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a b s t r a c t

The three-dimensional quasi-steady-state temperature and moisture concentration
induced by a constantly moving point heat source and a constantly moving point diffusion
source in an infinite isotropic solid are derived. Here the thermodiffusion (Soret) and the
diffusionthermo (Dufour) effects are taken into account in our modelling. It is observed
that the obtained coupled set of partial differential equations can be decoupled into two
independent differential equations for two newly introduced functions, whose solutions
can be expediently derived in a moving coordinate system which moves together with
the point source. The results show that two positive effective diffusivities are needed to
describe the hygrothermal field. Numerical results are presented to illustrate the distribu-
tions of the hygrothermal Green’s functions. This research can be considered as an exten-
sion of the well-known Jaeger–Rosenthal solution for a moving heat source to the more
complex situation in which there exists coupling between heat and moisture. In the Appen-
dix we also present the temperature and the moisture concentration induced by instanta-
neous heat source and diffusion source by using the known result of an instantaneous heat
source and the decoupling methodology presented in this research. Some interesting phys-
ical interpretations are presented for the instantaneous heat source and instantaneous dif-
fusion source.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The temperature field induced by a moving point heat source is of great practical importance and theoretical interest (see
for example, Jaeger, 1942; Rosenthal, 1946; Wang, 1989; Wang et al., 2007; Levin, 2008). In modern polymer–matrix com-
posite, the influence of temperature and moisture changes on the behaviors of the material is critical and has been investi-
gated extensively (see for example, Sih et al., 1986; Chang and Chao, 1993; Altay and Dokmeci, 2000; Aboudi and Williams,
2000; Hsieh and Hwu, 2006 and the references cited therein). Under hygrothermal environment, the thermodiffusion effect
(Soret effect), which refers to the mass diffusion induced by thermal gradient, and the diffusionthermo effect (Dufour effect),
which refers to the heat transfer induced by moisture concentration gradient, should be given special attention (Sih et al.,
1986; Hyer, 1988; Altay and Dokmeci, 2000; Aboudi and Williams, 2000). It is added that the Soret effect and the Dufour
effect are also present in binary liquid mixtures (Hort et al., 1992; Kim et al., 2007).

In this investigation we endeavor to address in detail the three-dimensional quasi-steady-state problem of constantly
moving point heat source and point diffusion source in an infinite isotropic solid when both the Soret and the Duffet effects
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are taken into account. We also present in Appendix A the temperature and the moisture concentration induced by instan-
taneous heat source and diffusion source. In addition we discuss in Appendix B the uniqueness theorem for the uncoupled,
quasi-static hygrothermoelastic theory and how to obtain the stress fields induced by constantly moving or instantaneous
heat source and diffusion source.

2. The temperature and moisture concentration induced by constantly moving heat and diffusion sources

Here we consider a point heat source of strength P and a point diffusion source of strength M moving at a constant speed V
along the positive direction of the x-axis. At the time t = 0, the heat source and the diffusion source are located at the origin of
a fixed rectangular Cartesian coordinate system (x,y,z).

In the fixed rectangular Cartesian coordinate system (x,y,z), the modified Fourier’s equation of heat conduction and Fick’s
equation of moisture diffusion can be written as (Sih et al., 1986; Aboudi and Williams, 2000)

qi;i þ qcp
_h�H0dt

_C ¼ Pdðx� VtÞdðyÞdðzÞ; ð1Þ
fi;i þ _C ¼ Mdðx� VtÞdðyÞdðzÞ; ð2Þ

where qi and fi are the heat fluxes and moisture fluxes, respectively; q is the material density, cp is the specific heat capacity
for constant moisture concentration and pressure, dt is a material constant, H0 is the reference temperature (or the initial
state of the temperature); h and C are, respectively, the temperature change and the moisture concentration (the mass of
moisture per unit volume contained at a point in the solid); d( ) is the Dirac delta function; and the dot notation is used
to indicate derivative of a function with respect to time t. It is mentioned here that in the expression of Eq. (1) for the heat
conduction equation, we have ignored the interconvertibility of thermal and mechanical energy. This kind of simplification is
permissible in most practical situations (Boley and Weiner, 1960).

