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Abstract
Mathematical modeling to analyze the vibration problem of a Terfenol-D actuator is presented,
using Hamilton’s variational principle. The total kinetic, strain and magnetic energy stored in
the rod is expressed as a function of the displacement. The material constitutive relation of the
magnetostrictive rod is assumed to be cubic nonlinear. Both the governing equation and the
boundary condition derived are of time variable coefficient. A numerical approach which
combines the finite difference method with the transfer matrix method is proposed for solving
the excited vibration problem of a magnetostrictive rod. By discretizing the displacement in
space and making the finite difference formulation, the nodal displacement is obtained in terms
of a system of linear second-order ordinary differential equations (ODEs), which can be
subsequently transformed into a system of linear first-order ODEs in the time domain. The time
domain within a period is then discretized with the numerical solution being expressed by the
transfer matrix method. As a numerical example, the vibration of a Terfenol-D rod excited by a
harmonic current is analyzed. The numerical results show that the induced displacement in the
rod is periodic, with its frequency being roughly twice that of the exciting current. Such a
double frequency effect has been observed in experiments. The stress behavior and the peak
displacement within the rod are also numerically analyzed, with an emphasis on the effect of the
involved magnetostrictive and magnetoelastic parameters. The good agreement between the
numerical results and the experimental data available in the literature verifies the validity of the
present modeling and method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetostriction, also called the Joule effect, is the
shape change of a material under the influence of an
external magnetic field. As early as the 1930s to 1950s,
magnetostrictive transducers made from nickel and its
alloys were routinely used in sonars for military and civil
applications. However, the low magnetostriction effect in
nickel (typically of the order of 50 ppm) limited the scope

4 Author to whom any correspondence should be addressed.

of new applications [1, 2]. In the last 30 years, the discovery
of Terfenol-D has led to the development of magnetostrictive
actuators. Terfenol-D is a kind of giant magnetostrictive
material (of the order of 1500–2000 ppm) containing a
rare earth compound [3]. Terfenol-D has many merits as
compared to the piezoelectric materials. These include large
strain, high power density, low working voltage and less
performance degradation at room temperature. Therefore,
Terfenol-D has become a promising candidate of materials
for sensors and actuators. Recently, the electromagnetic–
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Figure 1. Sketch of a typical Terfenol-D actuator.

mechanical coupling problems in magnetostrictive materials
and structures have attracted considerable attention of
engineering and science researchers. For instance, nonlinear
constitutive relations for magnetostrictive materials have been
studied in [4–9]. Dynamic characteristics of Terfenol-D
actuators have been observed in experiments [10–12, 31].
Theoretical analysis models of Terfenol-D rods in mechanical
devices have been developed [12–16]. However, in the
aspect of numerical computation, only a few works have
so far appeared. For example, finite element methods
have been used to simulate numerically the performance
of Terfenol-D actuators [7, 17–19]. The vibration of a
beam with a magnetostrictive layer was analyzed by the
finite element method [20]. Vibrations in plates made
of piezoelectric and magnetostrictive materials were also
investigated recently. These studies have shown the important
role of the magnetostrictive layer on the natural frequency
and mode shape of the plate [21, 22]. Composites made of
magnetostrictive and piezoelectric materials possess certain
merits over the corresponding single phase materials. Among
them, the magnetoelectric coupling has been particularly
attractive to the design of various novel devices, as it is also
associated with the new materials called multiferroics [23, 24].

The strains generated by magnetostrictive actuators in
response to applied input current can be modeled as the
vibration of a magnetostrictive rod in an actuator. The aim
of this paper is to present both a mathematical modeling
and a numerical approach to solve the vibration problem
of a Terfenol-D rod, which is employed to model an
actuator. On the basis of the nonlinear constitutive relation of
magnetostrictive materials and Ampère’s law for the magnetic
field, a mathematical modeling of the vibration problem is
constructed by using Hamilton’s variational principle. The
governing equation and boundary condition are of time
variable coefficient. To simulate the vibration behavior of the
actuator, numerical solutions are obtained by employing the
finite difference method in the space domain and the transfer
matrix method in the time domain. Numerical examples
are also presented, which show clearly the so-called double
frequency effect. In other words, the induced displacement is
periodic, with its frequency being roughly twice that of the
periodic exciting current; such an effect has been observed
in experiments [11]. The presented numerical results also
show the effect of the magnetostrictive and magnetoelastic
parameters on the response of the Terfenol-D rod.

This paper is organized as follows. In section 2, the basic
formulation, including the Hamilton variational principle and
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Figure 2. Simplified mechanical model for the vibration of the
Terfenol-D rod.

the boundary/initial value problems for the nonlinear Terfenol-
D rod, is presented. In section 3, the detailed numerical
approach is discussed. These contain the finite difference
discretization in the space domain, the transfer matrix method
in the time domain, the periodicity of the solution, and the
double frequency effect. Numerical results and comparison
with experimental data from [31] are given in section 4, and
conclusions are drawn in section 5.

2. Formulation

2.1. Problem description

Let us consider the dynamic problem of a typical Terfenol-D
actuator. The sectional view of the actuator is shown in figure 1
[1, 25]. The primary components consist of a cylindrical
magnetostrictive Terfenol-D rod in the middle, a surrounding
solenoid coil, and a prestress spring washer near one end of
the structure. Since Terfenol-D is much more brittle in tension
than in compression, a prestressed spring is usually added
in the design to provide an initial static compressive stress
(prestress) σ0 so that tensile stresses in the Terfenol-D rod can
be avoided. The mechanical behavior of the actuator under
consideration can be simplified as the vibration of the Terfenol-
D rod as shown in figure 2. The vibration is excited by an
input alternating current running through a solenoid around the
rod. The time-dependent current generates a varying magnetic
field within the rod. Because of the expansion or contraction of
the magnetostrictive material in response to the variation of the
applied magnetic field, vibration of the Terfenol-D rod occurs.

