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Abstract A meshless method based on the local
Petrov–Galerkin approach is proposed for crack analysis in
two-dimensional (2-D) and three-dimensional (3-D) axisym-
metric magneto-electric-elastic solids with continuously
varying material properties. Axial symmetry of geometry and
boundary conditions reduces the original 3-D boundary value
problem into a 2-D problem in axial cross section. Station-
ary and transient dynamic problems are considered in this
paper. The local weak formulation is employed on circular
subdomains where surrounding nodes randomly spread over
the analyzed domain. The test functions are taken as unit
step functions in derivation of the local integral equations
(LIEs). The moving least-squares (MLS) method is adopted
for the approximation of the physical quantities in the LIEs.
The accuracy of the present method for computing the stress
intensity factors (SIF), electrical displacement intensity fac-
tors (EDIF) and magnetic induction intensity factors (MIIF)
are discussed by comparison with numerical solutions for
homogeneous materials.
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1 Introduction

Modern smart structures made of piezoelectric and piezo-
magnetic materials offer certain potential performance
advantages over conventional ones due to their capability of
converting the energy from one type to other (among mag-
netic, electric, and mechanical) [5,7,21,26]. Former activ-
ities were focused on modeling of magneto-electric-elastic
fields to determine the field variables [1,9,24,29,43].
Recently, increasing interest is devoted to fracture mechan-
ics of magneto-electric-elastic materials [16,20,36,40,41,
45,46,48]. All above mentioned works are made under a
static deformation assumption. However, dynamic fracture
analyses are occurring in literature very seldom. Some works
on relatively simple anti-plane problems have been published
[11,13,38]. Three-dimensional (3-D) penny-shaped crack
problem under a static load has been analyzed by Zhao et al.
[47]. Recently, Feng et al. [14] have investigated the tran-
sient response of a penny-shaped crack embedded in a mag-
netoelectroelastic layer of a finite thickness. Coupling of
magneto-electro-thermo-elastic fields is investigated in
works [27,49].

While the piezoelectric and piezomagnetic effects are due
to electro-elastic and magneto-elastic interaction, respecti-
vely, the magnetoelectric effect is the induction of the
electrical polarization by magnetic field and the induction of
magnetization by electric field via electro-magneto-elastic
interactions. Magnetoelectric coupling plays an important
role in the dynamic behavior of certain materials, especially
compounds which possess simultaneously ferroelectric and
ferromagnetic phases [12]. The electric and magnetic
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symmetry groups for certain crystals permit the piezoelec-
tric and piezomagnetic as well as magnetoelectric effects. In
centrosymmetric crystals neither of these effects exists. How-
ever, remarkably large magnetoelectric effects are observed
in composites rather than in either single phase/constituent
[13,26]. If the volume fraction of constituents is varying in
a predominant direction we are talking about functionally
graded materials (FGMs). Originally these materials have
been introduced to benefit from the ideal performance of
its constituents, e.g., high heat and corrosion resistance of
ceramics on one side, and large mechanical strength and
toughness of metals on the other side. A review on various
aspects of FGMs can be found in the monograph of Suresh
and Mortensen [39] and the review chapter by Paulino et al.
[31]. Later, the demand for piezoelectric materials with high
strength, high toughness, low thermal expansion coefficient
and low dielectric constant encourages the study of func-
tionally graded piezoelectric materials [19,42,50]. Accord-
ing the best of authors’ knowledge there is available only
one paper [13] with applications to continuously nonhomo-
geneous magneto-electric materials. The dynamic anti-plane
crack problem with exponential variation of material proper-
ties is analyzed by Feng and Su [13] analytically for a cracked
infinite strip.

The solution of general boundary value problems for con-
tinuously nonhomogeneous magneto-electric-elastic solids
requires advanced numerical methods due to the high mathe-
matical complexity. Besides this complication, the magnetic,
electric and mechanical fields are coupled with each other
in the constitutive equations. In spite of the great success
of the finite element method (FEM) and boundary element
method (BEM) as effective numerical tools for the solution of
boundary value problems in magneto-electric-elastic solids,
there is still a growing interest in the development of new
advanced numerical methods. In recent years, meshless for-
mulations are becoming popular due to their high adaptability
and low costs to prepare input and output data in numerical
analysis. The moving least squares (MLS) approximation
is generally considered as one of many schemes to inter-
polate discrete data with a reasonable accuracy. The conti-
nuity of the MLS approximation is given by the minimum
between the continuity of the basis functions and that of
the weight function. So continuity can be tuned to a desired
value. In conventional discretization methods there is a dis-
continuity of secondary fields (gradients of primary fields)
on the interface of elements. For modeling of continuously
nonhomogeneous solids the approach based on piecewise
continuous elements can bring some inaccuracies. Therefore,
modeling based on C1 continuity, like meshless methods, is
expected to be more accurate than conventional discretiza-
tions techniques. The meshless or generalized FEM methods
are also very convenient for modeling of cracks. One can
embed particular enrichment functions at the crack tip so the

stress intensity factor can be accurately predicted [15]. Mesh-
less methods can easily simulate crack propagation without
remeshing [22].

A variety of meshless methods has been proposed so far
with some of them applied only to piezoelectric problems
[25,28]. They can be derived either from a weak-form formu-
lation on the global domain or on a set of local subdomains.
In the global formulation, background cells are required for
the integration of the weak-form. In methods based on local
weak-form formulation, no background cells are required and
therefore they are often referred to as truly meshless meth-
ods. The meshless local Petrov–Galerkin (MLPG) method is
a fundamental base for the derivation of many meshless for-
mulations, since trial and test functions can be chosen from
different functional spaces. Recently, the MLPG method with
a Heaviside step function as the test functions [2–4,32] has
been applied to solve two-dimensional (2-D) homogeneous
piezoelectric problems [33]. In the present paper, the MLPG
method is extended to 2-D and 3-D axisymmetric and con-
tinuously nonhomogeneous magneto-electric-elastic solids
with cracks. The coupled governing partial differential
equations are satisfied in a weak form on small fictitious
subdomains. Nodal points are introduced and spread on the
analyzed domain and each node is surrounded by a small
circle for simplicity, but without loss of generality. For a
simple shape of subdomains like circles applied in this paper,
numerical integrations over them can be easily carried out.
The integral equations have a very simple nonsingular form.
The spatial variations of the displacements, the electric
and magnetic potentials are approximated by the (MLS)
scheme [2,6]. After performing the spatial integrations, a
system of linear algebraic equations for the unknown nodal
values is obtained. The essential boundary conditions on the
global boundary are satisfied by the collocation of the MLS-
approximation expressions for the displacements, electric
and magnetic potentials at the boundary nodal points. The
accuracy and the efficiency of the proposed MLPG method
are verified by several numerical examples for computing the
stress intensity factors (SIF), electrical displacement inten-
sity factor (EDIF) and magnetic induction intensity factor
(MIIF). Numerical results are presented and compared with
available FEM numerical solutions for homogeneous
materials.

