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a b s t r a c t

We derive, by virtue of the unified Stroh formalism, the extremely concise and elegant

solutions for two-dimensional and (quasi-static) time-dependent Green’s functions in

anisotropic magnetoelectroelastic multiferroic bimaterials with a viscous interface

subjected to an extended line force and an extended line dislocation located in the

upper half-plane. It is found for the first time that, in the multiferroic bimaterial Green’s

functions, there are 25 static image singularities and 50 moving image singularities in the

form of the extended line force and extended line dislocation in the upper or lower half-

plane. It is further observed that, as time evolves, the moving image singularities, which

originate from the locations of the static image singularities, will move further away from

the viscous interface with explicit time-dependent locations. Moreover, explicit expres-

sion of the time-dependent image force on the extended line dislocation due to its

interaction with the viscous interface is derived, which is also valid for mathematically

degenerate materials. Several special cases are discussed in detail for the image force

expression to illustrate the influence of the viscous interface on the mobility of the

extended line dislocation, and various interesting features are observed. These Green’s

functions can not only be directly applied to the study of dislocation mobility in the novel

multiferroic bimaterials, they can also be utilized as kernel functions in a boundary

integral formulation to investigate more complicated boundary value problems where

multiferroic materials/composites are involved.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial multiferroic composites made of ferromagnetic and ferroelectric phases can exhibit a magnetoelectric (ME)
effect, which is absent in the constituents and which can be several orders larger than that observed in natural single-phase
multiferroic materials (Benveniste, 1995; Ryu et al., 2001; Nan et al., 2003; Fiebig, 2005). The ME effect in the multiferroic
composite is achieved through the product property: a magnetic field applied to the multiferroic composite will induce a
strain in the ferromagnetic phase which is passed through the interface to the ferroelectric phase, where it induces an
electric polarization. Thus the interface in multiferroic composites is critical in achieving the ME effect. In fact it has been
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found that any imperfection or non-ideal coupling at the interface will always cause a reduction in the ME effect in
multiferroic laminated or fibrous composites (Bichurin et al., 2003; Nan et al., 2003; Wang and Pan, 2007).

At elevated working temperatures exceeding about one-third of the homologous temperature, mass transport becomes
important along high diffusivity path such as interface or grain boundary (Chen et al., 1998). Raj and Ashby (1971), Ashby
(1972) and Suo (1997) suggested that the microscopically mass diffusion-controlled mechanism can be macroscopically
described by the linear law for a viscous interface: _d ¼ t=Z, where _d is the sliding velocity (i.e., the differentiation of the
relative sliding with respect to time t), t is the interfacial shear stress and Z is the interfacial viscosity which can be
determined experimentally and theoretically (Raj and Ashby, 1971; Suo, 1997; Funn and Dutta, 1999; He and Lim, 2001,
2003). Furthermore, the viscous interface has been utilized to model incoherent interfaces between metal films and
amorphous substrates to quantitatively study dislocation core spreading in thin films (Gao et al., 2002). There are also
plenty of cases in which the interface in multiferroic composites should be considered as viscous. The direct bonding of PZT
and Terfenol-D disks with conductive epoxy is one of the most effective methods to achieve a giant ME response (Ryu et al.,
2001; Nan et al., 2003). The melting temperatures of PZT and Terfenol-D are higher than 1100 K, while the melting
temperature of epoxy is only around 340–380 K (Fan and Wang, 2003). If the multiferroic composite works at a room
temperature (say 300 K), then the interfacial bonding should be considered as viscous. Therefore, there is an urgent need to
understand the potential effect of viscous interface on the multiphase field quantities in multiferroic composites. This
motivates us to introduce the viscous interface into the anisotropic multiferroic composites and subsequently to study the
multi-field response in terms of the powerful and elegant Green’s function method.

This paper is structured as follows: in Section 2, the Stroh formalism suitable for two-dimensional problems in generally
anisotropic multiferroic materials in the presence of viscous interface is presented. In Section 3, based on a novel approach,
we present, in terms of a unified formalism, the elegant time-dependent (quasi-static) Green’s function solutions for an
anisotropic magnetoelectroelastic multiferroic bimaterial with a viscous interface subjected to an extended line force and
an extended line dislocation located in the upper half-plane. It is emphasized that the method proposed in this section is
very simple and concise, and it is technically more attractive than previous approaches. In Section 4, the derived exact
closed-form Green’s functions are physically interpreted in terms of the static and moving image singularities in the form
of an extended line force and an extended line dislocation. We derive in Section 5 the time-dependent image force for the
extended line dislocation due to its interaction with the nearby viscous interface. In this section, some special cases of
the image force expressions are discussed in detail to demonstrate the influence of the viscous interface on the mobility of
the dislocation, and certain important features are observed. We draw our conclusions in Section 6.

2. Basic formulations

The basic equations for an anisotropic and linearly multiferroic material are (Pan, 2001)

sij ¼ Cijkluk;l þ ekijf;k þ qkijj;k; Dk ¼ ekijui;j � �klf;l � alkj;l,

Bk ¼ qkijui;j � aklf;l � mklj;l; sij;j ¼ 0; Di;i ¼ 0; Bi;i ¼ 0; i; j; k; l ¼ 1;2;3, (2.1)

where repeated indices mean summation, a comma follows by i (i ¼ 1, 2, 3) stands for the derivative with respect to the ith
spatial coordinates; ui, f and j are the elastic displacement, electric potential and magnetic potential; sij, Di and Bi are the
stress, electric displacement and magnetic induction; Cijkl, eij and mij are the elastic, dielectric and magnetic permeability
coefficients, respectively; eijk, qijk and aij are the piezoelectric, piezomagnetic and magnetoelectric coefficients, respectively.

For two-dimensional problems in which all quantities depend only on x1 and x2, one can seek the solution in the form of

u ¼ u1 u2 u3 f j
� �T

¼ af ðx1 þ px2; tÞ, (2.2)

where (u1, u2) are the elastic displacements in the (x1, x2)-plane and u3 is the anti-plane elastic displacement perpendicular
to the (x1, x2)-plane; a is a constant vector; p is a complex number or the Stroh eigenvalue; f(*, t) is an analytic function of
the complex variable * and the real-time variable t. The appearance of the time t comes from the influence of the viscous
interface under quasi-static deformation. It can be verified that all equations in Eq. (2.1) are satisfied for an arbitrary
analytic function f(*, t) if

½Q þ pðR þ RT
Þ þ p2T�a ¼ 0 (2.3)

where the 5�5 real matrix R and the two 5�5 symmetric real matrices Q and T are defined by

