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XU WANG, ERNIAN PAN AND A. K ROY

Exact closed-form solutions in terms of elementary functions are derived for the problem of a screw
dislocation embedded in an unbounded piezoelectric matrix interacting with a piezoelectric circular in-
clusion with a linear viscous interface. By means of the complex variable method, the original boundary
value problem is reduced to an inhomogeneous first-order partial differential equation whose solution
can be expressed in terms of elementary functions. The time dependent electroelastic fields such as
stresses, strains, electric fields, and electric displacements are then obtained. In particular the image
force acting on the piezoelectric screw dislocation, due to its interaction with the circular viscous inter-
face, is presented. Some special cases of practical importance are discussed to verify and to illustrate the
obtained solution. Finally we present a specific example of a screw dislocation located in a piezoelectric
PZT-5 matrix interacting with a piezoelectric BaTiO3 fiber to graphically demonstrate the influence of
the viscosity of the interface on the mobility of the screw dislocation.

1. Introduction

Due to their intrinsic electromechanical coupling behaviors, piezoelectric ceramics have been widely
used in applications such as sensors, filters, ultrasonic generators, and actuators. More recently, the use
of piezoelectric materials has gone beyond the traditional application domain of small electric devices due
to the emergence of piezoelectric composites. Nowadays, piezoelectric materials have been employed as
integrated active structural elements. These adaptive structures are capable of monitoring and adapting
to their environments, providing a smart response to external conditions. Investigations on piezoelectric
materials in the presence of defects such as dislocations, cracks, and inclusions are many [Pak 1990a;
1990b; 1992; Meguid and Deng 1998; Liu et al. 1999; Ru 1999; Lee et al. 2000; Chen and Xiao 2002;
Wang et al. 2003; Wang and Pan 2007; Xiao et al. 2007] due to the fact that these defects can adversely
influence the performance of the piezoelectric devices. Recently He and Lim [2003] analyzed the elec-
tromechanical response of a piezoelectric fibrous composite with a viscous interface described by the
linear law of rheology [Ray and Ashby 1971; Suo 1997]. Their results demonstrated that the interfacial
sliding could alter the local mechanical and electrical fields in the piezoelectric composite, and could
further lead to significant change in overall electromechanical response of the composites with time.

The present paper investigates the interaction between a screw dislocation and a piezoelectric circular
inclusion with a viscous interface described by the linear law of rheology [Ray and Ashby 1971; Suo
1997; He and Lim 2003]. The viscosity of the interface investigated in this research originates from the
microscopically diffusion controlled sliding mechanism [Ray and Ashby 1971; Suo 1997], or from an
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artificially introduced thin viscous layer for damping purpose. This study is confined to the quasistatic
assumption, ignoring the inertial force in the piezoelectric inclusion and matrix. By means of the complex
variable method, the original boundary value problem is reduced to an inhomogeneous first-order partial
differential equation for an analytic function defined within the circular inclusion. A closed-form solution
in terms of elementary functions to the partial differential equation is obtained after a transformation is
introduced. It is stressed that the usage of the complex variable combined with the real time variable is
very novel in the literature.

2. Basic formulations

Consider a circular piezoelectric inclusion (or fiber) of radius R embedded in an unbounded piezoelectric
matrix, as shown in Figure 1. Both the inclusion and matrix are of 6 mm material with symmetry about
the fiber axis. The inclusion/matrix interface is a viscous one characterized with a law of linear rheology
[Ray and Ashby 1971; Suo 1997; He and Lim 2003] (or equivalently modeled by linear dashpot [Fan and
Wang 2003; Wang and Schiavone 2007]). At time t = 0, a piezoelectric screw dislocation is introduced
into the piezoelectric matrix and fixed at point (x0, y0). The screw dislocation is assumed to be straight
and infinitely long in the x3 direction (the fiber axis), experiencing a displacement jump b and an electric
potential jump 1φ across the slip plane. The dislocation also has a line force p and line charge q
along its core. In this configuration the governing equations and constitutive equations can be simplified
considerably as follows.