We now denote the length of the rod as l, the cross-section
area of the rod as A, the Young’s modulus of the rod as E ,
and the stiffness of the prestressed spring as K0. The space
coordinate x-axis is aligned with the axis of the rod. The rod
is fixed at x = 0 and restricted at the end x = l by the spring
(figure 2). The initial static deformation of the rod and the
spring are linear elastic. Using Hooke’s law and the balance
relation between the internal force of the rod and the restoring
force of the spring, we can obtain the static displacement in the
rod as u0(x) = σ0x/E and the static compression of the spring
as � = σ0 A/K0. Evidently, the initial static deformation of
the rod is homogeneous and is in a state of self-equilibrium.
Therefore, for the vibration analysis of the rod, we can choose
the static deformation as the reference state.

2.2. Basic equation

For the longitudinal vibration of a Terfenol-D rod, the
displacement u(x, t) is a function of the time t and the space
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coordinate x measured from the statically deformed position.
The corresponding strain in the longitudinal direction is

ε = ∂u

∂x
. (1)

According to the experimental results, the behavior
of magnetostrictive materials is nonlinear. For the one-
dimensional problem the constitutive relations can be
described in general as [7]

ε = f (σ, H ), B = g(σ, H ) (2)

where σ is the longitudinal stress, H the magnetic field, and
B the magnetic flux (also called the magnetic induction). The
constitutive functions f and g may be obtained by measuring
the magnetostriction and the magnetization versus the applied
magnetic field and the external stress [4]. Recent experimental
measurements showed that, for a given stress, the strain is
independent of the direction (or orientation) of the applied
magnetic field, and its magnitude increases with increasing
magnitude of the applied magnetic field [8]. Thus, the function
f should satisfy the following constitutive restrictions:

f (σ,−H ) = f (σ, H ),

∂ f (σ, H )

∂ H
> 0 (H > 0).

(3)

A few constitutive relations for g as well as for f have
been proposed in the literature [6, 8] to fit the experimental
curves of the measured magnetostriction. In this paper, the
standard one-dimensional nonlinear constitutive law [6, 8] is
employed for the magnetostrictive material:

ε =
(

1

E
+ r H 2

)
σ + m H 2 (4)

B = (μ + mσ + rσ 2)H (5)

where μ is the magnetic permeability, m the magnetostrictive
modulus, and r the magnetoelastic coefficient.

We remark that, in the constitutive law (4) and (5), the
hysteresis effect of magnetostriction is not included as the
dissipation energy is small in the complete magnetization loop
for Terfenol-D. We further mention that the constitutive law (4)
and (5) agrees well with the experimental curves under applied
magnetic fields of low and moderate magnitude [8]. Physically,
the constitutive law (4) can be regarded as the extended
Hooke’s law for magnetostrictive materials: the total strain is
the summation of the elastic strain and the magnetostrictive
strain resulting from the magnetic field. That is, ε = σ/Ē +
m H 2 with the effective elastic compliance, 1/Ē = 1/E +r H 2,
being an even function of the magnetic field H . Also, the
constitutive law (5) is an extension of the classical relation
in the theory of magnetism. Namely, the magnetic flux B is
proportional to the magnetic field H : B = μ̄H . However, the
effective magnetic permeability, μ̄ = μ + mσ + rσ 2, depends
quadratically on the stress σ .

Inversion of the constitutive relations (4) and (5) gives the
following equivalent relations:

σ = Eε − Em H 2

1 + Er H 2
(6)

B = μH + m H
Eε − Em H 2

1 + Er H 2
+ r H

(
Eε − Em H 2

1 + Er H 2

)2

. (7)

Therefore, both the stress and magnetic flux are functions
of the strain and magnetic field.

For the magnetostrictive rod shown in figure 1, the
magnetic field H can be assumed to be uniform along the rod.
As the impedance of the coil, housing, and end caps are much
smaller than that of the magnetostrictive rod, all the impedance
effects of the coil, housing and end caps on the magnetic field
are negligible. Thus, the magnetic field H is connected to the
applied current by Ampère’s law [1]. In other words,

H = n

l
i(t) (8)

where n is the number of turns in the coil and i(t) is the given
input current passing through the coil.

Therefore, the problem is reduced to the solution for the
elastic displacement or strain, subjected to the boundary and
initial conditions described in detail in the next section.

2.3. Boundary and initial conditions

In order to obtain the equation of vibration and the
boundary/initial conditions for the Terfenol-D rod, the
variational approach based on the extended Hamilton’s
principle [7] is employed. The Hamilton energy functional of
the Terfenol-D rod from time t1 to t2 is defined as

I =
∫ t2

t1

(Ec + UM − UE) dt . (9)

The kinetic energy in the rod from x = 0 to l is

Ec = A

2

∫ l

0
ρ

(
∂u

∂ t

)2

dx (10)

with ρ being the mass density of the rod. The magnetic energy
is

UM = A

2

∫ 1

0
B H dx . (11)

The strain energy plus the energy due to the end spring is

UE = A

2

∫ l

0
σε dx − 1

2
K0u2(l, t). (12)

Substitution of the constitutive equations (4)–(6) into (9)
leads to the Hamilton energy functional:

I [u] =
∫ t2

t1

[
A

2

∫ l

0

(
ρ

(
∂u

∂ t

)2

− E(
1 + Er H 2(t)

)2

×
(

∂u

∂x
− m H 2(t)

)2

+ μH 2

)
dx − K0

2
u2(l, t)

]
dt .