Q ¼

Q E e11 q11

eT
11 ��11 �a11

qT
11 �a11 �m11

2664
3775; R ¼

RE e21 q21

eT
12 ��12 �a21

qT
12 �a12 �m12

2664
3775; T ¼

TE e22 q22

eT
22 ��22 �a22

qT
22 �a22 �m22

2664
3775, (2.4)

where

ðQ E
Þik ¼ Ci1k1; ðR

E
Þik ¼ Ci1k2; ðT

E
Þik ¼ Ci2k2; ðeijÞm ¼ eijm; ðqijÞm ¼ qijm. (2.5)
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For a stable material with positive-definite energy density (elastic strain energy and electromagnetic energy), the 10 roots
of Eq. (2.3) form five distinct conjugate pairs with non-zero imaginary parts (see Appendix A). Let pi, (i ¼ 1–5) be the five
distinct roots with positive imaginary parts and ai the associated eigenvectors, then the general solution is given by

u ¼ u1 u2 u3 f j
� �T

¼ Afðz; tÞ þ Āfðz; tÞ,

U ¼ F1 F2 F3 F4 F5
� �T

¼ Bfðz; tÞ þ B̄fðz; tÞ,

bi ¼ ðR
T
þ piTÞai ¼

�1

pi

ðQ þ piRÞai ði ¼ 125Þ

A ¼ a1 a2 a3 a4 a5
� �

; B ¼ b1 b2 b3 b4 b5
� �

,

fðz; tÞ ¼ f 1ðz1; tÞ f 2ðz2; tÞ f 3ðz3; tÞ f 4ðz4; tÞ f 5ðz5; tÞ
h iT

,

zi ¼ x1 þ pix2; Imfpig40 ði ¼ 125Þ (2.6)

where the overbar denotes complex conjugate, and the extended stress function vector U is defined, in terms of the
stresses, electric displacements and magnetic inductions, as follows:

si1 ¼ � Fi;2; si2 ¼ Fi;1 ði ¼ 123Þ

D1 ¼ � F4;2; D2 ¼ F4;1

B1 ¼ � F5;2; B2 ¼ F5;1. (2.7)

In addition, the two matrices A and B satisfy the following normalized orthogonal relationship (Ting, 1996):

BT AT

B̄
T

Ā
T

" #
A Ā

B B̄

" #
¼ I (2.8)

Furthermore, the following three real matrices S, H and L, which are called the Barnett–Lothe tensors, can be introduced
(Ting, 1996):

S ¼ ið2ABT
� IÞ; H ¼ 2iAAT; L ¼ �2iBBT (2.9)

with H and L being symmetric, and SH, LS, H�1S, SL�1 being anti-symmetric.

3. General solution for the Green’s functions

Let us assume that the anisotropic multiferroic materials 1 and 2 occupy, respectively, the half-planes x240 and x2o0.

At the initial moment we introduce at the location x̂1; x̂2

� �
, (x̂240) in the upper half-plane an extended line force bf ¼

½ f 1 f 2 f 3 �f e �f m �
T and an extended line dislocation bb ¼ ½ b1 b2 b3 Df Dj �T where bi, (i ¼ 1–3) are three

displacement jumps across the slip plane while Df and Dj are jumps in electric potential and magnetic potential. In the
following, the superscripts (1) and (2) (or the subscripts 1 and 2 to the bold-face vectors and matrices) will be used to
identify the quantities in the upper and lower half-planes, respectively. The two anisotropic multiferroic half-planes are
bonded together through a viscous interface at x2 ¼ 0. The boundary conditions on the viscous interface can be expressed
as (see He and Jiang, 2003; Chen and Lee, 2004; Wang et al., 2007)

sð1Þ12 ¼ sð2Þ12 ; sð1Þ22 ¼ sð2Þ22 ; sð1Þ32 ¼ sð2Þ32 ; Dð1Þ2 ¼ Dð2Þ2 ; Bð1Þ2 ¼ Bð2Þ2

uð1Þ1 ¼ uð2Þ1 ; uð1Þ2 ¼ uð2Þ2 ; uð1Þ3 ¼ uð2Þ3 ; fð1Þ ¼ fð2Þ; jð1Þ ¼ jð2Þ

9=;; x2 ¼ 0 and t ¼ 0, (3.1)

sð1Þ12 ¼ sð2Þ12 ; sð1Þ22 ¼ sð2Þ22 ; sð1Þ32 ¼ sð2Þ32 ; Dð1Þ2 ¼ Dð2Þ2 ; Bð1Þ2 ¼ Bð2Þ2

uð1Þ2 ¼ uð2Þ2 ; fð1Þ ¼ fð2Þ; jð1Þ ¼ jð2Þ

sð2Þ12 ¼ Z1ð _u
ð1Þ
1 �

_uð2Þ1 Þ; sð2Þ32 ¼ Z3ð _u
ð1Þ
3 �

_uð2Þ3 Þ

9>>=>>;; x2 ¼ 0 and t40, (3.2)

where an overdot denotes the derivative with respect to the time t; Z1 and Z3 are the viscous coefficients in the x1 and x3

directions, respectively. Due to the fact that on the interface x2 ¼ 0 we have z1 ¼ z2 ¼ z3 ¼ z4 ¼ z5 ¼ z; ðz ¼ x1 þ ix2Þ, then
during the analysis we can first replace zk, (k ¼ 1–5) by the common complex variable z (Clements, 1971; Suo, 1990; Wang
et al., 2007). After the analysis is finished, we can then change z back to the corresponding complex variables.

The above boundary conditions can also be concisely and equivalently expressed in terms of the extended displacement
and extended stress function vectors as

U1 ¼ U2; u1 ¼ u2; x2 ¼ 0 and t ¼ 0, (3.3)

U1 ¼ U2; _u1 � _u2 ¼ KU2;1; x2 ¼ 0 and t40, (3.4)
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Author's personal copy
ARTICLE IN PRESS

where K is a 5�5 real and diagonal matrix defined by

K ¼ diag½ Z�1
1 0 Z�1

3 0 0 �. (3.5)

The boundary conditions in Eq. (3.4) can further be expressed in terms of the analytic function vectors f1ðz; tÞ

and f2ðz; tÞ as

B1fþ1 ðx1; tÞ þ B̄1 f̄
�

1 ðx1; tÞ ¼ B2f�2 ðx1; tÞ þ B̄2 f̄
þ

2 ðx1; tÞ; x2 ¼ 0 and t40 (3.6)

A1
_f
þ

1 ðx1; tÞ þ Ā1
_̄f
�

1 ðx1; tÞ � A2
_f
�

2 ðx1; tÞ � Ā2
_̄f
þ

2 ðx1; tÞ

¼ K½B2f 0
�

2 ðx1; tÞ þ B̄2 f̄
0þ

2 ðx1; tÞ�; x2 ¼ 0 and t40. (3.7)

It follows from Eq. (3.6) that

f1ðz; tÞ ¼ B�1
1 B̄2 f̄2ðz; tÞ þ f0ðzÞ � B�1

1 B̄1 f̄0ðzÞ,

f̄1ðz; tÞ ¼ B̄
�1
1 B2f2ðz; tÞ þ f̄0ðzÞ � B̄

�1
1 B1f0ðzÞ, (3.8)

where f0(z) is the analytic function vector in a homogeneous plane occupied by material 1 given by

f0ðzÞ ¼
1

2pi
hlnðz� ẑaÞiðA

T
1
bf þ BT

1
bbÞ (3.9)

with ẑa ¼ x̂1 þ pax̂2, and /*S a 5�5 diagonal matrix in which each component is varied according to the Greek index a
(from 1 to 5).