• Governing field equations:

σzx,x + σzy,y = 0, Dx,x + Dy,y = 0, (1)

• Electric field/electric potential relations:

Ex = − φ,x , Ey = − φ,y, (2) 
 
 

 

x 

y 

R 
z0 

Viscous interface 

Piezoelectric circular inclusion 

Piezoelectric matrix 

Screw dislocation 
with line force and 
line charge 

Figure 1. A screw dislocation with a line force and a line charge near a piezoelectric
circular inclusion with a viscous interface.
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• Linear piezoelectric constitutive equations:[
σzy

Dy

]
=

[
c44 −e15

e15 ε11

] [
w,y

Ey

]
,

[
σzx

Dx

]
=

[
c44 −e15

e15 ε11

] [
w,x

Ex

]
, (3)

where a comma followed by x or y denotes partial derivatives with respect to x or y, respectively.
σzx and σzy are the shear stress components, Dx and Dy the electric displacement components, Ex

and Ey the electric fields, w the out of plane displacement, φ the electric potential, and c44, e15, and
ε11 are, respectively, the elastic modulus, piezoelectric constant, and dielectric permittivity. In the
following analysis the piezoelectrically stiffened elastic constant c̃44 = c44 + e2

15/ε11 will be also
used. In Equation (1) we have neglected the inertial effect of the piezoelectric material due to the
fact that the viscous response comes from the interface only.

The displacement and electric potential can be expressed in terms of an analytic function vector
f (z, t) =

[
f1(z, t), f2(z, t)

]T , z = x + iy, as[
w

φ

]
= im

{
f (z, t)

}
,

where im stands for the imaginary part. Since the viscous interface exhibits the time effect, the analytic
function vector f (z, t) depends not only on the complex variable z but also on the time t . In terms of
the analytic function vector f (z, t), the strains, electric fields, stresses, and electric displacements in the
Cartesian coordinate system can be expressed as[

γzy + iγzx

−Ey − i Ex

]
=

∂ f (z, t)
∂z

,

[
σzy + iσzx

Dy + i Dx

]
= C

∂ f (z, t)
∂z

, (4)

where the strains γzx and γzy are related to the out of plane displacement w through γzx = w,x , and γzy =

w,y, and C is the extended stiffness matrix given by

C =

[
c44 e15

e15 −ε11

]
.

The strains, electric fields, stresses, and electric displacements in the polar coordinate system can also
be expressed in terms of the analytic function vector f (z, t) as[

γzθ + iγzr

−Eθ − i Er

]
=

z
|z|

∂ f (z, t)
∂z

,

[
σzθ + iσzr

Dθ + i Dr

]
= C

z
|z|

∂ f (z, t)
∂z

. (5)

In this paper, the superscripts (1) and (2) (or the subscripts 1 and 2) will be used to denote, respectively,
the physical quantities in the inclusion and matrix. The analytic function vector defined in the inclusion
is denoted by g(z, t) =

[
g1(z, t), g2(z, t)

]T , whilst that in the unbounded matrix is denoted by h(z, t) =[
h1(z, t), h2(z, t)

]T .
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3. Complex potentials and field components

The boundary conditions on the viscous interface r = R can be expressed as [He and Lim 2003]

σ (1)
zr = σ (2)

zr , D(1)
r = D(2)

r ,

φ(1)
= φ(2),

σ (1)
zr = η

(
ẇ(2)

− ẇ(1)
)
,

r = R and t > 0, (6)

where a dot over the quantity denotes differentiation with respect to time t , and η is the interface slip
coefficient, which can be measured through properly designed experiment.