2 Local boundary integral equations for 2-D problems

2.1 Physical and mathematical model

Basic equations of phenomenological theory of nonconduct-
ing elastic materials consist of the governing equations
(Maxwell’s equations, the balance of momentum) and the
constitutive relationships. The governing equations comple-
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ted by the boundary and initial conditions should be solved
for unknown primary field variables such as the elastic dis-
placement vector field ui (x, τ ), the electric potentialψ(x, τ )
(or its gradient called the electric vector field Ei (x, τ )), and
the magnetic potential µ(x, τ ) (or its gradient called the
magnetic intensity field Hi (x, τ )). The constitutive equations
co-relate the primary fields {ui , Ei , Hi } with the secondary
fields {σi j , Di , Bi } which are the stress tensor field, the elec-
tric displacement vector field, and the magnetic induction
vector field, respectively. The governing equations give not
only the relationships between conjugated fields in each of
the pairs (σi j , εi j ), (Di , Ei ), (Bi , Hi ), but describe also the
electro-magneto-elastic interactions in the phenomenologi-
cal theory of continuous solids.

Taking into account the typical material coefficients, it can
be found that characteristic frequencies for elastic and elec-
tromagnetic processes are fel = 104 Hz and felm = 107 Hz,
respectively. Thus, if we consider such bodies under tran-
sient loadings with temporal changes corresponding to fel,
the changes of the electromagnetic fields can be assumed to
be immediate, or in other words the electromagnetic fields
can be considered like quasi-static [30]. Then, the Maxwell
equations are reduced to two scalar equations

D j, j (x, τ ) = 0, (1)

B j, j (x, τ ) = 0. (2)

The rest vector Maxwell’s equations in quasi-static
approximation, ∇×E = 0 and ∇×H = 0, are satisfied iden-
tically by appropriate representation of the fields E(x, τ ) and
H(x, τ ) as gradients of scalar electric and magnetic potentials
ψ(x, τ ) and µ(x, τ ), respectively,

E j (x, τ ) = −ψ, j (x, τ ), (3)

Hj (x, τ ) = −µ, j (x, τ ). (4)

To complete the set of governing equations, Eqs. (1) and
(2) need to be supplied by the equation of motion in elastic
continuum

σi j, j (x, τ )+ Xi (x, τ ) = ρüi (x, τ ), (5)

where üi , ρ and Xi denote the acceleration of displacements,
the mass density, and the body force vector, respectively. A
comma after a quantity represents the partial derivatives of
the quantity and a dot is used for the time derivative.

Finally, we extend the constitutive equations involving
the general electro-magneto-elastic interaction [26] to media
with spatially dependent material coefficients for continu-
ously nonhomogeneous media

σi j (x, τ ) = ci jkl(x)εkl(x, τ )− eki j (x)Ek(x, τ )

− dki j (x)Hk(x, τ ), (6)

D j (x, τ ) = e jkl(x)εkl(x, τ )+ h jk(x)Ek(x, τ )

+α jk(x)Hk(x, τ ), (7)

B j (x, τ ) = d jkl(x)εkl(x, τ )+ αk j (x)Ek(x, τ )

+ γ jk(x)Hk(x, τ ), (8)

with the strain tensor εi j being related to the displacements
ui by

εi j = 1

2

(
ui, j + u j,i

)
. (9)

The functional coefficients ci jkl(x), h jk(x), and γ jk(x)
are the elastic coefficients, dielectric permittivities, and mag-
netic permeabilities, respectively; eki j (x), dki j (x), andαjk(x)
are the piezoelectric, piezomagnetic, and magnetoelectric
coefficients, respectively. Owing to transient loadings, iner-
tial effects and coupling, the elastic fields as well as electro-
magnetic fields are time dependent, though the fields Ei and
Hi are treated in quasi-static approximation.

In case of some crystal symmetries, one can formulate
also the plane-deformation problems [30]. For instance, in
the crystals of hexagonal symmetry (class 6 mm) with x3

being the 6-order symmetry axis and assuming u2 = 0 as
well as the independence on x2, i.e., (·),2 = 0, we have
ε22 = ε23 = ε12 = E2 = H2 = 0. Then, the constitutive
equations (6)–(8) are reduced to the following form
⎡

⎣
σ11

σ33

σ13

⎤

⎦=
⎡

⎣
c11 c13 0
c13 c33 0
0 0 c44

⎤

⎦

⎡

⎣
ε11

ε33

2ε13

⎤

⎦−
⎡

⎣
0 e31

0 e33

e15 0

⎤

⎦
[

E1

E3

]

−
⎡

⎣
0 d31

0 d33

d15 0

⎤

⎦
[

H1

H3

]

= C(x)

⎡

⎣
ε11

ε33

2ε13

⎤

⎦−L(x)
[

E1

E3

]
−K(x)

[
H1

H3

]
,

(10)
[

D1

D3

]
=
[

0 0 e15

e31 e33 0

]⎡

⎣
ε11

ε33

2ε13

⎤

⎦+
[

h11 0
0 h33

] [
E1

E3

]

+
[
α11 0
0 α33

] [
H1

H3

]

= G(x)

⎡

⎣
ε11

ε33

2ε13

⎤

⎦+H(x)
[

E1

E3

]
+A(x)

[
H1

H3

]
,

(11)
[

B1

B3

]
=
[

0 0 d15

d31 d33 0

]⎡

⎣
ε11

ε33

2ε13

⎤

⎦+
[
α11 0
0 α33

] [
E1

E3

]

+
[
γ11 0
0 γ33

] [
H1

H3

]

= R(x)

⎡

⎣
ε11

ε33

2ε13

⎤

⎦+A(x)
[

E1

E3

]
+M(x)

[
H1

H3

]
. (12)
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Recall that σ22 does not influence the governing equations,
although it is not vanishing in general, since σ22 = c12ε11 +
c13ε33 − e13 E3.

