piezoelectric materials within the
framework of couple stress elasticity and electric field gradient theory, two intrinsic length scales l1 and l2 are needed
to describe size effect. The introduction of two length scales is different from the situation of a single length scale for
the piezoelectric media in the context of couple stress elasticity (Shodja and Ghazisaeidi, 2007) or in the context of
electric field gradient theory (Yang et al., 2006). In addition the two characteristic lengths l1 and l2 can be positive
real (see Eq. (12)) or complex conjugate with positive real part (see Eq. (15)).

When ignoring the electric field gradient effect, i.e., α = 0, it is observed from Eq. (13) that ξ → 0 while ρ ∼=
k66ε11/(4

√
k66ε0α(c44ε11 + e2

15) ) � 1. Consequently it follows from Eq. (12) that

l1 ∼= 2
√

ξ

[
1

2
ρ

]1/2

=
√

k66ε11

4(c44ε11 + e2
15)

, l2 = 0, (22)

which is just the result obtained by Shodja and Ghazisaeidi (2007).
On the other hand when ignoring the couple stress effect, i.e., k66 = 0, it is observed from Eq. (13) that ξ → 0

while ρ ∼= c44ε0α/(

√
k66ε0α(c44ε11 + e2

15) ) � 1. Consequently it follows from Eq. (12) that

l1 ∼= 2
√

ξ

[
1

2
ρ

]1/2

=
√

c44ε0α

c44ε11 + e2
15

, l2 = 0, (23)

which is just the result obtained by Yang et al. (2004, 2006).
In the following we solve the two independent partial differential equations (20) and (21). It follows from Eq. (20)

that

f − l2
1∇2f = q(k66/4 − c44l

2
1) − e15l

2
1p

2πδ1
ln r, (24)

and

l2
1∇2f = q(k66/4 − c44l

2
1) − e15l

2
1p

2πδ1
K0(l

−1
1 r), (25)

where Kn is the nth order modified Bessel function of the second kind.
Adding Eqs. (24) and (25) leads to the following expression for f

f = q(k66/4 − c44l
2
1) − e15l

2
1p

2πδ1

[
ln r + K0(l

−1
1 r)

]
. (26)

Similarly it follows from Eq. (21) that

g − l2
2∇2g = q(k66/4 − c44l

2
2) − e15l

2
2p

2πδ2
ln r, (27)

and

l2
2∇2g = q(k66/4 − c44l

2
2) − e15l

2
2p

2πδ2
K0(l

−1
2 r). (28)

Adding Eqs. (27) and (28) leads to the following expression of g

g = q(k66/4 − c44l
2
2) − e15l

2
2p

2πδ2

[
ln r + K0(l

−1
2 r)

]
. (29)

Now that we have obtained the expressions of f and g, then it is not difficult to arrive at the expressions of the
original w and φ as follows in view of Eq. (19)

w = e15l
2
1 [q(k66 − 4c44l

2
1) − 4e15l

2
1p]

8πδ1

[
ln r + K0(l

−1
1 r)

]
+ e15l

2
2 [q(k66 − 4c44l

2
2) − 4e15l

2
2p]

8πδ2

[
ln r + K0(l

−1
2 r)

]
, (30)
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φ = (k66 − 4c44l
2
1)[q(k66 − 4c44l

2
1) − 4e15l

2
1p]

32πδ1

[
ln r + K0(l

−1
1 r)

]
+ (k66 − 4c44l

2
2)[q(k66 − 4c44l

2
2) − 4e15l

2
2p]

32πδ2

[
ln r + K0(l

−1
2 r)

]
.

Based on the above, the Green’s functions Gαβ are found to be

Gwp = − e2
15l

4
1

2πδ1

[
ln r + K0(l

−1
1 r)

] − e2
15l

4
2

2πδ2

[
ln r + K0(l

−1
2 r)

]
,

Gwq = −Gφp = e15l
2
1(k66 − 4c44l

2
1)

8πδ1

[
ln r + K0(l

−1
1 r)

] + e15l
2
2(k66 − 4c44l

2
2)

8πδ2

[
ln r + K0(l

−1
2 r)

]
,

Gφq = (k66 − 4c44l
2
1)2

32πδ1

[
ln r + K0(l

−1
1 r)

] + (k66 − 4c44l
2
2)2

32πδ2

[
ln r + K0(l

−1
2 r)

]
,

(31)

where the definitions of the Green’s functions are: Gwp(xi) is the displacement w at xi due to a line force (p = 1) at
xi = 0; Gwq(xi) is the displacement w at xi due to a line charge (q = 1) at xi = 0; Gφp(xi) is the electric potential φ

at xi due to a line force (p = 1) at xi = 0; and Gφq(xi) is the electric potential φ at xi due to a line charge (q = 1) at
xi = 0.