Equation (6)1 for the continuity condition of traction and normal electric displacement across the
interface can be equivalently expressed as

C1 g+(z, t) + C1 ḡ−
(
R2/z, t

)
= C2h−(z, t) + C2h̄+(

R2/z,
)
, |z| = R,

It follows from the above expression that

h(z, t) = C−1
2 C1 ḡ

(
R2/z, t

)
+ h0(z) − h̄0

(
R2/z

)
,

h̄
(
R2/z, t

)
= C−1

2 C1 g(z, t) − h0(z) + h̄0
(
R2/z

)
,

(7)

where

h0(z) =
[
h10(z), h20(z)

]T
=

b̂ − i C−1
2 f̂

2π
ln(z − z0),

z0 = x0 + iy0, b̂ =
[
b 1φ

]T
, f̂ =

[
p −q

]T
,

which is time independent, is the complex potential for a piezoelectric screw dislocation in a homoge-
neous piezoelectric material [Pak 1990b].

Equation (6)2 for the continuity condition of the electric potential across the interface can be equiva-
lently expressed as

g+

2 (z, t) − ḡ−

2

(
R2/z, t

)
= h−

2 (z, t) − h̄+

2

(
R2/z, t

)
, |z| = R.

It follows from the above expression that

h2(z, t) = − ḡ2
(
R2/z, t

)
+ h20(z) + h̄20

(
R2/z

)
,

h̄2
(
R2/z, t

)
= − g2(z, t) + h20(z) + h̄20

(
R2/z

)
,

|z| = R. (8)
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In view of (7) and (8), the three analytic functions h1(z, t), h2(z, t), and ḡ2(R2/z, t) defined in the
matrix can be expressed in terms of a single analytic function ḡ1(R2/z, t) defined in the matrix as

h1(z, t) =
c(1)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(1)

15

(
e(1)

15 + e(2)
15

)
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ḡ1
(
R2/z, t

)
+h10(z) − h̄10

(
R2/z

)
+

2
(
ε

(2)
11 e(1)

15 − ε
(1)
11 e(2)

15

)
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) h̄20
(
R2/z

)
,

h2(z, t) =
c(1)

44 e(2)
15 − c(2)

44 e(1)
15

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ḡ1
(
R2/z, t

)
+h20(z) +

c(2)
44

(
ε

(1)
11 − ε

(2)
11

)
+ e(2)

15

(
e(1)

15 − e(2)
15

)
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) h̄20
(
R2/z

)
,

ḡ2
(
R2/z, t

)
=

c(2)
44 e(1)

15 − c(1)
44 e(2)

15

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ḡ1
(
R2/z, t

)
+

2c̃(2)
44 ε

(2)
11

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) h̄20
(
R2/z

)
. (9)

Similarly the three analytic functions h̄1(R2/z, t), h̄2(R2/z, t), and g2(z, t) defined in the inclusion
can be expressed in terms of a single analytic function g1(z, t) defined in the inclusion as

h̄1
(
R2/z, t

)
=

c(1)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(1)

15

(
e(1)

15 + e(2)
15

)
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)g1(z, t)

+h̄10
(
R2/z

)
− h10(z) +

2
(
ε

(2)
11 e(1)

15 − ε
(1)
11 e(2)

15

)
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)h20(z),

h̄2
(
R2/z, t

)
=

c(1)
44 e(2)

15 − c(2)
44 e(1)

15

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)g1(z, t)

+h̄20
(
R2/z

)
+

c(2)
44

(
ε

(1)
11 − ε

(2)
11

)
+ e(2)

15

(
e(1)

15 − e(2)
15

)
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)h20(z),

g2(z, t) =
c(2)

44 e(1)
15 − c(1)

44 e(2)
15

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)g1(z, t) +
2c̃(2)

44 ε
(2)
11

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)h20(z). (10)

Equation (6)3 for the law of linear rheology can be equivalently expressed as

c(1)
44 z g

′
+

1 (z, t) + e(1)
15 z g

′
+

2 (z, t) − c(1)
44 R2z−1ḡ′

−

1
(
R2/z, t

)
− e(1)