The following essential and natural boundary conditions
are assumed for the mechanical field

ui (x, τ ) = ũi (x, τ ), on �u,

ti (x, τ ) = σi j n j = t̃i (x, τ ), on �t , � = �u ∪ �t .

For the electrical field, we assume

ψ(x, τ ) = ψ̃(x, τ ), on �p,

ni (x)Di (x, τ )≡ Q(x, τ )= Q̃(x, τ ), on �q , �=�p∪�q

and for the magnetic field

µ(x, τ ) = µ̃(x, τ ), on �a,

ni (x)Bi (x, τ )≡ S(x, τ )= S̃(x, τ ), on �b, �=�a ∪�b,

where �u is the part of the global boundary � with pre-
scribed displacements, while on �t , �p, �q , �a , and �b the
traction vector, the electric potential, the normal component
of the electric displacement vector, the magnetic potential
and the magnetic flux are prescribed, respectively. Recall
that Q̃(x, τ ) can be considered approximately as the sur-
face density of free charge, provided that the permittivity of
the solid is much greater than that of the surrounding medium
(vacuum).

The initial conditions for the mechanical displacements
are assumed as

ui (x, τ )|τ=0 =ui (x, 0) and u̇i (x, τ )|τ=0 = u̇i (x, 0) in	.

2.2 Formulation for solution of the boundary—initial
problems

Applying the Laplace-transform to the governing equations
(5) one obtains

σ̄i j, j (x, p)− ρ(x)p2ūi (x, p) = −F̄i (x, p), (13)

where

F̄i (x, p) = X̄i (x, p)+ pui (x, 0)+ u̇i (x, 0),

is the re-defined body force in the Laplace-transformed
domain with the initial boundary conditions for the displace-
ments ui (x, 0) and velocities u̇i (x, 0). Recall that the sub-
scripts take now values i ∈ {1, 3}.

The Laplace-transform of a function f (x, τ ) is defined as

L [ f (x, τ )] = f̄ (x, p) =
∞∫

0

f (x, τ )e−pτdτ ,

where p is the Laplace-transform parameter.
Instead of writing the global weak-form for the above gov-

erning equations, the MLPG method constructs a weak-form

over the local fictitious subdomains such as 	s , which is
a small region constructed for each node inside the global
domain [2]. The local subdomains overlap each other, and
cover the whole global domain 	. The local subdomains
could be of any geometrical shape and size. In the present
paper, the local subdomains are taken to be of a circular shape
for simplicity. The local weak-form of the governing equa-
tion (13) can be written as
∫

	s

[
σ̄i j, j (x, p)−ρ(x)p2ūi (x, p)+ F̄i (x, p)

]
u∗

ik(x) d	=0,

(14)

where u∗
ik(x) is a test function.

Using

σi j, j u
∗
ik = (

σi j u
∗
ik

)
, j − σi j u

∗
ik, j

and applying the Gauss divergence theorem to Eq. (14) one
obtains
∫

∂	s

σ̄i j (x, p)n j (x)u∗
ik(x)d�−

∫

	s

σ̄i j (x, p)u∗
ik, j (x)d	

+
∫

	s

[
F̄i (x, p)−ρ(x)p2ūi (x, p)

]
u∗

ik(x)d	=0, (15)

where ∂	s is the boundary of the local subdomain which
consists of three parts ∂	s = Ls ∪ �st ∪ �su [2]. Here, Ls

is the local boundary that is totally inside the global domain,
�st is the part of the local boundary which coincides with the
global traction boundary, i.e., �st = ∂	s ∩�t , and similarly
�su is the part of the local boundary that coincides with the
global displacement boundary, i.e., �su = ∂	s ∩ �u .

By choosing a Heaviside step function as the test function
u∗

ik(x) in each subdomain as

u∗
ik(x) =

{
δik at x ∈ 	s

0 at x /∈ 	s
,

the local weak-form (15) is converted into the following local
boundary-domain integral equations
∫

Ls+�su

t̄i (x, p)d� −
∫

	s

ρ(x)p2ūi (x, p)d	

= −
∫

�st

˜̄ti (x, p)d� −
∫

	s

F̄i (x, p)d	. (16)

Equation (16) is recognized as the overall force equilib-
rium conditions on the subdomain 	s . Note that the local
integral equation (LIE) (16) is valid for both the homoge-
neous and nonhomogeneous solids. Nonhomogeneous mate-
rial properties are included in Eq. (16) through the elastic,
piezoelectric and piezomagnetic coefficients in the traction
components.
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Similarly, the local weak-form of the governing equation
(2) can be written as
∫

	s

D̄ j, j (x, p) v∗(x) d	 = 0, (17)

where v∗(x) is a test function.
Applying the Gauss divergence theorem to the local weak-

form (17) and choosing the Heaviside step function as the test
function v∗(x) one can obtain
∫

Ls+�sp

Q̄(x, p)d� = −
∫

�sq

¯̃Q(x, p)d�, (18)

where

Q̄(x, p) = D̄ j (x, p)n j (x)

= [e jkl ūk,l(x, p)−h jkψ̄,k(x, p)−α jkµ̄,k(x, p)
]

n j .

The LIE corresponding to the third governing equation (3)
has the form
∫

Ls+�sa

S̄(x, p)d� = −
∫

�sb

¯̃S(x, p)d�, (19)

where magnetic flux is given by

S̄(x, p) = B̄ j (x, p)n j (x)

= [d jkl ūk,l(x, p)−αk jψ,k(x, p)−γ jkµ,k(x, p)
]

n j .