Substituting the above expressions into Eq. (3.7) and eliminating fþ1 ðx1; tÞ; f̄
�

1 ðx1; tÞ, we finally obtain

N̄B̄2
_̄f
þ

2 ðx1; tÞ � iKB̄2 f̄
0þ

2 ðx1; tÞ

¼ NB2
_f
�

2 ðx1; tÞ þ iKB2f 0
�

2 ðx1; tÞ; x2 ¼ 0 and t40 (3.10)

where N is a 5�5 Hermitian matrix given by

N ¼ M̄
�1
1 þM�1

2 ¼ L�1
1 þ L�1

2 þ iðS1L�1
1 � S2L�1

2 Þ,

M�1
k ¼ iAkB�1

k ¼ ðI� iSkÞL
�1
k ðk ¼ 1;2Þ. (3.11)

Due to the fact that N is a 5�5 Hermitian matrix, we can further write N as

N ¼ N̄
T
¼

N11 N12 N13 N14 N15

N̄12 N22 N23 N24 N25

N̄13 N̄23 N33 N34 N35

N̄14 N̄24 N̄34 N44 N45

N̄15 N̄25 N̄35 N̄45 N55

26666664

37777775 (3.12)

It is apparent that the left-hand side of Eq. (3.10) is analytic in the upper half-plane, while the right-hand side of Eq. (3.10) is
analytic in the lower half-plane. Consequently the continuity condition in Eq. (3.10) implies that the left- and right-hand
sides of Eq. (3.10) are identically zero in the upper and lower half-planes, respectively. It then follows that

NB2
_f2ðz; tÞ þ iKB2f02ðz; tÞ ¼ 0; Imfzgo0 (3.13)

We next consider the following eigenvalue problem:

ðK� lNÞv ¼ 0. (3.14)

It is observed that in total there exist five eigenvalues to the above eigenvalue problem. Furthermore, these five
eigenvalues li, (i ¼ 1�5) can be explicitly determined as

l1 ¼
a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 4a0a2

q
2a2

40,

l2 ¼
a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 4a0a2

q
2a2

40,

l3 ¼ l4 ¼ l5 ¼ 0, (3.15)
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Author's personal copy
ARTICLE IN PRESS

where

a2 ¼ jNj; a1 ¼
N
_

11

Z1
þ

N
_

33

Z3
; a0 ¼

1

Z1Z3

N22 N24 N25

N̄24 N44 N45

N̄25 N̄45 N55

�������
�������, (3.16)

with N
_

ij denoting the cofactors of the matrix N.
We specially choose the eigenvectors associated with the three zero eigenvalues l3 ¼ l4 ¼ l5 ¼ 0 as

v3 ¼

0

1

0

0

0

26666664

37777775; v4 ¼

0

�N24

0

N22

0

26666664

37777775; v5 ¼

0

N24N45 � N25N44

0

N25N̄24 � N45N22

N22N44 � N24N̄24

26666664

37777775, (3.17)

so that the following orthogonal relationships with respect to the Hermitian matrix N and to the real and diagonal matrix K
hold:

W̄
T
NW ¼ K0 ¼ diag d1 d2 d3 d4 d5

� �
,

W̄
T
KW ¼ diag l1d1 l2d2 l3d3 l4d4 l5d5

� �
, (3.18)

where dk ¼ v̄T
kNvk (k ¼ 1–5) are non-zero real values and

W ¼ v1 v2 v3 v4 v5
� �

. (3.19)

In addition, due to the fact that v̄T
i Kvi ¼ lidi40ði ¼ 1;2Þ, then d1 and d2 are positive.

Next we introduce the following new analytic function vector Xðz; tÞ:

B2f2ðz; tÞ ¼ WXðz; tÞ, (3.20)

Employing the orthogonal relationship in Eq. (3.18), then Eq. (3.13) can be decoupled into

_Okðz; tÞ þ ilkO
0
kðz; tÞ ¼ 0; k ¼ 1� 5; Imfzgo0 (3.21)

whose solutions can be conveniently given by

Okðz; tÞ ¼ Okðz� ilkt;0Þ; k ¼ 1� 5; Imfzgo0 (3.22)

The above expression indicates that once the initial state Ok(z,0) is known, then one only needs to replace the complex
variable z by z�ilkt to arrive at the expression of Ok(z, t). In view of the fact that at the initial moment t ¼ 0, the interface is
a perfect one, then we arrive at the following:

f2ðz;0Þ ¼ 2B�1
2 N�1L�1

1 B1f0ðzÞ; Imfzgo0 (3.23)

Consequently, it follows from Eq. (3.20) and the above expression that

Xðz;0Þ ¼ 2W�1N�1L�1
1 B1f0ðzÞ ¼

1

pi
W�1N�1L�1

1 B1o lnðz� ẑaÞ4ðA
T
1
bf þ BT

1
bbÞ,

Im zf go0 (3.24)

Therefore, we can conveniently write down the expression of X(z, t) as

Xðz; tÞ ¼
1

pi

X5

k¼1

o lnðz� ilat � ẑkÞ4W�1N�1L�1
1 B1IkðA

T
1
bf þ BT

1
bbÞ; Imfzgo0 (3.25)

where

I1 ¼ diag 1 0 0 0 0
� �

; I2 ¼ diag 0 1 0 0 0
� �

,

I3 ¼ diag 0 0 1 0 0
� �

; I4 ¼ diag 0 0 0 1 0
� �

,

I5 ¼ diag 0 0 0 0 1
� �

. (3.26)

Substituting the above into Eq. (3.20), and then the results into Eq. (3.8), we can obtain the two analytic function vectors
f1(z, t) and f2(z, t) as

f2ðz; tÞ ¼
1

pi

X5

k¼1

B�1
2 Whlnðz� ilat � ẑkÞiW

�1N�1L�1
1 B1IkðA

T
1
bf þ BT

1
bbÞ; Imfzgo0 (3.27)
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f1ðz; tÞ ¼ �
1

pi

X5

k¼1

B�1
1 W̄hlnðzþ ilat þ ¯̂zkÞiW̄

�1
N̄
�1

L�1
1 B̄1IkðĀ

T
1
bf þ B̄

T
1
bbÞ

þ
1

2pi
B�1

1 B̄1hlnðz� ¯̂zaÞiðĀ
T
1
bf þ B̄

T
1
bbÞ þ 1

2pi
hlnðz� ẑaÞiðA

T
1
bf þ BT

1
bbÞ; Imfzg40 (3.28)