The heat and moisture fluxes are given by (Sih et al., 1986; Hyer, 1988; Aboudi and Williams, 2000)

qi ¼ �kh;i � nC ;i;

fi ¼ �fh;i � cC ;i;
ð3Þ

where k and c are the thermal conductivity and the moisture constant, respectively; n and f are the Dufour and the Soret
coefficients, respectively. In addition the four constants can be specifically expressed as (Sih et al., 1986; Aboudi and Wil-
liams, 2000)

k ¼ L21dt þ
L22

H0
; n ¼ L21dc; f ¼ L11dt þ

L12

H0
; c ¼ L11dc; ð4Þ

where Lij (L12 = L21) and dc are also material constants.
Substitution of Eq. (3) into Eqs. (1) and (2) yields the following:

kr2hþ nr2C � qcp
_hþH0dt

_C ¼ �Pdðx� VtÞdðyÞdðzÞ; ð5Þ
fr2hþ cr2C � _C ¼ �Mdðx� VtÞdðyÞdðzÞ; ð6Þ

where r2 ¼ o2

ox2 þ o2

oy2 þ o2

oz2 is the 3D Laplace operator.
Inserting the result of Eq. (6) into Eq. (5) and eliminating _C, then Eq. (5) can be equivalently expressed as

ðkþH0dtfÞr2hþ ðnþH0dtcÞr2C � qcp
_h ¼ �ðP þH0dtMÞdðx� VtÞdðyÞdðzÞ; ð7Þ

For mathematical convenience, we can further write together Eqs. (6) and (7) into the following matrix form as:

A
r2h

r2C

" #
� B

_h
_C

" #
¼ �Sdðx� VtÞdðyÞdðzÞ; ð8Þ

where A and B are two real and symmetric 2 � 2 matrices given by

A ¼ AT ¼
kþH0dtf nþH0dtc
nþH0dtc cðnþH0dtcÞ

f

" #
;

B ¼ BT ¼
qcp 0

0 nþH0dtc
f

" #
;

ð9Þ

and S is a 2-D vector given by

S ¼
P þH0dtM

MðnþH0dtcÞ
f

" #
: ð10Þ

In order to solve Eq. (8), we first consider the following eigenvalue problem:
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ðA� kBÞv ¼ 0; ð11Þ

where k and v are, respectively, the eigenvalue and the associated eigenvector.
The two eigenvalues of Eq. (11) can be explicitly determined as

k1 ¼
A11B22 þ A22B11 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA11B22 � A22B11Þ2 þ 4A2

12B11B22

q
2B11B22

> 0;

k2 ¼
A11B22 þ A22B11 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA11B22 � A22B11Þ2 þ 4A2

12B11B22

q
2B11B22

> 0;

ð12Þ

where Aij and Bii (i, j = 1,2) are respectively the nonzero components of the matrices A and B. It is mentioned that the pos-
itiveness of the two eigenvalues k1 and k2 is a result of the fact that both A and B are positive definite to ensure the positive
definiteness of the local entropy production. Meanwhile the two eigenvectors associated with the two eigenvalues are given
by

v1 ¼
A12

k1B11 � A11

� �
; v2 ¼

A12

k2B11 � A11

� �
: ð13Þ

Due to the fact that the two matrices A and B are real and symmetric, then the following orthogonal relationships with
respect to the two matrices establish

vT
1

vT
2

" #
A v1 v2½ � ¼

d1 0
0 d2

� �
;

vT
1

vT
2

" #
B v1 v2½ � ¼

k�1
1 d1 0

0 k�1
2 d2

" #
;

ð14Þ

where

d1 ¼ k3
1B2

11B22 � 2k2
1A11B11B22 þ k1ðA2

11B22 þ A2
12B11Þ;

d2 ¼ k3
2B2

11B22 � 2k2
2A11B11B22 þ k2ðA2

11B22 þ A2
12B11Þ:

ð15Þ

Now we introduce two new functions f and g, which are related to h and C through

h

C

� �
¼ v1 v2½ �

f

g

� �
: ð16Þ

In view of Eqs. (8), (14) and (16), the two new functions f and g will satisfy the following two independent inhomogeneous
partial differential equations:

r2f � 1
k1

of
ot
¼ �K1

d1
dðx� VtÞdðyÞdðzÞ;

r2g � 1
k2

og
ot
¼ �K2

d2
dðx� VtÞdðyÞdðzÞ;

ð17Þ

where the two constants K1 and K2 are

K1 ¼ A12P þ ðk1B11B22 � A11B22 þ A12H0dtÞM;

K2 ¼ A12P þ ðk2B11B22 � A11B22 þ A12H0dtÞM:
ð18Þ

It can be observed from Eq. (17) that the two eigenvalues k1 (>0) and k2 (>0) can be considered as two effective diffusivities
for f and g, respectively. Next we introduce a new moving coordinate system ð~x; ~y;~zÞ which is related to the fixed coordinate
system (x,y,z) through

~x ¼ x� Vt; ~y ¼ y; ~z ¼ z: ð19Þ

In view of the fact that the moving coordinate system moves at the same speed as the point source, then the temperature and
moisture concentration (or equivalently the two newly introduced functions f and g) in the new moving coordinate system
do not explicitly depend on the time t, and are in a quasi-steady-state (Wang et al., 2007; Levin, 2008). Consequently in the
new coordinate system, Eq. (17) can be changed into the following two independent inhomogeneous perturbed Laplace
equations:

o2f
o~x2 þ

o2f
o~y2 þ

o2f
o~z2 þ

V
k1

of
o~x
¼ �K1

d1
dð~xÞdð~yÞdð~zÞ;

o2g
o~x2 þ

o2g
o~y2 þ

o2g
o~z2 þ

V
k2

og
o~x
¼ �K2

d2
dð~xÞdð~yÞdð~zÞ:

ð20Þ
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We then introduce two new functions F and G which are related to f and g through (Wang et al., 2007)

f ¼ exp � V~x
2k1

� �
F; g ¼ exp � V~x

2k2

� �
G: ð21Þ

As a result Eq. (20) can be equivalently rewritten into the following two 3D inhomogeneous Helmholtz equations:

o2F
o~x2 þ

o2F
o~y2 þ

o2F
o~z2 �

V2

4k2
1

F ¼ �K1

d1
dð~xÞdð~yÞdð~zÞ;

o2G
o~x2 þ

o2G
o~y2 þ

o2G
o~z2 �

V2

4k2
2

G ¼ �K2

d2
dð~xÞdð~yÞdð~zÞ;

ð22Þ

whose solutions are expediently given by

F ¼ K1

4pd1

exp � V
2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p ; G ¼ K2

4pd2

exp � V
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p : ð23Þ

It follows from Eqs. (21) and (23) that

f ¼ K1

4pd1

exp � V
2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p
þ ~x

h i� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p ;

g ¼ K2

4pd2

exp � V
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p
þ ~x

h i� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2 þ ~z2

p :

ð24Þ

In view of Eqs. (16), (19) and (24), the temperature h and the moisture concentration C induced by the moving point source
can be finally expressed in the fixed rectangular Cartesian coordinates (x,y,z) as follows:

h ¼
A12K1 exp � V

2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q
þ ðx� VtÞ

� �	 

4pd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q þ
A12K2 exp � V

2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q
þ ðx� VtÞ

� �	 

4pd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q ;

C ¼
K1ðk1B11 � A11Þ exp � V

2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q
þ ðx� VtÞ

� �	 

4pd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q

þ
K2ðk2B11 � A11Þ exp � V

2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q
þ ðx� VtÞ

� �	 

4pd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ z2

q : ð25Þ

Consequently we can write down the 3D quasi-steady-state hygrothermal Green’s functions as follows:

GhP ¼
A2

12 exp � V
2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p þ

A2
12 exp � V

2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p ; ð26aÞ

GhM ¼
A12ðk1B11B22�A11B22þA12H0dtÞ exp � V

2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p þ

A12ðk2B11B22�A11B22þA12H0dtÞ exp � V
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p ; ð26bÞ