(13)

Since the magnetic field H (t) is a given function from
equation (8), the Hamilton energy I [u] is a functional with
respect to the magnetoelastic displacement u(x, t). This
variational functional (13) has been used for developing an
extended finite element formulation [18].
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Using Hamilton’s principle, i.e., the variational δ I [u] = 0,
we find the governing equation for the longitudinal vibration of
the Terfenol-D rod as [18]

∂2u

∂ t2
= E

ρ

1

[1 + r E H 2(t)]2

∂2u

∂x2

(0 � x � l, t � 0) (14)

with the natural boundary condition at the spring end of the
Terfenol-D rod (x = l) as[

∂u

∂x
+ K0

E A
(1 + r E H 2(t))2u

]
x=l

= m H 2(t)

(t � 0). (15)

At the fixed end (x = 0) the boundary condition is

u(0, t) = 0 (t � 0). (16)

For practical applications of the actuator, a periodic
varying input current is usually applied, which thus induces
a periodic vibration of the Terfenol-D rod. Therefore, the
periodicity condition in time can be described as follows:

u(x, 0) = u(x, T ),
∂u

∂ t
(x, 0) = ∂u

∂ t
(x, T )

(0 � x � l) (17)

where T = 2π/ω is the vibration period of the rod.
In summary, the vibration problem of the Terfenol-D rod

is mathematically reduced to the solution to the boundary value
problem with the periodicity condition in time (14)–(17). Note
that the equation of vibration (14) has variable coefficient with
time t , and as such, we propose, in the next section, a numerical
method to solve the problem.

3. Numerical computation method

3.1. Finite difference discretization in the space domain

The first step in obtaining a numerical solution of the initial
and boundary value problem (14)–(17) is to divide the x-
domain [0, l] into N subintervals (or a mesh) with nodes:
0 = x0 < x1 < · · · < xN−1 < xN = l. The mesh spacing
is assumed to be uniform, in other words, xk+1 − xk = h =
l/N(k = 0, 1, . . . , N − 1). We then denote the corresponding
displacement at node xk for any time t ∈ [0,∞] as

uk = uk(t) ∼= u(xk, t) (k = 1, 2, . . . , N). (18)

At each interior point xk (k = 1, 2, . . . , N −1), we use the
second-order difference approximation to the second derivative
∂2u/∂x2 in the space domain. Thus, the wave equation (14) is
approximated by

ük = E

ρh2
c1(t)(uk−1−2uk+uk+1) (k = 1, 2, . . . , N−1)

(19)
where ük = d2uk/dt2 and u0(t) = 0 from the boundary
condition (16). Also in equation (19), c1(t) is a given function
defined as

c1(t) = [1 + r E H 2(t)]−2. (20)

At the boundary point x = xN , we apply the first-order
difference approximation to equation (14) twice, which yields

üN = E

ρh
c1(t)

[
∂u

∂x

∣∣∣∣
x=xN

− ∂u

∂x

∣∣∣∣
x=xN−1

]

= E

ρh
c1(t)

[
∂u

∂x

∣∣∣∣
x=xN

− 1

h
(uN − uN−1)

]
.

Moreover, inserting the boundary condition (5) into the above
equation, we obtain

üN = E

ρh2

[
c1(t)

(
uN−1 −

(
1 + c0

c1(t)

)
uN

)
+ hc1(t)

]

(21)
where the constant c0 and the function c2(t) are given by

c0 = K0h/E A, c2(t) = m H 2(t)c1(t). (22)

In summary, equations (19) and (21) can be expressed in a
compact matrix form as

ü + B(t)u = q(t) (t � 0). (23)

This is the vibration equation for the node displacement
u = [u1(t), u2(t), . . . , uN (t)]T, with ü = d2u/dt2 being
the node acceleration vectors. The coefficient matrix and the
external excitation vector in (23) are, respectively, given by

B(t) = E

ρh2
c1(t)

⎡
⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 + c0

c1(t)

⎤
⎥⎥⎥⎥⎦

N×N

and q(t) = E

ρh
c2(t)[0, 0, . . . , 0, 1]︸ ︷︷ ︸

N

T.

(24)
The periodicity condition (17) can be written as

u(0) = u(T ), u̇(0) = u̇(T ). (25)

3.2. General solutions in the time domain

In order to solve the periodic problem described by
equations (23) and (25), we introduce the state vector

y(t) = [y1(t), y2(t), . . . , y2N (t)]T ≡ [u(t), u̇(t)]T (26)

where u̇(t) = du(t)/dt is the node velocity vector.
The problem described by equations (23) and (25) can

now be equivalently transformed into a periodic problem for
a first-order system of ordinary differential equations (ODEs)
as follows:

dy
dt

= A(t)y + f(t) (t > 0) (27)

y(0) = y(T ) (28)
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where the coefficient matrix and the inhomogeneous term
vector are, respectively, given by

A(t) =
[

0 IN

−B(t) 0

]
and

f(t) = [0, q(t)]T = E

ρh
c2(t)[0, . . . , 0, 1]︸ ︷︷ ︸

2N

T
(29)

in which IN is an N × N identity matrix.
Following the basic theory of first-order ODEs [26], the

solution to equation (27) can be expressed by the fundamental
solution matrix X(t) and the initial value y(0) as

y(t) = X(t)

[
y(0) +

∫ t

0
X−1(τ )f(τ ) dτ

]
(t > 0) (30)

where the matrix X(t) has a size of 2N × 2N , and is the so-
called fundamental matrix of equation (27). Namely, it is the
solution to the following initial value problem:

dX
dt

= A(t)X(t) (t > 0), X(0) = I2N . (31)

Letting t = T in equation (30) and making use of the
periodicity condition (26), we find the initial value as

y0 = [I2N − X(T )]−1
∫ T

0
X−1(τ )f(τ ) dτ (t > 0). (32)

Thus, the periodic problem described by equations (27)
and (22) is equivalent to the initial value problem given as

dy
dt

= A(t)y + f(t) (t > 0) (33)

y(0) = y0 (34)

where the initial value y0 is given by equation (32).
Clearly, once the fundamental solution matrix X(t) is

solved from the initial value problem (31), the solution to
the periodic problem (27) and (28) can be obtained from
equations (30) and (32).

3.3. Periodicity of the solution

3.3.1. Existence condition of the periodic solution. The
periodic problem (27) and (28), or equivalently, the initial
value problem (32)–(34), needs to be solved in the infinite-time
domain [0,∞). However, if the solution is periodic, then it is
enough to find the solution in the finite-time periodic domain
[0, T ] with the period T . To solve the problem in the periodic
domain only, we need to first discuss the periodicity of solution
for the initial value problem (33) and (34).