The following can be observed from the derived Green’s functions Gαβ

(i) At origin r = 0 where the line force and line charge are located, the Green’s functions Gαβ remain finite values
in view of the following asymptotic behavior for K0 at origin

K0(l
−1r) → − ln(l−1r/2), when r → 0; (32)

(ii) The Green’s functions exhibit the following asymptotic behaviors at infinity

Gwp = −e2
15

2π

(
l4
1

δ1
+ l4

2

δ2

)
ln r,

Gwq = −Gφp = e15

8π

[
l2
1(k66 − 4c44l

2
1)

δ1
+ l2

2(k66 − 4c44l
2
2)

δ2

]
ln r,

Gφq = 1

32π

[
(k66 − 4c44l

2
1)2

δ1
+ (k66 − 4c44l

2
2)2

δ2

]
ln r.

when r → ∞, (33)

The far-field asymptotic behaviors imply that the couple stress and the electric field gradient effects will influence
the values of the Green’s functions at infinity.

(iii) The Green’s functions exhibit the following anti-symmetric property in index: Gwq = −Gφp .

3. Mode III crack problem

In this section we consider the simplest problem of an anti-plane, semi-infinite crack at θ = π in an unbounded and
source free (p = q = 0) polarized ceramics with both the couple stress and the electric field gradient effects.

Based on previous results for reduced boundary conditions in anti-plane shear (Zhang et al., 1998; Lubarda, 2003;
Yang et al., 2006; Shodja and Ghazisaeidi, 2007), the boundary conditions on a traction-free and charge-free crack
face are

tθ3 + 1

2

∂mθθ

∂r
= 0, mθr = 0,

Dθ + ∂Πθr

∂r
= 0, Πθθ = 0,

for θ = π. (34)

In addition the anti-symmetry of anti-plane shear deformation requires that

w = φ = 0, for θ = 0. (35)
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Following Williams’ expansion, the displacement w and the electric potential φ near the crack tip can be expanded
as

w = rsws(θ), φ = rsφs(θ), (36)

where the power s and the angular functions ws(θ) and φs(θ) are to be determined. Keeping the dominant singular
terms, we find the governing equations (9) with p = q = 0 and the boundary condition equations (34) on the crack
surface become

∇4w = 0,

∂

∂θ

[
∂2w

∂r2
− 2

r

∂w

∂r
+ 2w

r2
+ k66

k11 − k12
∇2w

]
= 0,

k69

k66

∂2w

∂r2
− 1

r

∂w

∂r
− 1

r2

∂2w

∂θ2
= 0,

for θ = π, (37)

and

∇4φ = 0,

∂

∂θ

[
∂2φ

∂r2
− 2

r

∂φ

∂r
+ 2φ

r2
− α11

2α66
∇2φ

]
= 0,

α12

α11

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂θ2
= 0.

for θ = π, (38)

The general solutions of w and φ satisfying Eqs. (37)1 and (38)1 and the anti-symmetry condition (35) at θ = 0 are
given by (Zhang et al., 1998)

w = rs
{
A sin(sθ) + B sin

[
(s − 2)θ

]}
,

φ = rs
{
C sin(sθ) + D sin

[
(s − 2)θ

]}
,

(39)

where A, B , C and D are undetermined constants.
Substituting Eq. (39) into Eqs. (37)2,3 and (38)2,3, we obtain the following

(s − 1)(s − 2) cos(sπ)

[
sA +

(
s − 2 + 4k66

k11 − k12

)
B

]
= 0,

(s − 1) sin(sπ)

[
k69

k66
s(A + B) + sA + (s − 4)B

]
= 0,

(40)

and

(s − 1)(s − 2) cos(sπ)

[
sC +

(
s − 2 − 2α11

α66

)
D

]
= 0,

(s − 1) sin(sπ)

[
α12

α11
s(C + D) − sC − (s − 4)D

]
= 0.