In the MLPG method the test and the trial functions are
not necessarily from the same functional spaces. For inter-
nal nodes, the test function is chosen as the Heaviside step
function with its support on the local subdomain. The trial
functions, on the other hand, are chosen to be the MLS
approximations by using a number of nodes spreading over
the domain of influence. According to the MLS [6] method,
the approximation of the displacement can be given as

uh(x) =
m∑

i=1

pi (x)ai (x) = pT (x)a(x),

where pT (x) = {p1(x), p2(x), . . . , pm(x)} is a vector of
complete basis functions of order m and a(x) = {a1(x),
a2(x), . . . , am(x)} is a vector of unknown parameters that
depend on x. For example, in 2-D problems

pT (x) = {1, x1, x2} for m = 3

and

pT (x) =
{

1, x1, x2, x2
1 , x1x2, x2

2

}
for m = 6

are linear and quadratic basis functions, respectively. The
basis functions are not required to be polynomials. It is con-
venient to introduce r−1/2 singularity for secondary fields at
the crack tip vicinity for modeling of fracture problems [15].

Then, the basis functions can be considered in the following
form

pT (x) = {
1, x1, x2,

√
r cos(θ/2),

√
r sin(θ/2),√

r sin(θ/2) sin θ,
√

r cos(θ/2) sin θ
}

for m =7,

where r and θ are polar coordinates with the crack tip as the
origin.

The approximated functions for the Laplace transforms
of the mechanical displacements, the electric and magnetic
potentials can be written as [2]

ūh(x, p) = �T (x) · û =
n∑

a=1

φa(x)ûa(p),

ψ̄h(x, p) =
n∑

a=1

φa(x)ψ̂a(p),

µ̄h(x, p) =
n∑

a=1

φa(x)µ̂a(p), (20)

where the nodal values ûa(p) = (
ûa

1(p), ûa
3(p)

)T
, ψ̂a(p)

and µ̂a(p) are fictitious parameters for the displacements,
the electric and magnetic potentials, respectively, and φa(x)
is the shape function associated with the node a. The num-
ber of nodes n used for the approximation is determined by
the weight function wa(x). A 4th order spline-type weight
function is applied in the present work

wa(x) =
{

1−6
(

da

ra

)2+8
(

da

ra

)3−3
(

da

ra

)4
, 0�da �ra,

0, da � ra,

(21)

where da = ‖x − xa‖ and ra is the size of the support
domain. It is seen that the C1− continuity is ensured over
the entire domain, and therefore the continuity conditions of
the tractions, the electric charge and the magnetic flux are
satisfied.

The Laplace transform of traction vectors t̄i (x, p) at a
boundary point x ∈ ∂	s are approximated in terms of the
same nodal values ûa(p) as

t̄h(x, p) = N(x)C(x)
n∑

a=1

Ba(x)ûa(p)

+ N(x)L(x)
n∑

a=1

Pa(x)ψ̂a(p)

+ N(x)K(x)
n∑

a=1

Pa(x)µ̂a(p), (22)

where the matrices C(x), L(x), and K(x) are defined in
Eq. (10), the matrix N(x) is related to the normal vector
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n(x) on ∂	s by

N(x) =
[

n1 0 n3

0 n3 n1

]

and finally, the matrices Ba and Pa are represented by the
gradients of the shape functions as

Ba(x) =
⎡

⎣
φa
,1 0

0 φa
,3

φa
,3 φa

,1

⎤

⎦ , Pa(x) =
[
φa
,1
φa
,3

]
.

Similarly the Laplace-transform of the normal component
of the electric displacement vector Q̄(x, p) can be approx-
imated by

Q̄h(x, p) = N1(x)G(x)
n∑

a=1

Ba(x)ûa(p)

− N1(x)H(x)
n∑

a=1

Pa(x)ψ̂a(p)

− N1(x)A(x)
n∑

a=1

Pa(x)µ̂a(p), (23)

where the matrices G(x), H(x), and A(x) are defined in
Eq. (11) and

N1(x) = [n1 n3] .

Eventually, the Laplace-transform of the magnetic flux
S̄(x, p) is approximated by

S̄h(x, p) = N1(x)R(x)
n∑

a=1

Ba(x)ûa(p)

− N1(x)A(x)
n∑

a=1

Pa(x)ψ̂a(p)

− N1(x)M(x)
n∑

a=1

Pa(x)µ̂a(p), (24)

with the matrices R(x) and M(x) being defined in Eq. (12).
Obeying the essential boundary conditions and making

use of the approximation formula (20), one obtains the dis-
cretized form of these boundary conditions as

n∑

a=1

φa(ζ )ûa(p) = ˜̄u(ζ , p) for ζ ∈ �u,

n∑

a=1

φa(ζ )ψ̂a(p) = ψ̃(ζ , p) for ζ ∈ �p,

n∑

a=1

φa(ζ )µ̂a = µ̃(ζ , p) for ζ ∈ �a . (25)

Furthermore, in view of the MLS-approximation (22)–
(24) for the unknown quantities in the local boundary-domain

integral equations (16), (18) and (19), we obtain their
discretized forms as

n∑

a=1

⎛

⎜
⎝

∫

Ls+�st

N(x)C(x)Ba(x)d�−Iρp2
∫

	s

φa(x)d	

⎞

⎟
⎠ ûa(p)

+
n∑

a=1

⎛

⎜
⎝

∫

Ls+�sq

N(x)L(x)Pa(x)d�

⎞

⎟
⎠ ψ̂

a
(p)

+
n∑

a=1

⎛

⎜
⎝

∫

Ls+�sb

N(x)K(x)Pa(x)d�

⎞

⎟
⎠ µ̂a

(p)

= −
∫

�st

˜̄t(x, p)d� −
∫

	s

F̄(x, p)d	, (26)

n∑

a=1

⎛

⎜
⎝

∫

Ls+�sp

N1(x)G(x)Ba(x)d�

⎞

⎟
⎠ ûa(p)