We assume that the input current is alternating and
periodic:

i(t) = i(t + T ) (35)

where the period of input current is T = 2π/ω, with ω

being the circular frequency of the input current. Thus, from
equation (8), we observed that the magnetic field H (t) is also
T -periodic (i.e., periodic with period T ). Consequently, both

the coefficient matrix A(t) and the inhomogeneous term vector
f(t) in equation (33) are also T -periodic. Namely,

A(t) = A(t + T ), f(t) = f(t + T ). (36)

According to the general theory of a linear ODE system
with periodic coefficients [27], we conclude that equation (27)
has a unique T -periodic solution if the frequency ω of the
excitation current satisfies

F(ω) = det[I2N − X(2π/ω)] �= 0. (37)

In fact, if condition (37) holds then the initial value y0

exists (as from (32)). Moreover, based on the existence and
uniqueness of the solution for the initial value problem of
a first-order ODE system, equation (27) with the periodicity
condition (28) has a unique T -periodic solution:

y(t) = y(t + T ). (38)

In the following two subsections, instead of discussing the
periodicity solution to equation (27), we discuss its equivalent
initial value problem (33) and (34) for the special case with
magnetoelastic coefficient r = 0 and for the general case
where r �= 0. The latter case is analyzed by employing the
perturbation approach.

3.3.2. Periodicity of the solution for the case r = 0. When
the magnetoelastic coefficient r = 0, we have c1(t) ≡ 1 from
equation (20). Thus, we observe from equations (24) and (29)
that the coefficient matrix in equation (27) is reduced to a
constant matrix:

A(t) = A0 =
[

0 IN

−B0 0

]
(39a)

with

B(t) = B0 = E

ρh2

⎡
⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 + c0

⎤
⎥⎥⎥⎥⎦

N×N

(39b)

and the inhomogeneous vector becomes

f(t) = f0(t) = Em

ρh

(n

l
i(t)

)2
[0, . . . , 0, 1]︸ ︷︷ ︸

N

T. (40)

Moreover, the fundamental solution matrix to equa-
tion (27) can be written as a matrix exponential function:

X(t) = exp(tA0). (41)

Substituting equations (40) and (41) into (30) and (32), we
find that the solution to the initial value problem (33) and (34)
can be expressed as

y(t) = z0(t) = exp(tA0)

[
y0 +

∫ t

0
exp[−sA0]f0(s) ds

]

(t > 0) (42)

5
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where the initial value

y0 = [I2N − exp(T A0)]−1
∫ T

0
exp(−sA0)f0(s) ds

(t > 0). (43)

Furthermore, the existence condition for a periodic
solution, i.e., equation (37), is equivalent to the following
condition (see appendix A in detail):

�(ω) = det[B0 − (αω)2IN ] �= 0 (α = 1, 2, . . .). (44)

Therefore, we conclude that the solution z0(t) given by
equation (42) and (43) is T -periodic if the condition (44) holds.

3.3.3. Periodicity of the solution for the case r �= 0. To
discuss the periodicity of the solution for the case r �= 0, we
first expand the given function c1(t) in equation (20) into a
power series of r :

c1(t) = 1 +
∞∑

s=1

ak(t)r
s ,

as(t) = (−1)s(s + 1)

(
E

n2

l2
i 2(t)

)s

(s = 1, 2, . . .).

(45)
Thus, the coefficient matrix A(t) and the inhomogeneous

term f(t) in equation (33) can be also represented in a power
series of r :

A(t) = A0 + Ā
∞∑

s=1

as(t)r
s ,

f(t) = f0(t)

(
1 +

∞∑
s=1

as(t)r
s

) (46)

where

Ā =
[

o o
B̄ o

]
, B̄ = B0 − E

ρh2
diag(0, . . . , 0, c0︸ ︷︷ ︸

N

). (47)

The radius of convergence for the power series (45) can
be determined by d’Alembert’s ratio test formula: R =
lims→∞ |as(t)/as+1(t)| = l2/(En2i 2(t)). This means that the
power series of A(t) and f(t) in equation (46) are convergent
when the parameter r satisfies

r <
l2

En2i 2
max

, imax = max
0�t�2π/ω

|i(t)|. (48)

Moreover, the solution of the initial value problem (33)
and (34) can be expanded by a convergent power series:

y(t) = z0(t) +
∞∑

s=1

zs(t)r
s (49)

where z0(t) is given by equation (42), with the other expansion
coefficients zs(t) (s = 1, 2, . . .) being determined below.

Substituting the expanding power series (45) and (46)
into equation (27) and the periodicity condition (28), and
comparing the coefficients of the like powers of r on both sides

of equations (27) and (28), we obtain the perturbation problems
of the original periodic solution as follows:

r s : dzs(t)

dt
= A0zs(t) + gs(t), zs(0) = zs(T )

(s = 1, 2, . . .) (50)

where the inhomogeneous vector is given by

gs(t) = f0(t)as(t) +
s−1∑
i=0

as−i (t)Āzi (t). (51)

It is observed from equations (35), (40), and (45) that both
as(t) (s = 1, 2, . . .) and f0(t) are T -periodic. If condition (44)
holds, then the solution z0(t) is T -periodic as we have shown
in section 3.3.3. Thus the inhomogeneous vector g1(t) is also
T -periodic. Therefore, the solution z1(t) is T -periodic due
to the same reason as the solution z0(t) is. Analogously, the
solutions zs(t) (s = 2, 3, . . .) are all T -periodic as well.

In summary, we conclude that when the input current is
T -periodic, the solution y(t) for the initial value problem (33)
and (34) is also T -periodic if conditions (44) and (48) hold.