(41)

Similar to the argument by Zhang et al. (1998), we can determine

s = 3

2
, (42)

and

A = 5k66 − 3k69

3(k66 + k69)
B, (43)

C = 5α11 + 3α12

3(α11 − α12)
D. (44)

Thus the distributions of displacement, electric potential, total stresses, couple stresses, electric displacements near
the crack tip are given by
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w = Br3/2
[

5k66 − 3k69

3(k66 + k69)
sin

(
3

2
θ

)
− sin

(
θ

2

)]
,

φ = Dr3/2
[

5α11 + 3α12

3(α11 − α12)
sin

(
3

2
θ

)
− sin

(
θ

2

)]
,

(45)

tr3 = −t3r = −k66

4
Br−3/2 sin

(
θ

2

)
, tθ3 = −t3θ = k66

4
Br−3/2 cos

(
θ

2

)
,

Dr = ε0αDr−3/2 sin

(
θ

2

)
, Dθ = −ε0αDr−3/2 cos

(
θ

2

)
,

D3 = [
2ε0(γ31 − γ15)D + f36B

]
r−1/2 sin

(
θ

2

)
,

(46)

mrr = −mθθ = k11 − k12

8
Br−1/2

[
5k66 − 3k69

k66 + k69
cos

(
3

2
θ

)
− cos

(
θ

2

)]
,

mrθ = −5k66 − 3k69

8
Br−1/2

[
sin

(
3

2
θ

)
− 3k66 − 5k69

5k66 − 3k69
sin

(
θ

2

)]
,

mθr = −5k66 − 3k69

8
Br−1/2

[
sin

(
3

2
θ

)
+ sin

(
θ

2

)]
,

(47)

Πrr = −ε0(5α11 + 3α12)

4
Dr−1/2

[
sin

(
3

2
θ

)
− 3α11 + 5α12

5α11 + 3α12
sin

(
θ

2

)]
,

Πθθ = ε0(5α11 + 3α12)

4
Dr−1/2

[
sin

(
3

2
θ

)
+ sin

(
θ

2

)]
,

Πrθ = Πθr = −ε0α66

2
Dr−1/2

[
5α11 + 3α12

α11 − α12
cos

(
3

2
θ

)
− cos

(
θ

2

)]
.

(48)

It is observed from the above near-tip asymptotic expressions for the field variables that:

(i) Similar to the classical mode III crack tip electroelastic field (Pak, 1990), the near-tip asymptotic electroelastic
field in a piezoelectric material with both the couple stress and the electric field gradient effects is governed by
two parameters B and D in Eqs. (45)–(48);

(ii) The total stresses tr3, t3r , tθ3 and t3θ and the in-plane electric displacements Dr , Dθ all exhibit the r−3/2 singu-
larity near the crack tip. This singularity is much stronger than the classical square root singularity (Pak, 1990)
and is in agreement with the results of Zhang et al. (1998), Paulino et al. (2003) and Yang, J.S. (2004) when the
strain gradient or the electric field gradient effect is considered;

(iii) The couple stresses mrr , mθθ , mrθ , mθr , the electric displacement D3, and Πrr , Πθθ , Πrθ all exhibit r−1/2

singularity near the crack tip.

4. Conclusions

We have incorporated the effects of both the electric field gradient and the couple stress into anti-plane problems
of piezoelectric materials to account for the size effect of small-scale problems. It is found that the out-of-plane
displacement and the electric potential are regular at the point where a static line force and line charge are located.
The asymptotic electroelastic field near a mode III crack in a piezoelectric material with both the couple stress and
the electric field gradient effects is governed by two parameters B and D. Couple stresses, the out-of-plane electric
displacement, and those associated with electric quadruple densities have inverse square-root singularity near the crack
tip, while the total stresses and the in-plane electric displacements exhibit the stronger r−3/2 singularity. Another
interesting application of the obtained results is to investigate a circular piezoelectric inclusion or inhomogeneity
embedded in a piezoelectric matrix, which was previously investigated within the framework of electric field gradient
theory (Yang et al., 2006) and within the framework of couple stress elasticity (Shodja and Ghazisaeidi, 2007).
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