−
n∑

a=1

⎛

⎜
⎝

∫

Ls+�sp

N1(x)H(x)Pa(x)d�

⎞

⎟
⎠ ψ̂

a
(p)

−
n∑

a=1

⎛

⎜
⎝

∫

Ls+�sp

N1(x)A(x)Pa(x)d�

⎞

⎟
⎠ µ̂

a
(p)

= −
∫

�sq

Q̃(x, p)d�, (27)

n∑

a=1

⎛

⎜
⎝

∫

Ls+�sp

N1(x)R(x)Ba(x)d�

⎞

⎟
⎠ ûa(p)

−
n∑

a=1

⎛

⎜
⎝

∫

Ls+�sp

N1(x)A(x)Pa(x)d�

⎞

⎟
⎠ ψ̂

a
(p)

−
n∑

a=1

⎛

⎜
⎝

∫

Ls+�sp

N1(x)M(x)Pa(x)d�

⎞

⎟
⎠ µ̂

a
(p)

= −
∫

�sq

S̃(x, p)d�, (28)

which are considered on the sub-domains adjacent to the
interior nodes as well as to the boundary nodes on �st , �sq

and �sb. In Eq. (26), I is a unit matrix defined by

I =
(

1 0
0 1

)
.

Collecting the discretized local boundary-domain integral
equations together with the discretized boundary conditions
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for the displacements, the electrical and magnetic potentials
results in the complete system of linear algebraic equations
for the computation of the nodal unknowns, namely, the
Laplace-transforms of the fictitious parameters ûa(p), ψ̂a(p)
and µ̂a(p). The time dependent values of the transformed
quantities can be obtained by an inverse Laplace-transform.
In the present analysis, the Stehfest’s inversion algorithm
[37] is used. If f̄ (s) is the Laplace-transform of f (t) , an
approximate value fa of f (t) for a specific time t is given
by

fa(t) = ln 2

t

N∑

i=1

vi f̄

(
ln 2

t
i

)
, (29)

where

vi = (−1)N/2+i

×
min(i, N/2)∑

k=[(i+1)/2]

k N/2(2k)!
(N/2−k)! k! (k−1)! (i −k)! (2k − i)! .

(30)

In numerical analyses, we have considered N = 10 for
single precision arithmetic. It means that for each time t
we need to solve N boundary value problems for the cor-
responding Laplace-transform parameters s = i ln 2/t , with
i = 1, 2, . . . , N . If M denotes the number of the time instants
in which we are interested to know f (t), the number of
the Laplace-transform solutions f̄ (s j ) is then M × N . It
should be noted that the present computational method can
be easily reformulated into real time formulation as it was
shown recently for heat conduction problems in function-
ally graded materials [34]. It is shown there that accuracies
in both Laplace transformed and real time formulations are
similar.

3 Local boundary integral equations for 3-D
axisymmetric problems

Let us consider a 3-D axisymmetric magneto-electro-elastic
body generated by the rotation of the planar domain 	

bounded by the boundary � around the axis of symmetry as
depicted in Fig. 1. Let us consider solids with hexagonal sym-
metry and the z-axis being oriented in the poling direction.
Moreover, we assume the body to be transversely isotropic,
i.e., the additional symmetry is the rotational symmetry with
respect to the z-axis. For axisymmetric problems it is conve-
nient to use cylindrical coordinates x ≡ (r, ϕ, z). Owing to
the hexagonal symmetry, the tensors of material coefficients
are the same as in the previous section and their cylindri-
cal components can be identified with the Cartesian ones by
equating the indices as (r, ϕ, z) = (1, 2, 3) in the axial plane
(x1, x3) = (r, z). Furthermore, the angular component of the

1=r

2

L

b

3=z

Γ

a

Ω

u =0z
σrz=0

σrr=p

σrz=0

Fig. 1 A 3-D axisymmetric body

displacements vanishes and all physical field quantities are
independent on the angular coordinate ϕ because of the axial
symmetry. Thus, in the cylindrical coordinates also with the
representation of tensors being with respect to the cylindrical
unit basis vectors, the nonzero strains are given as

εrr =ur,r , εϕϕ=ur/r, εr z =(ur,z + uz,r )/2 εzz =uz,z,

and the nonzero electrical and magnetic fields are Ea =
−ψ,a, Ha = −µ,a with a ∈ {r, z}.

Thus, selecting the considered planar domain 	 in the
axial plane (x1, x3) = (r, z), we can apply the constitutive
equations valid for crystals exhibiting hexagonal to nonzero
components of the fields {εab, Ea, Ha} [30]. Then bearing in
mind c22 = c11, c23 = c13, etc, we have

⎛

⎜
⎜
⎝

σrr

σϕϕ
σzz

σr z

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

c11 c12 c13 0
c12 c11 c13 0
c13 c13 c33 0
0 0 0 c44

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

ur,r

ur/r
uz,z

ur,z + uz,r

⎞

⎟
⎟
⎠

−

⎡

⎢⎢
⎣

0 e31

0 e31

0 e33

e15 0

⎤

⎥⎥
⎦

(
Er

Ez

)
−

⎡

⎢⎢
⎣

0 d31

0 d31

0 d33

d15 0

⎤

⎥⎥
⎦

(
Hr

Hz

)
,

(
Dr

Dz

)
=
[

0 0 0 e15

e31 e31 e33 0

]
⎛

⎜⎜
⎝

ur,r

ur/r
uz,z

ur,z + uz,r

⎞

⎟⎟
⎠

+
[

h11 0
0 h33

](
Er

Ez

)
+
[
α11 0
0 α33

](
Hr

Hz

)
,
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(
Br

Bz

)
=
[

0 0 0 d15

d31 d31 d33 0

]
⎛

⎜⎜
⎝

ur,r

ur/r
uz,z

ur,z + uz,r

⎞

⎟⎟
⎠

+
[
α11 0
0 α33

](
Er

Ez

)
+
[
γ11 0
0 γ33

](
Hr

Hz

)
.