3.3.4. Double frequency effect. We observe from the
constitutive law (4) that the strain for the magnetostrictive
material is the same for both positively and negatively applied
magnetic field of same magnitude. This implies that the
vibration frequency, in physics, will be twice that of the applied
field. This is the so-called double frequency effect [8, 11]. The
double frequency effect has been observed for the Terfenol-
D actuator. Experimental results reveal that the frequency
of the magnetostrictive output is doubled for sinusoidal input
current and in the absence of a bias magnet field (no permanent
magnets) [11]. To demonstrate theoretically that the responses
of the displacement and the velocity at every spacial node have
such a feature, we assume that the input current is sinusoidal
alternating with the period T = 2π/ω. That is,

i(t) = imax sin ωt . (52)

For this case, equations (40) and (45) are reduced to

as(t) = (−1)s(s + 1) (φ(t))s (s = 1, 2, . . .),

f0(t) = m

ρh
φ(t)[0, . . . , 0, 1]︸ ︷︷ ︸

N

T

where φ(t) = E
2 ( nIm

l )2(1 − cos 2ωt). Obviously, as(t)
(s = 1, 2, . . .) and f0(t) are T/2-periodic. Analogously to
the discussion in sections 3.3.2 and 3.3.3, we conclude that
when the input current is T -periodic sinusoidal alternating, the
solution y(t) for the initial value problem (33) and (34) is T/2-
periodic if the conditions (44) and (48) hold. This means that
the responses of the displacement and the velocity at every
spacial node have a frequency which is twice that of the input
exciting current. Hence, the effect of double frequency on the
response of the vibration is demonstrated.
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3.4. Time-domain propagation via transfer matrix method

In the previous section we have demonstrated that the
periodic problem (27) and (28) or equivalently the initial
value problem (32)–(34) has a T -periodic solution if the
input exciting current is T − periodic, under certain additional
conditions satisfied. Thus, we need only to solve the initial
value problem (32)–(34) in a single periodic time interval
[0, T ]. To find the numerical solution for the initial value
problem (32)–(34), the transfer matrix method is employed,
which is presented below.

First, we partition the time interval [0, T ] into M uniform
segments, the temporal nodes being

tk−1 = (k −1)�t (k = 1, 2, . . . , M), �t = T/M.

(53)
We let t = tk and t = tk−1 in the general solution (30) to

eliminate the initial value y(0). This yields

y(tk) = X(tk)

[
X−1(tk−1)y(tk−1) +

∫ tk

tk−1

X−1(τ )f(τ ) dτ

]
.

(54)
Next, to determine the fundamental solution matrix

X(t) from the initial value problem (31), we make the
following approximation in each time segment [tk−1, tk) (k =
1, 2, . . . , M):

A(t) ∼= Ak = A(tk−1 + �t/2),

f(t) ∼= fk = f(tk−1 + �t/2) (tk−1 � t � tk). (55)

In other words, in each segment f(t) and A(t) are
approximately replaced, respectively, by their corresponding
middle-point values in the segment. Thus, in the kth
segment we have the approximate initial value problem for
equation (31):

dX(t)

dt
= AkX(t), X(tk−1) = Xk−1

(tk−1 � t < tk). (56)

The solution of the initial value problem (56) can be
expressed in terms of the matrix exponential function:

X(t) = exp[(t − tk−1)Ak]Xk−1 (tk−1 � t < tk). (57)

Substituting the approximate expressions (55) and (57)
into equation (54), we can obtain (see appendix B for detail)

y(tk) = Tky(tk−1)+ (Tk − I2N )A−1
k fk (k = 1, 2, . . . , M)

(58)
where the segment transfer matrix is defined as

Tk = exp[�tAk]. (59)

Equation (58) gives the transfer relation for the solution
y(t) between the left and right nodes of the kth segment. The
transfer relation for the fundamental solution matrix is

Xk = TkXk−1 = TkTk−1 . . . T1 (k = 1, 2, . . . , M).

(60)

The segment transfer matrix Tk can be calculated by using
a fourth-order Padé approximation for the exponential of a
matrix [28]:

Tk = exp(�tAk) = [I − 1
2�tAk + 1

12�t2A2
k]−1

× [I + 1
2�tAk + 1

12�t2A2
k] + o(�t4). (61)

Moreover, from equation (32) the initial value y0 can be
approximately calculated as follows:

y0 = (I2N − XM)−1
M∑

k=1

X−1
k (Tk − I)A−1

k fk (62)

where the matrix X−1
k = T−1

1 T−1
2 . . . T−1

k and T−1
k =

exp[−�tAk].
Finally, we can carry out the numerical calculation for

the state vectors y(tk) (k = 1, 2, . . . , M) at the temporal
nodes by using the recursive relation (58) starting from
the initial condition (62), in which the calculation for the
matrix exponential exp(±�tAk) on the basic of the Padé
approximation (61) is the key step. Once the components of
the state vectors y j(tk) ( j = 1, 2, . . . , 2N ; k = 1, 2, . . . , M)
is solved, the displacements and velocities in each time and
space node for the vibration of the rod can be given by
u(xi , tk) = yi(tk) (i = 1, 2, . . . , N) and ∂u(xi , tk)/∂ t = yi(tk)
(i = N + 1, N + 2, . . . , 2N).

4. Numerical results and discussion

To illustrate the efficiency of the proposed method, the
vibration of a magnetostrictive (Terfenol-D) rod is considered.
The length of the rod l = 0.25 m and the area cross-section
A = 3.14 × 10−4 m2 (the radius R = 0.01 m). For
Terfenol-D material, the Young’s modulus E = 26.5 GPa and
the mass density ρ = 9250 kg m−3. The magnetostrictive
modulus m = 0.09 × 10−12 m2 A−2 and the magnetoelastic
coefficient r = −2.77 × 10−20 m2 A−2 Pa−1, with a prestress
σ0 = 6.9 MPa. All material parameters are typical values taken
from [8]. The spring stiffness K0 = 3 × 107 N m−1 is chosen
to be moderately compliant as in [11]. The number of turns in
the coil n = 120 and the alternating current passing through
the solenoid is harmonic:

i(t) = imax sin ωt (63)

with the peak current imax = 10 A and the circle frequency
ω = 4.4 kHz (the frequency f = ω/2π = 700 Hz). Figure 3
shows the input current curve in one period T = 2π/ω =
1.43 × 10−3 s.