The above expressions are in fact only valid along the x1-axis. We can further write down the full-field expressions
of f1(z, t) and f2(z, t) as

f1ðz; tÞ ¼ �
1

pi

X5

m¼1

X5

k¼1

hlnðza þ ilmt � ¯̂zkÞiB
�1
1 W̄ĪmK�1

0 WTL�1
1 B̄1IkðĀ

T
1
bf þ B̄

T
1
bbÞ

þ
1

2pi

X5

k¼1

hlnðza � ¯̂zkÞiB
�1
1 B̄1IkðĀ

T
1
bf þ B̄

T
1
bbÞ þ 1

2pi
hlnðza � ẑaÞi

�ðAT
1
bf þ BT

1
bbÞ; x240, (3.29)

f2ðz; tÞ ¼
1

pi

X5

m¼1

X5

k¼1

hlnðz�a � ilmt � ẑkÞiB
�1
2 WImK�1

0 W̄
T
L�1

1 B1IkðA
T
1
bf þ BT

1
bbÞ; x2o0 (3.30)

where the superscript ‘*’ is utilized to distinguish the Stroh eignvalues associated with the lower half-plane (z�a) from those
associated with the upper half-plane (za). One can observe that the derived time-dependent multiferroic Green’s function
solutions (3.29) and (3.30) are even more concise and elegant than previously obtained ones for the purely elastic
bimaterial (Wang et al., 2007). Substitution of Eqs. (3.29) and (3.30) into Eq. (2.6) will yield the expressions of u and U. For
example, the tractions, normal electric displacement and normal magnetic induction are distributed along the interface
x2 ¼ 0 as

s12 s22 s32 D2 B2
� �T
¼

2

p
Im

X5

m¼1

WImK�1
0 W̄

T
L�1

1 B1
1

x1 � ilmt � ẑa

� �
ðAT

1 f̂ þ BT
1b̂Þ

( )
,

�1ox1oþ1; tX0 (3.31)

It also follows from Eqs. (3.29) and (3.30) that at the initial moment t ¼ 0:

f1ðz;0Þ ¼
1

2pi

X5

k¼1

hlnðza � ¯̂zkÞiB
�1
1 ðI� 2N̄

�1
L�1

1 ÞB̄1IkðĀ
T
1
bf þ B̄

T
1
bbÞ

þ
1

2pi
hlnðza � ẑaÞiðA

T
1
bf þ BT

1
bbÞ; x240, (3.32)

f2ðz;0Þ ¼
1

pi

X5

k¼1

hlnðz�a � ẑkÞiB
�1
2 N�1L�1

1 B1IkðA
T
1
bf þ BT

1
bbÞ; x2o0, (3.33)

which are just the bimaterial Green’s functions with a perfect interface derived by Jiang and Pan (2004). On the other
extreme case when t-N, we have

f1ðz;1Þ ¼
1

2pi

X5

k¼1

hlnðza � ¯̂zkÞiB
�1
1 I� 2W̄ðI3 þ I4 þ I5Þ
�

K�1
0 WTL�1

1

i
B̄1IkðĀ

T
1
bf þ B̄

T
1
bbÞ

þ
1

2pi
hlnðza � ẑaÞiðA

T
1
bf þ BT

1
bbÞ; x240, (3.34)

f2ðz;1Þ ¼
1

pi

X5

k¼1

hlnðz�a � ẑkÞiB
�1
2 WðI3 þ I4 þ I5ÞK

�1
0 W̄

T
L�1

1 B1IkðA
T
1
bf þ BT

1
bbÞ; x2o0, (3.35)

which are the results for a free-sliding interface on which the two shear stresses are zero.
We add that the method presented in this paper is not limited to the Green’s functions for an extended line force and an

extended line dislocation. It can also be easily adopted to derive Green’s functions for other types of singularities, such as
concentrated couples and line heat sources once the Green’s functions due to these singularities for a perfect bimaterial
interface are known.

4. Image singularities

Here it is of particular interest to look into the physical meanings of the obtained Green’s function solutions (3.29) and
(3.30). The last term on the right-hand side of Eq. (3.29) represents the Green’s function for an infinite multiferroic space

with singularities in the form of an extended line force f̂ and an extended line dislocation b̂ located at ½x1; x2� ¼ ½x̂1; x̂2�. In
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the following we will demonstrate that: (i) the first and second terms on the right-hand side of Eq. (3.29) represent 50
time-dependent and 25 time-independent Green’s functions for the infinite space occupied by material 1 whose
singularities are also in the form of an extended line force and an extended line dislocation located in x2o0; (ii) Eq. (3.30)
represents 50 time-dependent and 25 time-independent Green’s functions for the infinite space occupied by material 2
whose singularities are also in the form of an extended line force and an extended line dislocation located in x240.

The moving singularities of the first term in Eq. (3.29) are located at

zn þ ilkt � ¯̂zm ¼ x1 þ pnx2 þ ilkt � x̂1 � p̄mx̂2 ¼ 0 ðn;m ¼ 1� 5; k ¼ 1;2Þ, (4.1)

while the static singularities of the first and second terms in Eq. (3.29) are located at

zn � ¯̂zm ¼ x1 þ pnx2 � x̂1 � p̄mx̂2 ¼ 0 ðn;m ¼ 125Þ (4.2)

We let p0, p00 be, respectively, the real and imaginary parts of p. If we equal the real and imaginary parts of Eqs. (4.1)
and (4.2), then the locations ½xnmk

1 ðtÞ; xnmk
2 ðtÞ� of the moving singularities and the locations ½xnm

1 ; xnm
2 � of the static singularities

for the upper half-plane are found to be

xnmk
1 ðtÞ ¼ x̂1 þ

lkp0nt þ ðp0np00m þ p0mp00nÞx̂2

p00n
; xnmk

2 ðtÞ ¼ �
lkt þ p00mx̂2

p00n
ðn;m ¼ 1� 5; k ¼ 1;2Þ, (4.3)

xnm
1 ¼ x̂1 þ

ðp0np00m þ p0mp00nÞx̂2

p00n
; xnm

2 ¼ �
p00mx̂2

p00n
ðn;m ¼ 1� 5Þ. (4.4)

Due to the fact that p00n;p
00
m; lk40, then xnmk

1 ðtÞ; x
nmk
2 ðtÞ and xnm

1 ; xnm
2 exist and xnmk

2 ðtÞ; x
nm
2 o0, which means that the moving and

static image singularities for the upper half-plane are always located in the lower half-plane. In addition it is observed from
Eq. (4.3) that the moving image singularities for the upper half-plane move further away from the interface as the time evolves.