15 R2z−1ḡ′
−

2
(
R2/z, t

)
= Rη

[∂h−

1 (z, t)
∂t

−
∂ h̄+

1

(
R2/z, t

)
∂t

−
∂g+

1 (z, t)
∂t

+
∂ ḡ−

1

(
R2/z, t

)
∂t

]
, (11)

where |z| = R, and where the superscript comma means the derivative with respect to the complex
variable.
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Inserting (9) and (10) into (11), and with |z| = R, we finally obtain

c̃(1)
44 c(2)

44 ε
(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) zg
′
+

1 (z, t) + Rη

(
c(1)

44 + c(2)
44

)(
ε

(1)
11 + ε

(2)
11

)
+

(
e(1)

15 + e(2)
15

)2

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ∂g+

1 (z, t)
∂t

+
2c̃(2)

44 ε
(2)
11 e(1)

15

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) zh′

20(z)

=
c̃(1)

44 c(2)
44 ε

(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) R2z−1ḡ′
−

1
(
R2/z, t

)
+Rη

(
c(1)

44 + c(2)
44

)(
ε

(1)
11 + ε

(2)
11

)
+

(
e(1)

15 + e(2)
15

)2

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ∂ ḡ−

1

(
R2/z, t

)
∂t

+
2c̃(2)

44 ε
(2)
11 e(1)

15

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) R2z−1h̄′

20
(
R2/z

)
. (12)

Apparently the left hand side of Equation (12) is analytic within the circle |z| = R, while the right hand
side of (12) is analytic outside the circle including the point at infinity. By employing Liouville’s theorem,
the left and right hand sides should be identically zero. Consequently we obtain the inhomogeneous first-
order partial differential equation for g1(z, t)

z
∂g1(z, t)

∂z
+ t0

∂g1(z, t)
∂t

= −
βz

z − z0
, |z| ≤ R, (13)

where t0 is the characteristic time and β a constant, defined, respectively, by

t0 = Rη

(
c(1)

44 + c(2)
44

)(
ε

(1)
11 + ε

(2)
11

)
+

(
e(1)

15 + e(2)
15

)2

c̃(1)
44 c(2)

44 ε
(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

> 0, β =
e(1)

15

[
c̃(2)

44 ε
(2)
11 1φ − i

(
e(2)

15 p + c(2)
44 q

)]
π

(
c̃(1)

44 c(2)
44 ε

(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

) .

It is of interest to notice that the resulting first-order partial differential equation (13) for a circular
viscous interface is different from that for a straight viscous interface [Wang et al. 2007; Wang and Pan
2008]. Once we introduce the transformation ζ = ln z, (13) changes into

∂g1(ζ, t)
∂ζ

+ t0
∂g1(ζ, t)

∂t
= −

βeζ

eζ − z0
, (14)

whose structure is in a sense similar to that of the resulting differential equation for a straight viscous
interface [Wang et al. 2007; Wang and Pan 2008].

Equation (14) demonstrates that it has a homogeneous solution in the form g1(ζ − t/t0). In view of
the form of the homogeneous solution to (14), the solution to the original partial differential equation
(13) can be conveniently given by

g1(z, t) = α ln(z − et/t0 z0) − β ln(z − z0), |z| ≤ R, (15)

where α is an unknown constant to be determined, and the term −αt/t0 in g1(z, t) representing the rigid
body displacement and equipotential has been ignored. It is mentioned that the first term in g1(z, t),

α ln(z − et/t0 z0) − at/t0 = α ln(e−t/t0 z − z0),
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is a homogeneous solution to (13), while the second term in g1(z, t), −β ln(z−z0), is a particular solution
to (13). At the initial moment t = 0, when the piezoelectric screw dislocation is just introduced into the
matrix, the displacement across the interface has no time to experience a jump due to the dashpot [Fan
and Wang 2003; Wang and Schiavone 2007]. Therefore at t = 0 the interface is a perfect one. As a result
we have

g1(z, 0) =
J1(C1 + C2)

−1(C2 b̂ − i f̂ )