In the following, we present some numerical results for
the vibration of a magnetostrictive (Terfenol-D) rod based on
the method discussed above. The numerical implementation is
only for a period of the exciting current. The time t-domain
[0, T ] is partitioned into M segments with a uniform time step
�t = 2π/(Mω). The space x-domain [0, l] is divided into N
elements, with the length of each element being h = l/N .

First, in order to examine the convergence of the numerical
method, the displacement response at the pusher end u(l, t)
is calculated for different numbers of time segments M and

7
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Figure 3. Variation of input current in one period T = 1.43 ms
(1.43 × 10−3 s) with peak imax = 10 A.

Figure 4. Response of the displacement at the pusher end u(l, t) for
different numbers of time segments M and space elements N .

space elements N . Excellent convergence is observed when
N � 12 and M � 40, as shown in figure 4, where the
displacement curves converge gradually into a smooth one
with increasing M and N . Moreover, figure 4 exhibits that
the frequency of the displacement response is twice that of
the exciting current. This is a numerical confirmation of the
double frequency effect which was observed experimentally
for a Terfenol-D actuator without a bias magnetic field [11]
and demonstrated theoretically in section 3.3.4 of this paper.

Figures 5(a)–(c) show, respectively, the responses of
displacement, stress, and the coupling part of the magnetic
field and stress in the magnetic flux B0(x, t) at the pusher
end (x = l) and in the midpoint (x = l/2). Here, B0 =
μH − B = (mσ +rσ 2)H and the permeability of the material
μ = 9.2 × 4π × 10−7 H/m. All these results show that the
vibration at different points of the rod is synchronous. It is also
interesting that while the responses of displacement and stress
are of double frequency, the response of the magnetic flux is
not.

Next, we investigate the effect of changing material
parameters on the performance of the actuator. The
displacements and stresses at the pusher end of rod (x = l)
are calculated for three different values of the magnetostrictive
modulus: m = 0.07 × 10−12, 0.09 × 10−12 and 0.12 ×
10−12 m2 A−2, while the magnetoelastic coefficient is fixed
at r = −2.77 × 10−20 m2 A−2 Pa−1. It is observed from
figures 6(a) and (b) that with increasing magnetostrictive

Figure 5. Response curves at the end (x = l) and at the midpoint
(x = l/2) of the rod: (a) for displacement, (b) for stress, and (c) for
the coupling part of the magnetic field and stress in magnetic flux.

modulus, the amplitude of the displacement and stress
increases. Figures 7(a) and (b) present the response curves for
different values of the magnetoelastic coefficient: r = −2.77×
10−20 m2 A−2 Pa−1, r = 0 and 5.00 × 10−20 m2 A−2 Pa−1,
while the magnetostrictive modulus is fixed at m = 0.09 ×
10−12 m2 A−2. We observed from figures 7(a) and (b) that, in
contrast to the effect of the magnetostrictive modulus on the
response, the effect of the magnetoelastic coefficient on the
output displacement and stress is tiny.

The effect of the stiffness of the prestressed spring K0

on the displacement and stress at the pusher end is presented
in figures 8(a) and (b) for fixed magnetostrictive modulus
m = 0.09 × 10−12 m2 A−2 and magnetoelastic coefficient
r = −2.77 × 10−20 m2 A−2 Pa−1. Three different spring
values are selected: K0 = 3 × 107 N m−1, K0 = 12 × 107,
and 30 × 107 N m−1. It is observed from figure 8(a) that
decreasing the spring stiffness will increase the amplitude
of the displacement. However, the stress response is more
complicated, as shown in figure 8(b). In figure 9, the peak
displacement output (amplitude) at the pusher end of the rod

8
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Figure 6. Response curves at the end (x = l) of the rod for various
values of magnetostrictive modulus m = (0.07, 0.09, 0.12)
× 10−12 m2 A−2, with fixed magnetoelastic coefficient r =
−2.77 × 10−20 m2 A−2 Pa−1: (a) for displacement, and (b) for stress.

Figure 7. Response curves at the end (x = l) of the rod for various
magnetoelastic coefficient r = (−2.77, 0, 5) × 10−20 m2 A−2 Pa−1,
with fixed m = 0.09 × 10−12 m2 A−2: (a) for displacement, and (b)
for stress.

max |u(l, t)| is examined. Figure 9 indicates that the amplitude
max |u(l, t)| is nonlinearly dependent on the stiffness of the
prestressed spring K0.

Figure 8. Response curves at the end (x = l) of the rod for various
values of prestressed spring stiffness K0 (=3, 12, 30) × 107 N m−1

(m = 0.09 × 10−12 m2 A−2 and r = −2.77 × 10−20 m2 A−2 Pa−1):
(a) for displacement, and (b) for stress.

Figure 9. Amplitude at the end (x = l) of the rod versus prestressed
spring stiffness K0 (m = 0.09 × 10−12 m2 A−2 and r = −2.77
× 10−20 m2 A−2 Pa−1).

For control applications with the magnetostrictive
actuator, it is necessary to numerically simulate the peak
displacement output responses (amplitude) at the pusher
end of rod max |u(l, t)| on the peak current input of the
solenoid imax and the frequency f , respectively. Figure 10
presents the three groups of relationship curves corresponding
to different magnetoelastic coefficient m and magnetoelastic
coefficient r . The curves shown in figure 11 predict
that the peak displacement outputs remain constant within
range of lower current frequency; however, the figure
reveals nonlinear characteristics within the range of higher
frequency.

9
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Figure 10. Peak displacement output at the end (x = l) versus peak
current input for various material parameters m (=0.07, 0.09, 0.12)
× 10−12 m2 A−2 and r(= −2.77, 0, 0.1) × 10−20 m2 A−2 Pa−1.

Figure 11. Peak displacement output at the end (x = l) versus
frequency for various peak current values imax (m = 0.09
× 10−12 m2 A−2 and r = −2.77 × 10−20 m2 A−2 Pa−1).