(31)

In the cylindrical coordinate system, the governing equa-
tions (1), (2) and (5) take the form

σrr,r (r, z, τ )+σr z,z(r, z, τ )+ 1

r

[
σrr (r, z, τ )−σϕϕ(r, z, τ )

]

− ρ(x)ür (r, z, τ ) = −Xr (r, z, τ ),

σr z,r (r, z, τ )+ σzz,z(r, z, τ )+ 1

r
σr z(r, z, τ )

− ρ(x)üz(r, z, τ ) = −Xz(r, z, τ ),

Dr,r (r, z, τ )+ Dz,z(r, z, τ )+ 1

r
Dr (r, z, τ ) = 0,

Br,r (r, z, τ )+ Bz,z(r, z, τ )+ 1

r
Br (r, z, τ ) = 0,

(32)

Note that c12 
= c11 (and consequently σrr − σϕϕ 
= 0) even
in the case of the axial symmetry. The opposite has been
assumed implicitly in Eqs. (3.28) and (3.29) of the book [30].

In the present analysis, all material parameters in the con-
stitutive equations (31) are considered to be dependent on the
(r, z)-coordinates.

Applying the Laplace transform to the first two equations
in (32), we get

σ̄rr,r (r, z, p)+σ̄r z,z(r, z, p)+ 1

r

[
σ̄rr (r, z, p)−σ̄ϕϕ(r, z, p)

]

− ρ(x)p2ūr (r, z, p) = −F̄r (r, z, p),

σ̄r z,r (r, z, p)+ σ̄zz,z(r, z, p)+ 1

r
σ̄r z(r, z, p)

− ρ(x)p2ūz(r, z, p) = −F̄z(r, z, p).

(33)

Recall that the third and fourth equations in (32) remain
unchanged by the Laplace transformation, i.e.,

D̄r,r (r, z, p)+ D̄z,z(r, z, p)+ 1

r
D̄r (r, z, p) = 0,

B̄r,r (r, z, p)+ B̄z,z(r, z, p)+ 1

r
B̄r (r, z, p) = 0.

(34)

In numerical solution, we apply again the MLPG method
to construct the weak form over local subdomains such as
	s , which is a small region taken for each node inside the
global domain [2]. The local subdomains overlap each other,
and cover the whole global domain	. The local subdomains
could be of any geometric shape and size. In the present
paper, the local subdomains are taken to be of circular shape.

The local weak forms of the governing equations (33) and
(34) can be written as

∫

	s

(
σ̄rr,r + σ̄r z,z

)
u∗d	+

∫

	s

1

r

(
σ̄rr − σ̄ϕϕ

)
u∗d	

−
∫

	s

ρ(x)p2ūr (r, z, p)u∗d	 = −
∫

	s

F̄r (r, z, p)u∗d	,

∫

	s

(
σ̄zr,r + σ̄zz,z

)
v∗d	+

∫

	s

1

r
σ̄r z(r, z, p)v∗d	

−
∫

	s

ρ(x)p2ūz(r, z, p)u∗d	 = −
∫

	s

F̄z(r, z, p)v∗d	,

∫

	s

(
D̄r,r + D̄z,z

)
m∗d	+

∫

	s

1

r
D̄r (r, z, p)m∗d	 = 0,

∫

	s

(
B̄r,r + B̄z,z

)
β∗d	+

∫

	s

1

r
B̄r (r, z, p)β∗d	 = 0,

(35)

where u∗(x), v∗(x),m∗(x) and β∗(x) are test functions.
Applying the Gauss divergence theorem to the first domain

integrals of Eqs. (35) and selecting Heaviside unit step func-
tions as test functions u∗(x), v∗(x),m∗(x) and β∗(x) in each
subdomain, one can recast these equations into the following
forms
∫

∂	s

σ̄rb(r, z, p)nbd� +
∫

	s

1

r

(
σ̄rr − σ̄ϕϕ

)
d	

−
∫

	s

ρ(x)p2ūr (r, z, p)d	 = −
∫

	s

F̄r (r, z, p)d	,

∫

∂	s

σ̄zb(r, z, p)nbd� +
∫

	s

1

r
σ̄r z(r, z, p)d	

−
∫

	s

ρ(x)p2ūz(r, z, p)d	 = −
∫

	s

F̄z(r, z, p)d	,

∫

∂	s

D̄b(r, z, p)nbd� +
∫

	s

1

r
D̄r (r, z, p)d	 = 0,

∫

∂	s

B̄b(r, z, p)nbd� +
∫

	s

1

r
B̄r (r, z, p)d	 = 0,

(36)

where the subscript b in Eq. (36) is considered as a summation
index with b = r, z.

As in 2-D problems the displacement and the potential
fields are approximated by the MLS approximation. Substi-
tuting the approximation formula (20) into the LIEs (36) a
system of linear algebraic equations for the unknown ficti-
tious parameters {ûa

r , ûa
z , ψ̂

a, µ̂a} is obtained as
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n∑

a=1

ûa
r (p)

⎧
⎪⎨

⎪⎩

∫

∂	s

[
c11(x)nr (x)φa

,r (x)+ c12(x)
r

nr (x)φa(x)

+ c44(x)nz(x)φa
,z(x)

]
d� +

∫

	s

[
1

r

(
c11(x)

− c12(x)
)(
φa
,r (x)−

1

r
φa(x)

)
−ρ(x)p2φa(x)

]
d	

⎫
⎪⎬

⎪⎭

+
n∑

a=1

ûa
z (p)

∫

∂	s

(c13(x)nr (x)φa
,z(x)+c44(x)nz(x)

× φa
,r (x))d� +

n∑

a=1

ψ̂a(p)
∫

∂	s

(e31(x)nr (x)φa
,z(x)

+ e15(x)nz(x)φa
,r (x))d� +

n∑

a=1

µ̂a(p)
∫

∂	s

(d31(x)nr (x)

× φa
,z(x)+ d15(x)nz(x)φa

,r (x))d�

= −
∫

	s

F̄r (r, z, p)d	, (37)

n∑

a=1

ûa
z (p)

⎧
⎪⎨

⎪⎩

∫

∂	s

[
c33(x)nz(x)φa

,z(x)+c44(x)nr (x)φa
,r (x)