π
ln(z − z0), J0 =

[
1 0

]
, J2 =

[
0 1

]
. (16)

In view of Equations (15) and (16), the constant α can be uniquely determined to be

α = β +
J1(C1 + C2)

−1(C2 b̂ − i f̂ )

π
. (17)

Once g1(z, t) has been determined, after some tedious but straightforward mathematical operations
we finally arrive at g2(z, t) defined in the inclusion and h1(z, t) and h2(z, t) defined in the matrix as

g2(z, t) =
α(c(2)

44 e(1)
15 − c(1)

44 e(2)
15 )

c(2)
44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ln
(
z − et/t0 z0

)
+

βc(1)
44

e(1)
15

ln
(
z − z0

)
,

h1(z, t) =
ᾱ
[
c(1)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(1)

15

(
e(1)

15 + e(2)
15

)]
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ln
( z − e−t/t0 R2/z̄0

z

)
−

[ c̃(1)
44 ε

(1)
11 e(2)

15 J2

c̃(1)
44 c(2)

44 ε
(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

+
J1

2

] b̂ + i C−1
2 f̂

π
ln

( z − R2/z̄0

z

)
+

J1
(
b̂ − i C−1

2 f̂
)

2π
ln

(
z − z0

)
,

h2(z, t) =
ᾱ
(
c(1)

44 e(2)
15 − c(2)

44 e(1)
15

)
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

) ln
( z − e−t/t0 R2/z̄0

z

)
+

c̃(1)
44 c(2)

44 ε
(1)
11 − c(1)

44 c̃(2)
44 ε

(2)
11

c̃(1)
44 c(2)

44 ε
(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

J2
(
b̂ + i C−1

2 f̂
)

2π
ln

( z − R2/z̄0

z

)
+

J2
(
b̂ − i C−1

2 f̂
)

2π
ln

(
z − z0

)
. (18)

Notice that the last term in the expressions of h1(z, t) and h2(z, t) is the singular part due to the screw
dislocation. If both the inclusion and the matrix are purely elastic materials, that is, e(1)

15 = e(2)
15 = 0, then
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g1(z, t), g2(z, t) defined in the inclusion and h1(z, t), h2(z, t) defined in the matrix are reduced to

g1(z, t) =
c(2)

44 b − i p

π
(
c(1)

44 + c(2)
44

) ln
(
z − et/t0 z0

)
, g2(z, t) =

ε
(2)
11 1φ − iq

π
(
ε

(1)
11 + ε

(2)
11

) ln
(
z − z0

)
,

h1(z, t) =
c(1)

44

(
c(2)

44 b + i p
)

πc(2)
44

(
c(1)

44 + c(2)
44

) ln
( z − e−t/t0 R2/z̄0

z

)
−

c(2)
44 b + i p

2πc(2)
44

ln
( z − R2/z̄0

z

)
+

c(2)
44 b − i p

2πc(2)
44

ln
(
z − z0

)
,

h2(z, t) =

(
ε

(1)
11 − ε

(2)
11

)(
ε

(2)
11 1φ + iq

)
2πε

(2)
11

(
ε

(1)
11 + ε

(2)
11

) ln
( z − R2/z̄0

z

)
+

∈
(2)
11 1φ − iq

2πε
(2)
11

ln
(
z − z0

)
,

where

t0 =
Rη

(
c(1)

44 + c(2)
44

)
c(1)

44 c(2)
44

. (19)

In this special case g2(z, t) and h2(z, t) are in fact independent of the time t due to the fact that there
is no piezoelectric effect.