Finally, to verify the validity of the present mathematic
modeling and numeric method, as a verification example,
the present numeric results are compared with experimental
data available for the vibration of a magnetostrictive actuator
in [31]. In this example, the Young’s modulus of the material
and the mass density are taken as E = 26.5 GPa and ρ =
9250 kg m−3, respectively. The length of the rod l = 0.1 m
and the radius R = 0.0125 mm. The prestress σ0 = 7 MPa
and the bias magnetic field Hb = 20 kA m−1. The prestressed
spring stiffness K0 = 3.24 × 105 N m−1 and the number of
coil turns n = 700. The piezomagnetic coefficient of the
material d = 1.37 × 10−8 m A−1, which is calculated from
the testing data [31]. Thus, the magnetostrictive modulus
m = d/(2Hb) = 0.34 × 10−12 m2 A−2. The magnetoelastic
coefficient is taken as r = 0. Under direct current (DC)
diving conditions, the current is constant, i0. For the induced-
strain actuator displacement at the end (x = l) uISA, excluding
the displacement generated by the bias magnetic field Hb,
the present numeric results shown in figure 12 are in a good
agreement with the measured data from the magnetostrictive
actuator experiment in [31]. Figure 13 displays a comparison
between the present numeric results and the experimental data
available in [31]. The present numeric results agree also well

Figure 12. Comparison of present numeric results and measured
experimental data [31] for induced-strain displacement at the end
(x = l) under DC diving conditions. The line is the numeric result
and the dots represent experimental data.

Figure 13. Comparison of present numeric results and measured
experimental data [31] for induced-strain displacement at the end
(x = l) versus frequency under AC diving conditions, for various
peak current imax (=0.5, 1.0, 1.5, 2.0, 2.5, 3.0) A. All lines are
numeric results and all symbols represent experimental data.

with the experimental data of uISA under different alternating
current (AC) diving conditions.

5. Conclusions

A new mathematical modeling technique and a computational
method have been developed to investigate the excited
vibration of a nonlinear Terfenol-D rod. The space domain
is discretized via the finite difference method, and the transfer
matrix method is introduced for the time-domain propagation.
The periodicity of the solution to the vibration has also been
discussed in detail, including the so-called double frequency
phenomenon. The numerical results should be useful for the
design of Terfenol-D actuators. The good agreement between
the numerical results and the experimental data available in
the literature verifies the validity of the present modeling
and method. The presented approach can be extended to
analyze the corresponding two-dimensional plate vibration for
nonlinear Terfenol-D materials.
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Appendix A. Derivation of the equivalent
condition (44)

Since the tridiagonal matrix B0 in equation (39b) is symmetric
and positive definite, all its eigenvalues 2

k are therefore
positive, i.e., 2

k > 0 (k = 1, 2, . . . , N) ([29], p228). In
addition, since there is a nonzero element in its subdiagonal
line of the tridiagonal matrix B0, all its eigenvalues are
also distinct ([30], p112). Therefore, the eigenvalues of
equation (39b) satisfy the following condition:

det
[
A0 − (±jk)I2N

] = det

[−(±jk)IN IN

B0 −(±jk)IN

]

= − det[B0 − 2
kIN ] = 0 (A.1)

with j = √
(−1). In other words, all the eigenvalues of the

matrix A0 are distinct and purely imaginary, equal to ±jk

(k = 1, 2, . . . , N).
According to the theory of similarity matrices, there exists

a nonsingular matrix Q such that

Q−1A0Q = � ≡ diag[+j1,−j1, . . . ,+jN ,−jN ].
(A.2)

Furthermore, we have

Q−1 exp

(
2π

ω
A0

)
Q = exp

(
2π

ω
Q−1A0Q

)
= exp

(
2π

ω
Λ
)

.

(A.3)
Thus, for the case r = 0 the condition (37) can be equivalently
expressed as

F(ω) = det

[
exp

(
2π

ω
A0

)
− I2N

]

= det

(
Q−1

[
exp

(
2π

ω
A0

)
− I2N

]
Q
)

= det

[
exp

(
2π

ω
Λ
)

− I2N

]
=

N∏
k=1

[
exp

(
2π j

k

ω

)
− 1

]

×
[

exp

(
−2π j

k

ω

)
− 1

]
�= 0. (A.4)

Therefore, it is required that ω �= k/α(k = 1, 2, . . . , N; α =
1, 2, . . .), and thus the equivalent condition (44) is obtained.

Appendix B. Derivation of equation (58)

On the basis of the differential formula for the exponential
matrix function,

d

ds
exp[−(τ − tk−1)Ak] = − exp[−(τ − tk−1)Ak]Ak

(tk−1 � t < tk) (B.1)

and making use of the approximate expressions (55) and (57),
the integral in equation (54) can be expressed as∫ tk

tk−1

X−1(τ )f(τ ) dτ = X−1
k−1

(∫ tk

tk−1

exp[−(τ − tk−1)Ak] dτ

)
fk

= X−1
k−1[I2N − exp(−�tAk)]A−1

k fk . (B.2)

From solution (57) we obtain XkX−1
k−1 = exp(�tAk) = Tk ,

and therefore we arrive at equation (58) from equation (54).

References

[1] Busch-Vishniac H J 1997 Electromechanical Sensors and
Actuators (New York: Springer-Verlag)

[2] Pons J L 2005 Emerging Actuator Technologies
(New York: Wiley–Interscience)

[3] Clark A E and Belson H S 1972 Giant room-temperature
magnetostrictions in TbFe2 and DyFe2 Phys. Rev. B
5 3642–4

[4] Moffet M B, Clark A and Wun-Fogle M 1991 Characterization
of Terfenol-D for magnetostrictive transducers J. Acoust.
Soc. Am. 89 1448–55

[5] Lacheisserie E D 1993 Magnetostrictions: Theory and
Applications (New York: CRC Press)

[6] Carman G P and Mitrovic M 1996 Nonlinear constitutive
relations for magnetostrictive materials with applications to
1D problems J. Intell. Mater. Syst. Struct. 6 673–83

[7] Claeyssen F, Lhermet N, Letty R L and Bouchilloux P 1997
Actuators, transducers and motors based on giant
magnetostrictive materials J. Alloys Compounds 258 61–73