GCP ¼
A12ðk1B11�A11Þ exp � V

2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p þ

A12ðk2B11�A11Þ exp � V
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p ; ð26cÞ

GCM ¼
ðk1B11�A11Þðk1B11B22�A11B22þA12H0dtÞ exp � V

2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þ
ðk2B11�A11Þðk2B11B22�A11B22þA12H0dtÞ exp � V

2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p

þðx�VtÞ
� �n o

4pd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�VtÞ2þy2þz2
p ;

ð26dÞ

where the hygrothermal Green’s functions are defined as: GhP is the temperature induced by a unit heat source (P = 1); GhM is
the temperature induced by a unit diffusion source (M = 1); GCP is the moisture concentration induced by a unit heat source
(P = 1); and GCM is the moisture concentration induced by a unit diffusion source (M = 1). Apparently GhM 6¼ GCP.

Now that the well-known Jaeger–Rosenthal solution for a moving heat source (Jaeger, 1942; Rosenthal, 1946; Wang,
1989) has been extended to the more complex situation in which there exists coupling between heat and moisture.
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3. Numerical results

Here we consider T300/5208 graphite/epoxy quasi-isotropic laminate subjected to relative humidity change from 0 to
75% at H0 = 21 �C. The pertinent material constants are presented in Table 1.

By using Eq. (12), the two effective diffusivities k1 and k2 are calculated as k1 = 2.3385 � 10�12 m2/s and
k2 = 5.3037 � 10�15 m2/s. If we ignore the coupling Dufour and Soret effects, i.e., L12 = dt = 0, the thermal diffusivity is
2.5062 � 10�12 m2/s while the moisture diffusivity is 6.5989 � 10�15 m2/s. It is observed that the existence of the Dufour
and Soret effects will reduce the values of the two diffusivities for the decoupled case. We demonstrate in Fig. 1 the distri-
butions of the four hygrothermal Green’s functions GhP, GCP, GhM, GCM along the moving ~x axis ð~y ¼ ~z ¼ 0Þ. It is observed from
Fig. 1 that: (i) all the four Green’s functions are infinite at ~x ¼ 0, the location of the point source, and they decay fast as ~x is
further away from ~x ¼ 0; (ii) all the four Green’s functions are not symmetric with respect to ~x ¼ 0; (iii) GCP and GhM are non-
zero due to the coupling Dufour and Soret effects, in addition it is verified that GhM 6¼ GCP; (iv) GhP is always positive, GhM is
always negative, while GCP and GCM can change their signs along the positive ~x axis. This change of sign phenomenon cannot
be observed from the decoupled case when ignoring the Dufour and Soret effects.

4. Conclusions and discussion

We have derived the temperature and the moisture concentration induced by a constantly moving point heat source and
a constantly moving point diffusion source. The results show that two positive effective diffusivities for f and g are intro-
duced (see Eq. (17)). The positiveness of the two diffusivities k1 and k2 is a consequence of the positive definiteness of
the local entropy production. As presented in Appendix A, it is not a difficult task to derive the temperature and the moisture

Fig. 1. Distributions of the four hygrothermal Green’s functions GhP, GCP, GhM, GCM along the ~x axis.

Table 1
Material constants of T300/5208 graphite/epoxy quasi-isotropic laminate subjected to change in moisture from 0 to 75% relative humidity at H0 = 21�C (Sih et
al., 1986; Aboudi and Williams, 2000)

Property Value

q (kg/m3) 1590
cp (m2/s2K) 806.461
L11 (kgs/m3) 3.544 � 10�18

L12 (kg/ms) 9.153 � 10�12

L22 (kgm/s3) 9.453 � 10�5

dc (m5/kgs2) 1862
dt (m2/s2K) �1373

X. Wang, E. Pan / Mechanics Research Communications 35 (2008) 475–482 479
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concentration induced by instantaneous heat source and diffusion source by using the known result of an instantaneous heat
source (Boley and Weiner, 1960; Wang, 1989) and the decoupling methodology presented in this research. Furthermore due
to the fact that the stress fields induced by a constantly moving heat source and by an instantaneous heat source have been
derived (see Eqs. (6.162) and (6.178) in Wang, 1989), then it is simple to extend the previous result to calculate the stresses
induced by constantly moving or instantaneous heat source and diffusion source through the introduction of two new func-
tions f and g in view of Eqs. (16), (17), (A4) and (A5), and through application of the superposition principle for a linear sys-
tem. The details for the last discussion are presented in Appendix B.
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Appendix A. The temperature and moisture concentration induced by instantaneous heat source and diffusion source