Substituting Equations (15) and (18) into (4) or (5), we can arrive at the explicit expressions of strains,
stresses, electric fields, and electric displacements induced by the piezoelectric screw dislocation, which
are listed in the online supplement. For example the strains, electric fields, stresses, and electric displace-
ments within the piezoelectric circular inclusion are given by

γ (1)
zy + iγ (1)

zx =
α

z − et/t0 z0
−

β

z − z0
,

E (1)
y + i E (1)

x =
α
(
c(1)

44 e(2)
15 − c(2)

44 e(1)
15

)[
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)](
z − et/t0 z0

) −
βc(1)

44

e(1)
15

(
z − z0

) ,

σ (1)
zy + iσ (1)

zx =
α
(
c̃(1)

44 c(2)
44 ε

(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

)[
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)](
z − et/t0 z0

) ,

D(1)
y + i D(1)

x =
α
(
c̃(2)

44 ε
(2)
11 e(1)

15 + c̃(1)
44 ε

(1)
11 e(2)

15

)[
c(2)

44

(
ε

(1)
11 + ε

(2)
11

)
+ e(2)

15

(
e(1)

15 + e(2)
15

)](
z − et/t0 z0

) −
β c̃(1)

44 ε
(1)
11

e(1)
15

(
z − z0

) .

(20)

It is clearly observed from the above expression that in general the strains, electric fields, stresses, and
electric displacements inside the piezoelectric circular inclusion are time dependent due to appearance
of the term et/t0 . In addition it is found from (20)2 that the electric fields within the piezoelectric circular
inclusion will be time independent when the condition c(1)

44 e(2)
15 = c(2)

44 e(1)
15 is satisfied. As time elapses,

the strains, electric fields, stresses, and electric displacements within the piezoelectric circular inclusion
will finally arrive at the steady state

γ (1)
zy + iγ (1)

zx = −
β

z − z0
, E (1)

y + i E (1)
x = −

c(1)
44

e(1)
15

β

z − z0
,

σ (1)
zy + iσ (1)

zx = 0, D(1)
y + i D(1)

x = −
β c̃(1)

44 ε
(1)
11

e(1)
15 (z − z0)

, |z| ≤ R, t → ∞.

http://pjm.math.berkeley.edu/jomms/2008/3-4/p10.xhtml
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It is observed from the above expression that the internal stresses will eventually vanish due to the
dashpot. The relationship E (1)

y + i E (1)
x = (γ

(1)
zy + iγ (1)

zx )c(1)
44 /e(1)

15 observed in the above expression is just
in agreement with the vanishing internal stress condition when t → ∞.

4. Image force on the screw dislocation

Furthermore, by employing the Peach–Koehler formulation [Pak 1990b; Lee et al. 2000] and the previ-
ously derived field components in the piezoelectric matrix (see Equation A2 of the the online supplement),
it is also convenient to arrive at the image force acting on the screw dislocation due to its interaction with
the circular viscous interface. For example if we assume that the piezoelectric screw dislocation with
b 6= 0, p = q = 1φ = 0 lies on the positive real x axis (that is, x0 > R, y0 = 0), then a rather concise
closed-form expression of the time dependent image force on the screw dislocation can be finally derived
as

Fx(t) =
b2 R2

2πx0

[
2
(
c̃(1)

44 c(2)
44 ε

(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

)[(
c(1)

44 + c(2)
44

)(
ε

(1)
11 + ε

(2)
11

)
+

(
e(1)

15 + e(2)
15

)2](et/t0 x2
0 − R2

) −
c(2)

44

x2
0 − R2

]
, (21)

where Fx is the x component of the image force (the y component of the image force is zero).
It is of interest to discuss several special cases to verify and to illustrate the obtained solution.

Case 1. If the inclusion and the matrix have the same material properties and poling direction, meaning
c(1)

44 = c(2)
44 = c44, e(1)

15 = e(2)
15 = e15, and ε

(1)
11 = ε

(2)
11 = ε11, then it follows from Equation (21) that the image

force on the screw dislocation is

Fx(t) =
c44b2 R2x0

(
1 − et/t0

)
2π

(
x2

0 − R2
)(

et/t0 x2
0 − R2

) ≤ 0,

with t0 = 2Rη/c44.
The above expression indicates that: there is no image force on the screw dislocation at the initial

moment t = 0; the screw dislocation will always be attracted to the piezoelectric inclusion when t > 0;
and the image force is independent of the piezoelectric and dielectric properties e15 and ε11.