[8] Wan Y P, Fang D and Hwang K C 2003 Non-linear constitutive
relations for magnetostrictive materials Int. J. Non-linear
Mech. 38 1053–65

[9] Smith R C, Seelecke S, Dapiono M and Ounaies Z 2006
A unified framework for modeling hysteresis in ferroic
materials J. Mech. Phys. Solids 54 46–85

[10] Hiller M W, Bryant M D and Umegaki J 1989 Attenuation and
transformation of vibration through active control of
magnetostrictive Terfenol J. Sound Vib. 134 507–19

[11] Aston M G, Greenough R D, Jenner A G I, Metheringham W J
and Prajapati K 1997 Controlled high power actuation
utilizing Terfenol-D J. Alloys Compounds 258 97–100

[12] Engdahl E and Svensson L 1988 Simulation of the
magnetostrictive performance of Terfenol-D in mechanical
devices J. Appl. Phys. 63 3924–6

[13] Anjanappa M and Bi J 1994 A theoretical and experimental
study of magnetostrictive mini-actuators Smart Mater.
Struct. 3 83–91

[14] Ackerman A E, Liang C and Rogers C A 1996 Dynamic
transduction characterization of magnetostrictive actuators
Smart Mater. Struct. 5 115–20

[15] Dapino M J, Smith R C and Flatau A B 2000 Structural
magnetic strain model for magnetostrictive transducers
IEEE Trans. Magn. 36 545–56

[16] Wan Y P and Zhong Z 2004 Vibration analysis of Tb–Dy–Fe
magnetostriction actuator and transducer Int. J. Mech. Mater.
Des. 1 95–107

[17] Kannan K S and Dasgupta A 1997 A nonlinear Galerkin
finite-element theory for modeling magnetostrictive smart
structures Smart Mater. Struct. 6 341–50

[18] Shang X C, Jin M Y and Han X 2004 A numeric approach
combining finite element with transfer matrix for vibration of
magnetostrictive rod WCCM VI: Computational Mechanics
(Beijing)

[19] Kim J and Jung E 2005 Finite element analysis for acoustic
characteristics of a magnetostrictive transducer Smart Mater.
Struct. 14 1273–80

[20] Kumar J S, Ganesan N, Sarnamani S and Padmanabhan C 2003
Active control of beam with magnetostrictive layer Comput.
Struct. 81 1375–82

[21] Pan E and Heyliger P 2002 Free vibrations of simply supported
and multilayered magneto-electro-elastic plates J. Sound Vib.
253 429–43

[22] Chen J, Chen H, Pan E and Heyliger P 2007 Modal analysis of
magneto-electro-elastic plates using the state-vector
approach J. Sound Vib. 304 722–34

[23] Eerenstein W, Mathur N D and Scott J F 2006 Multiferroic and
magnetoelectric materials Nature 442 759–65

[24] Ramesh R and Spaldin N A 2007 Multiferroics: progress and
prospects in thin films Nat. Mater. 6 21–9

11

http://dx.doi.org/10.1103/PhysRevB.5.3642
http://dx.doi.org/10.1121/1.400678
http://dx.doi.org/10.1177/1045389X9500600508
http://dx.doi.org/10.1016/S0020-7462(02)00052-5
http://dx.doi.org/10.1016/j.jmps.2005.08.006
http://dx.doi.org/10.1016/0022-460X(89)90571-3
http://dx.doi.org/10.1063/1.340607
http://dx.doi.org/10.1088/0964-1726/3/2/001
http://dx.doi.org/10.1088/0964-1726/5/2/001
http://dx.doi.org/10.1109/20.846217
http://dx.doi.org/10.1023/B:MAMD.0000035479.08730.d7
http://dx.doi.org/10.1088/0964-1726/6/3/011
http://dx.doi.org/10.1088/0964-1726/14/6/020
http://dx.doi.org/10.1016/S0045-7949(03)00016-6
http://dx.doi.org/10.1006/jsvi.2001.3693
http://dx.doi.org/10.1016/j.jsv.2007.03.021
http://dx.doi.org/10.1038/nature05023
http://dx.doi.org/10.1038/nmat1805


Smart Mater. Struct. 17 (2008) 045026 X Shang et al

[25] Goodfriend M J, Shoop K M and McMasters O D 1992
Characteristics of the magnetostrictive alloy Terfenol-D
produced for the manufacture of devices Conf. on Recent
Advances in Adaptive and Sensory Materials and their
Applications (Blacksburg, VA)

[26] Walter W 1998 Ordinary Differential Equations
(New York: Springer)

[27] Yakubovich Y A and Starzhinskii V M 1975 Linear
Differential Equation with Periodic Coefficients vol 1
(New York: Wiley)

[28] Moler C B and Van Loan C F 1978 Nineteen dubious ways
to compute the exponential of a matrix SIAM Rev. 20 801–36

[29] Phillips G M and Taylor P J 1973 Theory and Applications of
Numerical Analysis (London: Academic)

[30] Jain M K, Iyengar S R K and Jain R K 1985 Numerical
Methods for Scientific and Engineering Computation
(New York: Wiley)

[31] Moon S J, Lim C W, Kim B H and Park Y 2007 Structural
vibration control using linear magnetostrictive actuators
J. Sound Vib. 302 875–91

12

http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1016/j.jsv.2006.12.023

	1. Introduction
	2. Formulation
	2.1. Problem description
	2.2. Basic equation
	2.3. Boundary and initial conditions

	3. Numerical computation method
	3.1. Finite difference discretization in the space domain
	3.2. General solutions in the time domain
	3.3. Periodicity of the solution
	3.3.1. Existence condition of the periodic solution.
	3.3.2. Periodicity of the solution for the case r=0 .
	3.3.3. Periodicity of the solution for the case r not =0 .
	3.3.4. Double frequency effect.

	3.4. Time-domain propagation via transfer matrix method

	4. Numerical results and discussion
	5. Conclusions
	Appendix A. Derivation of the equivalent condition \(sms257750eqn44\)
	Appendix B. Derivation of equation \(sms257750eqn58\)
	References