]
d�

+
∫

	s

[
c44(x)

r
φa
,r (x)−ρ(x)p2φa(x)

]
d	

⎫
⎪⎬

⎪⎭

+
n∑

a=1

ûa
r (p)

⎧
⎪⎨

⎪⎩

∫

∂	s

(c44(x)nr (x)φa
,z(x)+ c13(x)nz(x)

×(φa
,r (x)+

1

r
φa(x)))d�+

∫

	s

c44(x)
r

φa
,z(x) d	

⎫
⎪⎬

⎪⎭

+
n∑

a=1

ψ̂a(p)

⎧
⎪⎨

⎪⎩

∫

∂	s

(e15(x)nr (x)φa
,r (x)+e33(x)nz(x)

× φa
,z(x))d� +

∫

	s

1

r
e15(x)φa

,r (x)d	

⎫
⎪⎬

⎪⎭

+
n∑

a=1

µ̂a(p)

⎧
⎪⎨

⎪⎩

∫

∂	s

(
d15(x)nr (x)φa

,r (x)

+ d33(x)nz(x)φa
,z(x)

)
d�+

∫

	s

1

r
d15(x)φa

,r (x)d	

⎫
⎪⎬

⎪⎭

= −
∫

	s

F̄z(r, z, p)d	, (38)

n∑

a=1

ûa
r (p)

⎧
⎪⎨

⎪⎩

∫

∂	s

[
e15(x)nr (x)φa

,z(x)+ e31(x)nz(x)

×
(
φa
,r (x)+

1

r
φa(x)

)]
d� +

∫

	s

1

r
e15(x)φa

,z d	

⎫
⎪⎬

⎪⎭

+
n∑

a=1

ûa
z (p)

⎧
⎪⎨

⎪⎩

∫

∂	s

[e15(x)nr (x)φa
,r (x)+e33(x)nz(x)

× φa
,z(x)]d� +

∫

	s

1

r
e15(x)φa

,r (x) d	

⎫
⎪⎬

⎪⎭

−
n∑

a=1

ψ̂a(p)

⎧
⎪⎨

⎪⎩

∫

∂	s

(h11(x)nr (x)φa
,r (x)

+ h33(x)nz(x)φa
,z(x))d�+

∫

	s

1

r
h11(x)φa

,r (x)d	

⎫
⎪⎬

⎪⎭

−
n∑

a=1

µ̂a(p)

⎧
⎪⎨

⎪⎩

∫

∂	s

(α11(x)nr(x)φa
,r(x)+α33(x)nz(x)

× φa
,z(x))d� +

∫

	s

1

r
α11(x)φa

,r (x)d	

⎫
⎪⎬

⎪⎭
= 0, (39)

n∑

a=1

ûa
r (p)

⎧
⎪⎨

⎪⎩

∫

∂	s

[
d15(x)nr (x)φa

,z(x)+ d31(x)nz(x)

×
(
φa
,r (x)+ 1

r
φa(x)

)]
d� +

∫

	s

1

r
d15(x)φa

,z d	

⎫
⎪⎬

⎪⎭

+
n∑

a=1

ûa
z (p)

⎧
⎪⎨

⎪⎩

∫

∂	s

[d15(x)nr (x)φa
,r (x)+ d33(x)nz(x)

× φa
,z(x)]d� +

∫

	s

1

r
d15(x)φa

,r (x) d	

⎫
⎪⎬

⎪⎭
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−
n∑

a=1

ψ̂a(p)

⎧
⎪⎨

⎪⎩

∫

∂	s

(α11(x)nr (x)φa
,r (x)

+ α33(x)nz(x)φa
,z(x))d�+

∫

	s

1

r
α11(x)φa

,r (x)d	

⎫
⎪⎬

⎪⎭

−
n∑

a=1

µ̂a(p)

⎧
⎪⎨

⎪⎩

∫

∂	s

(γ11(x)nr (x)φa
,r (x)

+ γ33(x)nz(x)φa
,z(x))d�

+
∫

	s

1

r
γ11(x)φa

,r (x)d	

⎫
⎪⎬

⎪⎭
= 0, (40)

Equations (37)–(40) are considered in the subdomains 	s

around each interior node xs and at boundary nodes with
prescribed natural boundary conditions (�t , �qand�b). On
the parts of the global boundary �u with prescribed elastic
displacements, �p with prescribed electric potentials and �a

with prescribed magnetic potential the collocation equations
are applied like in 2-D problem.

4 Numerical examples

4.1 A central crack in a finite strip

In the first example, a straight central crack in a finite
magneto-electro-elastic strip under a uniform pure mechani-
cal and/or electro-magnetic loading is analyzed. The mechan-
ical σ0 = 1 Pa, electrical D0 = 1 C/m2 and magnetic
induction B0 = 1 Vs/m2 loads are applied on the top side
of the strip, respectively, in the static analysis. Each of the
loads can open the crack and even to cause its propagation.
Due to the bi-axial symmetry of the problem only a quarter
of the cracked strip is modeled (Fig. 2). The cracked strip
geometry values are: a = 0.5, a/w = 0.4 and h/w = 1.2.
The mechanical displacements, the electrical and magnetic
potentials on the finite strip are approximated by using 930
(31 × 30) equidistantly distributed nodes. The local subdo-
mains are selected to be circular with a radius rloc = 0.028 m.
To test the accuracy of the present method homogeneous
material properties are considered.

The material parameters corresponding to the BaTiO3–
CoFe2O4 composite are given by [23]

c11 = 22.6 × 1010 Nm−2, c13 = 12.4 × 1010 Nm−2,

c33 = 21.6 × 1010 Nm−2, c66 = 4.4 × 1010 Nm−2,

e15 = 5.8 Cm−2, e31 = −2.2 Cm−2, e33 = 9.3 Cm−2,

h11 =5.64 × 10−9 C2/Nm2, h33 =6.35 × 10−9 C2/Nm2,

31

930

1

900

Q=0

,

Ψ=0

x1

t H( -0)3=σ τ0

t =t =01 3

u = =01 3t

32 62

Q=0

Q=D H( -0)0 τ

Q=0 u = =03 1ta
w

t =01

µ=0

S=0

S=0

S=B H( -0)0 τ

S=0

x3

Fig. 2 A central crack in a finite magneto-electro-elastic strip

d15 = 275.0N/Am, d21 = 290.2 N/Am,

d22 = 350.0 N/Am,

α11 = 5.367 × 10−12 Ns/VC, α33 =2737.5×10−12 Ns/VC,

γ11 = 297.0 × 10−6 Ns2C−2, γ33 = 83.5 × 10−6 Ns2C−2,

ρ = 5500 kg/m3.