We consider an instantaneous point heat source of strength Q and an instantaneous point diffusion source of strength N
released at the origin of the fixed rectangular Cartesian coordinate system (x,y,z) at t = 0. Then the initial conditions of tem-
perature and moisture concentration can be given by (Wang, 1989)

hðx; y; z;0Þ ¼ QdðxÞdðyÞdðzÞ; Cðx; y; z;0Þ ¼ NdðxÞdðyÞdðzÞ: ðA1Þ

In the discussion of instantaneous heat source and diffusion source, the temperature and the moisture concentration should
satisfy the following set of homogeneous partial differential equations

kr2hþ nr2C � qcp
_hþH0dt

_C ¼ 0; ðA2Þ
fr2hþ cr2C � _C ¼ 0: ðA3Þ

In view of Eq. (16), the above initial conditions and the governing partial differential equations can be expressed in terms of
the two new functions f and g as

f ðx; y; z;0Þ ¼ eQ dðxÞdðyÞdðzÞ; gðx; y; z;0Þ ¼ eNdðxÞdðyÞdðzÞ ðA4Þ

and

r2f � 1
k1

of
ot
¼ 0; r2g � 1

k2

og
ot
¼ 0; ðA5Þ

where eQeN
" #

¼
d�1

1 0

0 d�1
2

" #
vT

1

vT
2

" #
A

Q
N

� �
: ðA6Þ

Now that the expressions of f and g can be easily obtained as (Boley and Weiner, 1960; Wang, 1989)

f ðx; y; z; tÞ ¼
eQ

ð2
ffiffiffiffiffiffiffiffiffiffi
k1pt
p

Þ3
exp � x2 þ y2 þ z2

4k1t

� �
;

gðx; y; z; tÞ ¼
eN

ð2
ffiffiffiffiffiffiffiffiffiffi
k2pt
p

Þ3
exp � x2 þ y2 þ z2

4k2t

� �
:

ðA7Þ

Consequently we can obtain the expressions of temperature and moisture concentration as

hðx; y; z; tÞ ¼
eQ A12

ð2
ffiffiffiffiffiffiffiffiffiffi
k1pt
p

Þ3
exp � x2 þ y2 þ z2

4k1t

� �
þ

eNA12

ð2
ffiffiffiffiffiffiffiffiffiffi
k2pt
p

Þ3
exp � x2 þ y2 þ z2

4k2t

� �
;

Cðx; y; z; tÞ ¼
eQ ðk1B11 � A11Þ
ð2

ffiffiffiffiffiffiffiffiffiffi
k1pt
p

Þ3
exp � x2 þ y2 þ z2

4k1t

� �
þ
eNðk2B11 � A11Þ
ð2

ffiffiffiffiffiffiffiffiffiffi
k2pt
p

Þ3
exp � x2 þ y2 þ z2

4k2t

� �
:

ðA8Þ

In fact the two constants Q and N possess important physical meanings. Following the procedure of Boley and Weiner (1960),
the total energy due to temperature rise in the infinite region is (t > 0)Z 1

�1

Z 1

�1

Z 1

�1
qcphdxdydz ¼ qcp

eQ A12

ð2
ffiffiffiffiffiffiffiffiffiffi
k1pt
p

Þ3
Z 1

�1

Z 1

�1

Z 1

�1
exp � x2 þ y2 þ z2

4k1t

� �
dxdydzþ qcp

eNA12

ð2
ffiffiffiffiffiffiffiffiffiffi
k2pt
p

Þ3

�
Z 1

�1

Z 1

�1

Z 1

�1
exp � x2 þ y2 þ z2

4k2t

� �
dxdydz

¼ qcp A12 A12½ �
eQeN

" #
¼ qcp 1 0½ � v1 v2½ �

d�1
1 0

0 d�1
2

" #
vT

1

vT
2

" #
A

Q

N

� �
¼ qcpQ ; ðA9Þ
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and the total mass of moisture in the infinite region is (t > 0)