The moving image singularities in Eq. (3.30) are located at

z�n � ilkt � ẑm ¼ x1 þ p�nx2 � ilkt � x̂1 � pmx̂2 ¼ 0 ðn;m ¼ 1� 5; k ¼ 1;2Þ (4.5)

while the static singularities in Eq. (3.30) are located at

z�n � ẑm ¼ x1 þ p�nx2 � x̂1 � pmx̂2 ¼ 0 ðn;m ¼ 1� 5Þ (4.6)

Equating the real and imaginary parts of Eqs. (4.5) and (4.6), the locations ½x�nmk
1 ðtÞ; x�nmk

2 ðtÞ� of the moving singularities and
the locations ½x�nm

1 ; x�nm
2 � of the static singularities for the lower half-plane are

x�nmk
1 ðtÞ ¼ x̂1 �

lkp0�nt þ ðp0�np00m � p0mp00�nÞx̂2

p00�n
; x�nmk

2 ðtÞ ¼
lkt þ p00mx̂2

p00�n
ðn;m ¼ 1� 5; k ¼ 1;2Þ, (4.7)

x�nm
1 ¼ x̂1 �

ðp0�np00m � p0mp00�nÞx̂2

p00�n
; x�nm

2 ¼
p00mx̂2

p00�n
ðn;m ¼ 125Þ (4.8)

Due to the fact that p00�n;p
00

m; lk40, then x�nmk
1 ðtÞ; x�nmk

2 ðtÞ and x�nm
1 ; x�nm

2 exist and x�nmk
2 ðtÞ; x�nm

2 40, which means that the
moving and static image singularities for the lower half-plane are always located in the upper half-plane. In addition it is
observed from Eq. (4.7) that the moving image singularities for the lower half-plane also move further away from the
interface as the time evolves.

Based on the previous results, we can further write Eqs. (3.29) and (3.30) into the following equivalent forms:

f1ðz; tÞ ¼
1

2pi

X5

n¼1

X5

m¼1

X2

k¼1

hln½za � znmk
a ðtÞ�iðA

T
1
bfnmk þ BT

1
bbnmkÞ

þ
1

2pi

X5

n¼1

X5

m¼1

hlnðza � znm
a ÞiðA

T
1
bfnm þ BT

1
bbnmÞ þ

1

2pi
hlnðza � ẑaÞi

�ðAT
1
bf þ BT

1
bbÞ; x240, (4.9)

f2ðz; tÞ ¼
1

2pi

X5

n¼1

X5

m¼1

X2

k¼1

hln½z�a � z�nmk
a ðtÞ�iðAT

2
bf�nmk þ BT

2
bb�nmkÞ

þ
1

2pi

X5

n¼1

X5

m¼1

hlnðz�a � z�nm
a ÞiðA

T
2
bf�nm þ BT

2
bb�nmÞ; x2o0 (4.10)

where

znmk
a ðtÞ ¼ xnmk

1 ðtÞ þ paxnmk
2 ðtÞ; znm

a ¼ xnm
1 þ paxnm

2 ðn;m ¼ 125; k ¼ 1;2Þ (4.11)

z�nmk
a ðtÞ ¼ x�nmk

1 ðtÞ þ p�ax�nmk
2 ðtÞ; z�nm

a ¼ x�nm
1 þ p�ax�nm

2 ðn;m ¼ 125; k ¼ 1;2Þ (4.12)
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and bfnmk ¼ � 4RefB1InB�1
1 W̄IkK

�1
0 WTL�1

1 B̄1ImðĀ
T
1
bf þ B̄

T
1
bbÞg,bbnmk ¼ � 4RefA1InB�1

1 W̄IkK
�1
0 WTL�1

1 B̄1ImðĀ
T
1
bf þ B̄

T
1
bbÞg,bfnm ¼ 2RefB1InB�1

1 ½I� 2W̄ðI3 þ I4 þ I5ÞK
�1
0 WTL�1

1 �B̄1ImðĀ
T
1
bf þ B̄

T
1
bbÞg,bbnm ¼ 2RefA1InB�1

1 ½I� 2W̄ðI3 þ I4 þ I5ÞK
�1
0 WTL�1

1 �B̄1ImðĀ
T
1
bf þ B̄

T
1
bbÞg, (4.13)

bf�nmk ¼ 4RefB2InB�1
2 WIkK

�1
0 W̄

T
L�1

1 B1ImðA
T
1
bf þ BT

1
bbÞg,bb�nmk ¼ 4RefA2InB�1

2 WIkK
�1
0 W̄

T
L�1

1 B1ImðA
T
1
bf þ BT

1
bbÞg,bf�nm ¼ 4RefB2InB�1

2 WðI3 þ I4 þ I5ÞK
�1
0 W̄

T
L�1

1 B1ImðA
T
1
bf þ BT

1
bbÞg,bb�nm ¼ 4RefA2InB�1

2 WðI3 þ I4 þ I5ÞK
�1
0 W̄

T
L�1

1 B1ImðA
T
1 f̂ þ BT

1b̂Þg. (4.14)

The first term in Eq. (4.9) represents 50 time-dependent Green’s functions with singularities located at ½xnmk
1 ðtÞ; xnmk

2 ðtÞ�.

These moving image singularities consist of an extended line force bfnmk and an extended line dislocation bbnmk. The second
term in Eq. (4.9) represents 25 time-independent Green’s functions with singularities located at ½xnm

1 ; xnm
2 �. These static

image singularities consist of an extended line force bfnm and an extended line dislocation bbnm. The first term in Eq. (4.10)

represents 50 time-dependent Green’s functions with singularities located at ½x�nmk
1 ðtÞ; x�nmk

2 ðtÞ�. These moving image

singularities consist of an extended line force f̂
�

nmk and an extended line dislocation b̂
�

nmk. The second term in Eq. (4.10)

represents 25 time-independent Green’s functions with singularities located at ½x�nm
1 ; x�nm

2 �. These static image singularities

consist of an extended line force f̂
�

nm and an extended line dislocation b̂
�

nm. In addition all the moving singularities originate

from the locations of the static singularities due to the fact that xnmk
1 ð0Þ ¼ xnm