Case 2. If the inclusion and matrix have the same material property but are poled in opposite directions,
implying c(1)

44 = c(2)
44 = c44, e(1)

15 = − e(2)
15 = e15, and ε

(1)
11 = ε

(2)
11 = ε11, then it follows from (21) that the

image force on the screw dislocation is

Fx(t) =
b2 R2

2πx0

[ c̃44

et/t0 x2
0 − R2

−
c44

x2
0 − R2

]
,

with t0 = 2Rη/c̃44.
It is observed from the above expression that when

0 ≤ t < t1, t1 = t0 ln
( c̃44x2

0 −
(
c̃44 − c44

)
R2

c44x2
0

)
,

the screw dislocation will be repelled from the inclusion, meaning Fx(t) > 0, (0 ≤ t < t1). At the moment
t = t1, there is no image force on the dislocation, that is, Fx(t1) = 0. When t > t1, the screw dislocation
will always be attracted to the inclusion, meaning Fx(t) < 0, (t > t1).

http://pjm.math.berkeley.edu/jomms/2008/3-4/p10.xhtml
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Case 3. If both the inclusion and matrix are purely elastic, that is, e(1)
15 = e(2)

15 = 0, then it follows from
(21) that the image force on the screw dislocation is

Fx(t) =
c(2)

44 b2 R2

2πx0

( 2c(1)
44

c(1)
44 + c(2)

44

1
et/t0 x2

0 − R2
−

1
x2

0 − R2

)
, (22)

with t0 given by Equation (19). We have carefully checked that our closed-form expression of the image
force, (22), is consistent with the numerical results from Fan and Wang [2003, Figure 7, Equation (4.12)].

At the initial time t = 0, (22) for the image force is

Fx(0) =
c(2)

44 b2

2π

c(1)
44 − c(2)

44

c(1)
44 + c(2)

44

R2

x0
(
x2

0 − R2
) , (23)

which is just the result for a screw dislocation interacting with a circular inclusion with a perfect interface
[Dundurs 1967; Fan and Wang 2003]. At the time t = ∞, (22) for the image force is

Fx(∞) = −
c(2)

44 R2b2

2πx0
(
x2

0 − R2
) < 0, (24)

which is the result for a dislocation interacting with a traction free circular hole. It is observed from
(22)–(24) that if the inclusion is stiffer than the matrix (that is, c(1)

44 > c(2)
44 ), there always exists a time

t = t2 (t2 > 0), at which Fx(t2) = 0 due to the fact that Fx(0) > 0 and Fx(∞) < 0. In addition t2 can be
determined from (22) as

t2 = t0 ln
(2c(1)

44 x2
0 − R2

(
c(1)

44 − c(2)
44

)
x2

0

(
c(1)

44 + c(2)
44

) )
, c(1)

44 > c(2)
44 .

Furthermore, when 0 ≤ t < t2 the screw dislocation will be repelled from the inclusion, while when
t > t2 the screw dislocation will be attracted to the inclusion.

Case 4. Lastly we consider a straight interface. The straight interface can be considered as a limit of the
circular interface if we let δ = x0 − R and assume that R → ∞. Under this condition and after some
derivations, (21) is finally reduced to

Fx(t) =
b2

4πδ

[ 2
(
c̃(1)

44 c(2)
44 ε

(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

)(
c(1)

44 + c(2)
44

)(
ε

(1)
11 + ε

(2)
11

)
+

(
e(1)

15 + e(2)
15

)2

(
1 +

t
2t̃0

)−1
− c(2)

44

]
, (25)

where

t̃0 = δη

(
c(1)

44 + c(2)
44

)(
ε

(1)
11 + ε

(2)
11

)
+

(
e(1)

15 + e(2)
15

)2

c̃(1)
44 c(2)

44 ε
(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

.