Z 1

�1

Z 1

�1

Z 1

�1
C dxdydz ¼

eQ ðk1B11 � A11Þ
ð2

ffiffiffiffiffiffiffiffiffiffi
k1pt
p

Þ3
Z 1

�1

Z 1

�1

Z 1

�1
exp � x2 þ y2 þ z2

4k1t

� �
dxdydzþ

eNðk2B11 � A11Þ
ð2

ffiffiffiffiffiffiffiffiffiffi
k2pt
p

Þ3

�
Z 1

�1

Z 1

�1

Z 1

�1
exp � x2 þ y2 þ z2

4k2t

� �
dxdydz

¼ k1B11 � A11 k2B11 � A11½ �
eQeN

" #
¼ 0 1½ � v1 v2½ �

d�1
1 0

0 d�1
2

" #
vT

1

vT
2

" #
A

Q
N

� �
¼ N: ðA10Þ

During the above derivations, we have utilized the orthogonal relationships in Eq. (14). Thus it is observed from Eqs. (A9) and
(A10) that the total energy and the total mass of moisture in the solid are constant at all times. Carrying out integrations to
Eq. (A8) will yield the temperature and moisture concentration induced by instantaneous line and plane sources (Boley and
Weiner, 1960).

Appendix B. The determination of the stress field induced by constantly moving or instantaneous heat and diffusion
sources

Following an identical theoretical development presented by Boley and Weiner (1960), we can obtain the following
uniqueness theorem for the uncoupled, quasi-static hygrothermoelastic theory:

Uniqueness theorem. Given a regular region of space D + B with boundary B and functions fi(P), h(P), C(P) defined in
D + B; then there exists at most one set of single-valued functions rij(P), eij(P) and ui(P), all in class C(1) in D + B, which satisfy
the following field equations:

rij;j þ fi ¼ 0 in D;

rij ¼ dijkekk þ 2leij � dijð3kþ 2lÞah� dijð3kþ 2lÞgC in Bþ D;

eij ¼
1
2
ðui;j þ uj;iÞ in Bþ D

ðB1Þ

and which lead (through Si = rijnj where nj is the surface normal) to specified values on B for three quantities with distinct
subscripts from the six quantities [SI, SII, SIII] and [uI, uII, uIII], where I, II and III denote orthogonal directions. In Eq. (B1) rij and
eij are the stress and strain tensor components, Si is traction component, ui is the displacement vector component, dij is the
Kronecker delta, k and l are Lamé constants of the material and a and g are the linear thermal expansion and linear moisture
expansion coefficients. (B1)1 is the equilibrium equations in the presence of body forces fi; (B1)2 is the hygrothermoelastic
constitutive law for an isotropic material with small strains (Aboudi and Williams, 2000); while (B1)3 is the strain–displace-
ment relations.

If we introduce the two new functions f and g defined in Eq. (16), then Eq. (B1)2 for the hygrothermoelastic constitutive law can

be equivalently written into

rij ¼ dijkekk þ 2leij � dijð3kþ 2lÞ~af � dijð3kþ 2lÞ~gg; ðB2Þ

where

~a ¼ aA12 þ gðk1B11 � A11Þ; ~g ¼ aA12 þ gðk2B11 � A11Þ: ðB3Þ

In addition f and g satisfy the two decoupled equations in Eq. (17) for a constantly moving heat source and diffusion source,
and they satisfy Eqs. (A4) and (A5) for an instantaneous heat source and an instantaneous diffusion source. Based on Eq. (B2)
and the known results of stress fields induced by a constantly moving point heat source and by an instantaneous point heat
source (see Eqs. (6.162) and (6.178) in Wang, 1989), we can easily obtain the unique stress field induced by constantly mov-
ing or instantaneous point heat source and point diffusion source by using the superposition principle for a linear system and
the uniqueness theorem we just presented.
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