1 ; xnmk
2 ð0Þ ¼ xnm

2 and x�nmk
1 ð0Þ ¼ x�nm

1 ; x�nmk
2 ð0Þ ¼

x�nm
2 by noticing Eqs. (4.3), (4.4), (4.7) and (4.8). It can be easily checked from Eq. (4.13) that the total extended force due to

the moving and static image singularities
P5

n¼1

P5
m¼1

P2
k¼1 f̂nmk þ

P5
n¼1

P5
m¼1 f̂nm and the total extended dislocation due to

the moving and static image singularities
P5

n¼1

P5
m¼1

P2
k¼1b̂nmk þ

P5
n¼1

P5
m¼1b̂nm for the upper half-plane are exactly the

same as those for a perfect interface. Similarly it can be easily checked from Eq. (4.14) that the total extended force due to

the moving and static image singularities
P5

n¼1

P5
m¼1

P2
k¼1 f̂

�

nmk þ
P5

n¼1

P5
m¼1 f̂

�

nm and the total extended dislocation due to

the moving and static image singularities
P5

n¼1

P5
m¼1

P2
k¼1b̂

�

nmk þ
P5

n¼1

P5
m¼1b̂

�

nm for the lower half-plane are also exactly

the same as those for a perfect interface.
In summary, 25 static image singularities and 50 moving image singularities, which originate from the locations of the

static image singularities, in the form of an extended line force and an extended line dislocation for the upper or the lower
half-plane are needed to exactly satisfy the boundary conditions on a viscous interface. For a perfect interface only the 25
static image singularities are needed [in the context of pure elasticity, the number is reduced to nine (Ting, 1992)]. In
addition it is observed from Eqs. (4.3) and (4.4) that the locations of the 25 image singularities for the upper half-plane are
independent of the property of the lower half-plane, while the locations of the 50 moving image singularities are reliant on
the properties of both half-planes as well as the viscous coefficients. It is found from Eqs. (4.7) and (4.8) that the locations
of all the static and moving image singularities for the lower half-plane are dependent on the properties of both half-planes
as well as the viscous coefficients.

The discussions presented in this section are restricted to mathematically non-degenerate materials. It is expected that
for degenerate materials such as the isotropic material the static and moving image singularities are not simply
concentrated forces and dislocations. For the mathematically degenerate materials, some of the 25 static image
singularities may coalesce into one static singularity and some of the 50 moving singularities may also converge into one
moving singularity, resulting in static and moving double-forces, concentrated couples and other higher-order singularities.
It should be pointed out that even though the image singularity discussions for an isotropic elastic half-plane and for an
isotropic elastic bimaterial with a perfect interface have been carried out (see for example, Dundurs, 1969; Ma, 2001), the
corresponding discussions for an isotropic elastic bimaterial with a viscous interface is still unavailable.

5. Time-dependent image force on an extended line dislocation

Here we are also much interested in the image force on the extended line dislocation b̂ (with f̂ ¼ 0) due to its interaction
with the nearby viscous interface. By using the Peach-Koehler formulation (Ting, 1996; Lee et al., 2000; Fan and Wang,
2003), the time-dependent image force acting on the extended line dislocation can be finally derived as

F2ðtÞ ¼
bbT

4px̂2
2RefN�1

g � L1

h
�2
X5

n¼1

X5

m¼1

X2

k¼1

Re Ynmk
lkt

lkt þ iðp̄n � pmÞx̂2

� 	#bb,

F1ðtÞ ¼ 0, (5.1)
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where F1 and F2 are, respectively, the components of the image force along the x1 and x2 directions, and

Ynmk ¼ Ȳ
T
mnk ¼ ðB̄1InB̄

�1
1 ÞðWIkK

�1
0 W̄

T
ÞðB1ImB�1

1 Þ
T
¼ ðB̄1InB̄

�1
1 Þ

vkv̄T
k

dk

 !
ðB1ImB�1

1 Þ
T. (5.2)

It is observed that the term in the square brackets on the right-hand side of Eq. (5.1) is a 5�5 time-dependent real and
symmetric matrix. In the following we look into the above image force expression in more detail.

5.1. Isotropic elastic bimaterials

First it should be stressed that Eq. (4.1) is still valid for any kind of mathematically degenerate materials such
as the isotropic elastic material. For example if we assume that both half-planes are isotropic elastic, then
p1 ¼ p2 ¼ p3 ¼ p4 ¼ p5 ¼ i. Consequently we have

F2ðtÞ ¼
bbT

4px̂2
2RefN�1

g � L1

h
�2
X2

k¼1

lkt

lkt þ 2x̂2
Re

vkv̄T
k

dk

 !#bb. (5.3)

Due to the fact that the Barnett–Lothe tensors S, H and L for isotropic elastic materials are well known (Ting,
1996), then it is not difficult to determine the explicit value of the above expression for an elastic dislocationbb ¼ b1 b2 b3 0 0

� �T
as

F2ðtÞ ¼
m1

4px̂2ð1� n1Þð1� b2
Þ
ðaþ b2

Þðb2
1 þ b2

2Þ �
tðaþ 1Þ

t þ 2t1
ðb2

1 þ b2b2
2Þ


 �
þ

m1b2
3

4px̂2

m2 � m1

m1 þ m2
�

t

t þ 2t2

2m2

m1 þ m2

� 
, (5.4)

where a and b are Dundurs constants given by

a ¼
m2ð1� n1Þ � m1ð1� n2Þ

m2ð1� n1Þ þ m1ð1� n2Þ
; b ¼

m2ð1� 2n1Þ � m1ð1� 2n2Þ

2 m2ð1� n1Þ þ m1ð1� n2Þ
� � , (5.5)

with mi and ni (i ¼ 1,2) being the shear moduli and Poisson’s ratios, and t1 and t2 being two relaxation times given by

t1 ¼
x̂2

l1
¼

2x̂2Z1ð1� n1Þð1� b2
Þ

m1ðaþ 1Þ
; t2 ¼

x̂2

l2
¼

x̂2Z3ðm1 þ m2Þ

m1m2
(5.6)

If Z1 ¼ Z3 and 0onip1/2 then it can be easily found that t1ot2. In addition F2(t) is a monotonically decreasing function of t.
It is observed that the second term in Eq. (5.4) gives the time-dependent image force due to a screw dislocation b3, which is
in agreement with the recent result by Wang and Pan (2008). However, the first term in Eq. (5.4) gives the time-dependent
image force due to an edge dislocation with Burgers vector (b1,b2), which is new in the literature. At t ¼ 0 the first term in
Eq. (5.4) is the same as that obtained by Dundurs and Sendeckyj (1965) for a perfect interface (also see Ting, 1996). It is
observed that the first term in Eq. (5.4) depends not only on b2

1 þ b2
2 but also on b2

1 þ b2b2
2, thus it varies with the direction

of the vector (b1, b2). This observation is different from the invariant phenomenon for a perfect interface (Ting, 1996). When
t-N Eq. (5.4) becomes

F2ð1Þ ¼ �
m1½b

2
1 � ab2

2 þ ð1� n1Þb
2
3�

4px̂2ð1� n1Þ
, (5.7)

which can be reduced to that derived by Chen et al. (1998, Eq. (27)) for an edge dislocation (b3 ¼ 0) interacting with a free-
sliding interface on which the two shear stresses s12 and s32 are zero. In addition if the two isotropic elastic half-planes
possess the same material properties, i.e., m1 ¼ m2 ¼ m, n1 ¼ n2 ¼ n, then Eq. (5.4) is further reduced to

F2ðtÞ ¼ �
mt

4px̂2

b2
1

ð1� nÞðt þ 2t1Þ
þ

b2
3

t þ 2t2

" #
p0, (5.8)

where

t1 ¼
2x̂2Z1ð1� nÞ

m
; t2 ¼

2x̂2Z3

m
. (5.9)

Eq. (5.8) implies that the elastic dislocation is always attracted to the viscous interface at any non-zero time, and that the
image force will always be null if the dislocation only contains the b2 component.