(25) is just the result derived in [Wang and Pan 2008, Equation (40)] for a straight interface.
Finally we consider a piezoelectric composite with the piezoelectric BaTiO3 being the fiber and the

piezoelectric PZT-5 being the matrix. The material properties of BaTiO3 and PZT-5 are listed in Table 1.
Figure 2 illustrates the normalized image force F̃ = (RFx)/(b2c(2)

44 ) on the screw dislocation at the
four different times t/t0 = 0, 0.05, 0.5, and ∞. It is observed that at the initial time t = 0 the screw
dislocation is always repelled from the inclusion (Fx > 0), while at the times t = 0.5t0 and t = ∞ the
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Compound c44 (1010 N/m2) e15 (C/m2) ε11 (10−9 F/m) c̃44 (1010 N/m2)

PZT-5 2.11 12.3 8.1103 3.9754
BaTiO3 4.4 11.4 9.8722 5.7164

Table 1. The material properties of PZT-5 and BaTiO3 [Wang et al. 2003].

screw dislocation is always attracted to the inclusion (Fx < 0). At the time t = 0.05t0 we observe that
there exists a transient equilibrium position (Fx = 0) at the point x0 = 1.066R very close to the circular
interface. In addition, the equilibrium position is unstable due to the fact that Fx < 0 for x0 < 1.066R
and Fx > 0 for x0 > 1.066R. In fact, the relationship between time and the transient unstable equilibrium
position (Fx = 0) can be easily determined from Equation (21) as

x0

R
=

√
c − 1

c − et/t0
, c > 1, 0+

≤ t ≤ t0 ln(c),

where

c =
2
(
c̃(1)

44 c(2)
44 ε

(1)
11 + c(1)

44 c̃(2)
44 ε

(2)
11

)
c(2)

44

[(
c(1)

44 + c(2)
44

)(
ε

(1)
11 + ε

(2)
11

)
+

(
e(1)

15 + e(2)
15

)2] .

In this example c = 1.4277. Then it is found that when 0+
≤ t ≤ 0.3561t0 there always exists a transient

unstable equilibrium position for the screw dislocation. We demonstrate in Figure 3 the transient unstable
equilibrium position as a function of time. One can observe from Figure 3 that as the time evolves from
t = 0+ to t = 0.3561t0 the transient unstable equilibrium position moves along the positive x direction
from x0 = R to infinity.

Figure 2. The normalized image force F̃ = (RFx)/(b2c(2)
44 ) on the screw dislocation at

the four times t/t0 = 0, 0.05, 0.5, and ∞. The piezoelectric composite is composed of
the piezoelectric BaTiO3 fiber and the piezoelectric PZT-5 matrix.
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Figure 3. The transient unstable equilibrium position for the screw dislocation as a func-
tion of time. The piezoelectric composite is composed of the piezoelectric BaTiO3 fiber
and the piezoelectric PZT-5 matrix.

5. Conclusions

A theoretical analysis was performed for a screw dislocation with a line force and a line charge interacting
with a piezoelectric circular inclusion with a viscous interface described by a linear dashpot. The exact
closed-form solutions were obtained by the complex variable and analytical continuation technique. In
this investigation the screw dislocation was assumed to be within the matrix, whilst the solution to
the situation in which the dislocation is located within the circular inclusion can be identically derived.
Starting from the derived closed-form solution, we can further investigate the interaction of a matrix
crack with the circular viscous interface. Finally we mention that if the viscoelastic effect modeled by
both the linear spring and dashpot is introduced into the circular interface, a closed-form solution cannot
be obtained for the interaction problem due to the additional introduction of the linear spring. In this
case, however, infinite series form solutions to the interaction problem can be derived (see solutions in
[Fan and Wang 2003] for the Kelvin and Maxwell type viscoelastic interfaces). In fact, it is in principle
impossible to obtain closed-form solutions for the dislocation/inclusion interaction problem even when
only the linear spring model is introduced into the circular interface [Ru and Schiavone 1997].
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