5.2. Transversely isotropic multiferroic bimaterials

Here we consider a practical situation in which the two multiferroic half-planes are both transversely isotropic, with
(x1, x2)-plane being the isotropic plane. If the extended line dislocation contains only the b1 and b2 components, then the
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result is identical to that presented in the previous subsection due the fact that the (x1, x2)-plane is an isotropic plane. We

thus consider the two multiferroic half-planes with a screw dislocation b̂ ¼ 0 0 b3 Df Dj
h iT

. In this case it follows

from Eq. (5.1) that

F2ðtÞ ¼
1

4px̂2
bT

0

4t0

t þ 2t0
E�1
� C1

� 
b0 þ

2t

t þ 2t0

ebT

0Meb0


 �
, (5.10)

where

C ¼

C44 e15 q15

e15 ��11 �a11

q15 �a11 �m11

264
375; E ¼

E11 E12 E13

E12 E22 E23

E13 E23 E33

264
375 � C�1

1 þ C�1
2 ; M ¼

E22 E23

E23 E33

" #�1

, (5.11)

b0 ¼ b3 Df Dj
h iT

; eb0 ¼ Df Dj
� �T

, (5.12)

and t0 is a relaxation time defined by

t0 ¼
x̂3Z3jEj

E22E33 � E2
23

40. (5.13)

5.3. Relaxation time

It is observed from the previous two subsections that two positive real relaxation times are inherent in the time-
dependent image force expression for an extended line dislocation interacting with a viscous interface between two
isotropic elastic half-planes or between two transversely isotropic multiferroic half-planes. For a generally anisotropic
multiferroic bimaterial with a viscous interface, if we introduce the following relaxation times:

tnmk ¼ t̄mnk ¼
iðp̄n � pmÞ

ð2lkÞ
ðn;m ¼ 1� 5; k ¼ 1;2Þ (5.14)

then Eq. (5.1) can be further expressed in terms of these relaxation times as

F2ðtÞ ¼
bbT

4px̂2
2RefN�1

g � L1 � 2
X5

n¼1

X5

m¼1

X2

k¼1

Re Ynmk
t

t þ 2tnmk

� 	" #bb. (5.15)

It is observed from Eq. (5.14) that there exist in total as many as 50 relaxation times, among which 10 are positive real while
the other 40 are complex with positive real parts and form 20 distinct conjugate pairs. For example if the two half-planes
are occupied by orthotropic elastic materials, then the Stroh eigenvalues and the Hermitian matrix N can be obtained
explicitly (Suo, 1990; Dongye and Ting, 1989). In this case there exist four relaxation times tk, (k ¼ 1�4) given by

t1 ¼

ffiffiffi
x
p
ð1=2Þðsþ 1Þ
� �1=2

l1
; t2;3 ¼

ffiffiffi
x
p
ð ð1=2Þðsþ 1Þ
� �1=2

� ð1=2Þðs� 1Þ
� �1=2

Þ

l1
,

t4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1Þ55=Cð1Þ44

q
l2

, (5.16)

where

x ¼
ffiffiffiffiffiffiffi
r11

r22

r
and

s ¼
1þ r11r22 � ð1þ r12Þ

2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11r22
p 4� 1

with

rgb ¼
Cð1Þgb

Cð1Þ66

;

and the two eigenvalues l1, l2 are determined by

l1 ¼
N22

Z1ðN11N22 � N12N̄12Þ
; l2 ¼

1

Z3N33
. (5.17)
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It is observed from Eq. (5.16) that t1 and t4 are always real; while t2 and t3 are real when sX1, and complex conjugate
when �1oso1.

5.4. Image force for a perfect interface at the initial moment

At the initial moment t ¼ 0 the image force can be expressed as

F2ð0Þ ¼
bbT

4px̂2
½2RefN�1

g � L1�
bb, (5.18)

which is consistent with the result obtained by Ting and Barnett (1993) for a perfect interface between two anisotropic
elastic half-planes.

5.5. Image force for a free-sliding interface when time approaches infinity

When time t-N the viscous interface will evolve into a free-sliding one on which the shear stresses s12 and s32 are
zero. It follows from Eq. (5.1) that

F2ð1Þ ¼
bbT

4px̂2
2Re N�1

�
X5

n¼1

X5

m¼1

X2

k¼1

Ynmk

( )
� L1

" #bb. (5.19)

If we employ the following identity:

N�1
�
X5

n¼1

X5

m¼1

X2

k¼1

Ynmk ¼ N�1
�WðI1 þ I2ÞK

�1
0 W̄

T
¼
X5

k¼3

vkv̄T
k

dk

¼

0 0 0 0 0

0 k22 0 k24 k25

0 0 0 0 0

0 k̄24 0 k44 k45

0 k̄25 0 k̄45 k55

2666666664

3777777775
, (5.20)

where kij can be concisely given by

k22 k24 k25

k̄24 k44 k45

k̄25 k̄45 k55

264
375 ¼ N22 N24 N25

N̄24 N44 N45

N̄25 N̄45 N55

264
375
�1

(5.21)

then Eq. (5.19) can be further simplified as

F2ð1Þ ¼
1

4px̂2
½2ebT

RefeN�1
geb� bbT

L1
bb�, (5.22)

where

eb ¼ b2 Df Dj
h iT

, (5.23)

eN ¼ N22 N24 N25

N̄24 N44 N45

N̄25 N̄45 N55

264
375. (5.24)

Expression (5.22) indicates that: (1) all the rest components in N except for those appearing in eN have no influence on
F2ð1Þ; (2) the material properties in the lower multiferroic half-plane have no influence on F2ð1Þ for an elastic dislocationeb ¼ b1 0 b3 0 0

� �T
(i.e, eb ¼ 0); (3) F2ð1Þ varies with rotations about the x3-axis due to the fact that the termebT

RefeN�1
geb changes with rotations about the x3-axis, which is quite different to the invariance property of the image force

with the orientation of the perfect interface (Ting and Barnett, 1993; Ting, 1996). Furthermore Eq. (5.22) for the image force
on an extended dislocation interacting with a free-sliding interface is strikingly simple! It is of interest to notice that Wang
et al. (2001) have derived an expression for the image force on a line dislocation interacting with a free-sliding interface
between two piezoelectric half-planes. In the context of multiferroic bimaterial, that expression can be slightly modified as

F2ð1Þ ¼
bbT

4px̂2
2Re

J1N

J2

" #�1
J1

02�5

" #8<:
9=;� L1

24 35bb, (5.25)
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where

J1 ¼

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

264
375; J2 ¼

1 0 0 0 0

0 0 1 0 0


 �
. (5.26)

Even though it can be proved that Eqs. (5.22) and (5.25) are equivalent, Eq. (5.25) is still not as explicit and concise
as Eq. (5.22).

5.6. A comparison of image force F2(0) with F2(N)

Here it is of interest to compare the value of the image force F2(0) for a perfect interface with that of F2(N) for a free-
sliding interface. It follows from Eqs. (5.18) and (5.19) that

F2ð0Þ � F2ð1Þ ¼
1

2px̂2

ðbbT
v1Þðv̄

T
1
bbÞ

d1
þ
ðbbT

v2Þðv̄
T
2
bbÞ

d2

24 35X0, (5.27)

due to the fact that both d1 and d2 are positive. Eq. (5.27) states that the image force on an extended line dislocation
interacting with a perfect interface is always equal to or larger than that on the same dislocation interacting with a free-
sliding interface. In other words a free-sliding interface is more attractive to the extended line dislocation than a perfect
interface. If the two multiferroic half-planes are exactly the same, then F2ð1ÞpF2ð0Þ ¼ 0, which means that the dislocation
is always attracted to a free-sliding interface between two identical multiferroic half-planes. If we can find a real extended

Burgers vector b̂ which is orthogonal to both v1 and v2, i.e., vT
1b̂ ¼ vT

2b̂ ¼ 0, then F2ð0Þ � F2ð1Þ. Let v0i; v
00

i be, respectively,

the real and imaginary parts of vi. then the condition bbT
v1 ¼

bbT
v2 ¼ 0 is equivalent to the following set of four independent

linear algebraic equations for the unknown b̂

v01 v001 v02 v002
� �T

b̂ ¼ 04�1, (5.28)

through which we can find at least a non-zero solution for the five-dimension real vector b̂. In other words we can always
find an extended line dislocation b̂ such that the image force on the dislocation interacting with a perfect interface is just
equal to that on the same dislocation interacting with a free-sliding interface.

6. Conclusions

We have derived the elegant and exact closed-form Green’s functions Eqs. (3.29) and (3.30) for a generally anisotropic
multiferroic bimaterial with a viscous interface subjected to an extended line force and an extended line dislocation in the
upper half-plane. The obtained Green’s function solutions are then interpreted physically in terms of the image
singularities in the form of an extended line force and an extended line dislocation. It is found that 25 static image
singularities and 50 moving image singularities in the form of an extended line force and an extended line dislocation for
the upper or lower half-plane are needed to satisfy exactly the interfacial conditions on a viscous interface. For a perfect
interface, on the other hand, only 25 static image singularities are needed [in the context of pure elasticity, the number is
further reduced to nine (Ting, 1992)]. The image force on an extended line dislocation due to its interaction with the viscous
interface is further derived, given explicitly by Eqs. (5.1) and (5.2). In order to better understand the influence of the viscous
interface on the mobility of the extended line dislocation, we then look into the image force expression for six different
cases: (i) isotropic elastic bimaterials; (ii) transversely isotropic multiferroic bimaterials with the symmetry axes along the
x3-axis; (iii) relaxation time; (iv) image force at the initial moment for a perfect interface; (v) image force at infinite time
for a free-sliding interface; (vi) a comparison of the image force at the initial moment to that at infinite time. The results
show that: (1) the derived image force expression is valid for any kind of mathematical degenerate materials; (2) as many
as 50 relaxation times are needed to describe the time-dependent image force (see Eq. (5.15)) for a viscous interface
between two generally anisotropic multiferroic half-planes; (3) a free-sliding interface is more attractive to the line
dislocation than a perfect interface.

It is expected that the Green’s functions presented in this paper could be directly applied to the study of dislocation
induced mobility in novel multiferroic bimaterials. For more complicated boundary value problems, the derived exact
closed-form Green’s functions can be utilized as the kernel functions in any boundary integral formulation. Since only the
boundary of the problem needs to be discretized, field concentration and singularity can be more efficiently handled than
the domain-based discretization method.
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Appendix A. Proof that p cannot be real in Eq. (2.3)

If we choose uk ¼ akf ðzpÞ, (k ¼ 1�3), f ¼ a4f ðzpÞ and j ¼ a5f ðzpÞ with zp ¼ x1 þ px2, then differentiation of uk, f and j
leads to

uk;l ¼ ðdl1 þ pdl2Þakf 0ðzpÞ;f;l ¼ ðdl1 þ pdl2Þa4f 0ðzpÞ; j;l ¼ ðdl1 þ pdl2Þa5f 0ðzpÞ. (A.1)

where dli is the Kronecker delta.
Consequently satisfaction of sij;j ¼ 0; Di;i ¼ 0; Bi;i ¼ 0 yields (assuming constant material properties in the solid)

ðCijksak þ esija4 þ qsija5Þðdj1 þ pdj2Þðds1 þ pds2Þ ¼ 0,

ðeiksak � �isa4 � aisa5Þðdi1 þ pdi2Þðds1 þ pds2Þ ¼ 0,

ðqiksak � aisa4 � misa5Þðdi1 þ pdi2Þðds1 þ pds2Þ ¼ 0, (A.2)

If p were real, multiplication of Eq. (A.2)1–3 by ai, a4 and a5, respectively, and subtraction of the results leads to

Cijks aiðdj1 þ pdj2Þ
� �

akðds1 þ pds2Þ½ � þ �is a4ðdi1 þ pdi2Þ½ � a4ðds1 þ pds2Þ½ �

þ 2ais a4ðdi1 þ pdi2Þ½ � a5ðds1 þ pds2Þ½ � þ mis a5ðdi1 þ pdi2Þ½ � a5ðds1 þ pds2Þ½ � ¼ 0, (A.3)

which violates the positive definite energy (elastic and electromagnetic energies) condition that

Cijksui;juk;s40; �isEiEs þ 2aisEiHs þ misHiHs40, (A.4)

where Ei ¼ �f;i;Hi ¼ �j;i are the electric field and magnetic field, respectively.
It then follows that the 10 eigenvalues of Eq. (2.3) should form five conjugate pairs since all the three matrices Q, R,

and T in Eq. (2.3) are real.
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