For cracks in homogeneous and linear piezoelectric and
piezomagnetic solids the asymptotic behavior of the field
quantities has been given by Wang and Mai [44]. In the
crack tip vicinity, the displacements and potentials show the
classical

√
r asymptotic behavior. Hence, correspondingly,

stresses, the electrical displacement and magnetic induction
exhibit 1/

√
r behavior, where r is the radial polar coordi-

nate with origin at the crack tip. Garcia-Sanchez et al. [17]
extended the approach used in piezoelectricity to magneto-
electroelasticity to obtain asymptotic expression of general-
ized intensity factors
⎛

⎜⎜
⎝

K I I

K I

KE

KM

⎞

⎟⎟
⎠ =

√
π

2r

[
Re(B)−1

]
⎛

⎜⎜
⎝

u1

u3

ψ

µ

⎞

⎟⎟
⎠, (41)

where the matrix B is determined by the material properties
[17,18] and

K I = lim
r→0

√
2πrσ33(r, 0),

K I I = lim
r→0

√
2πrσ13(r, 0),

KE = lim
r→0

√
2πr D3(r, 0),

KM = lim
r→0

√
2πr B3(r, 0),

are the SIF K I and K I I , the EDIF, and the MIIF, respectively.
Enriched and conventional polynomial basis functions in

the MLS approximation have been tested in Fig. 3. One can
observe slight differences of crack opening displacements at
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Fig. 3 Influence of modeling of singularities on the crack opening
displacement under a pure mechanical loading σ0 and impermeable
conditions

the crack tip vicinity depending on whether the singularity
of fields is considered or not. Quantities at the crack tip
vicinity are important for an accurate evaluation of inten-
sity factors from asymptotic expressions. Implementation of
singular fields in meshless methods is substantially simple
and trouble-free as compared to FEM [15].

If a crack in magneto-electro-elastic solids is investigated,
an important question is how the medium inside the crack is
modeled. Depending on the ratio between the dielectric per-
mittivity and/or magnetic permeability of the medium inside
the crack and that of the cracked solid, two extreme cases can
be considered. In the first extreme case, the crack is not visi-
ble for the electric and/or magnetic field if the permittivity of
the medium inside the crack is significantly larger than that
of the analyzed solid. In such a case, the potentials on both
crack-surfaces are the same, i.e., ψ+ = ψ−, µ+ = µ−,
and thus one has the so-called electrically or magnetically
permeable boundary conditions on the crack-surfaces:

D+
n = D−

n , B+
n = B−

n .

In the second extreme case, the permittivity and permeability
of the medium inside the crack are vanishing. Then, the elec-
trical displacements and magnetic induction on both crack-
surfaces are vanishing and potentials jump occurs.

D+
n = D−

n = 0, B+
n = B−

n = 0.

This case corresponds to the so-called impermeable bound-
ary conditions and they are shown in Fig. 2. One can observe
from Fig. 4 that the crack opening displacements under sta-
tionary conditions are slightly larger under a pure mechanical
load with permeable boundary conditions than that with the
impermeable ones. However, the SIFs under a pure mechan-
ical load is the same for both boundary conditions K stat

I =
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Fig. 4 Variation of the crack opening displacement with the normal-
ized coordinate x1/2a under a pure mechanical loading σ0
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Fig. 5 Variation of electrical potentials with the normalized coordinate
x1/2a under pure mechanical, electrical and magnetic loads, respec-
tively

1.4 Pa m1/2. Enriched basis functions are applied in
computation. Variation of the electrical and magnetic poten-
tials corresponding to all three different loads along the crack
is shown in Figs. 5 and 6, respectively. Impermeable bound-
ary conditions are considered there, since both electrical and
magnetic potentials are vanishing on the crack surfaces at
permeable boundary conditions. The FEM results for the
mechanical load are obtained by the ANSYS-code using
8037 quadratic (8-node) elements. A very fine FEM mesh is
selected to obtain reliable results which are used as a bench-
mark. One can observe a good coincidence of the present and
FEM results. Computational cost is 40% lower for the present
method with 930 nodes than for FEM analysis with signif-
icantly higher number of elements. For comparable meshes
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in both methods the CPU in the present meshless method is
2.5 times longer than in a conventional discretization method
with polynomial shape functions. This is due to a more com-
plicated evaluation of shape functions at integration points in
MLS approximation than in a classical polynomial approach.
This phenomenon is observed at all meshless methods based
on the MLS approximation. It is not caused by the selection
of the test function in the weak form to derive the LIEs. The
CPU in MLS approximations is influenced by the selection
of the support domain size or the weight function. Smaller
values of the support domain lead to lower approximation
accuracy, and larger values of the support domain prolong
the computational time for the evaluation of the shape func-
tions. More detailed analyses on the influence of the support
domain on computational accuracy can be found in Atluri [2].
To reduce the computing time, a mixed formulation [4] can be
applied, which reduces the radius of the support domain at the
same accuracy as in the traditional approximation. The other
way is to use a new stabilized nodal integration approach [8]
which also significantly reduces the CPU in techniques based
on the MLS.

It is interesting to note that under a pure mechanical load-
ing, finite values of the electrical and magnetic potentials on
both crack surfaces do not result in a finite value of the EDIF
or the MIIF. It means that the crack opening displacement u3

and both the electrical, and magnetic potentials ψm, µm are
coupled, but the SIF and both EDIF and MIIF in this case
are uncoupled. The EDIF and MIIF are vanishing for a pure
mechanical load under a static assumption.

Recently, we have analyzed the influence of combined
mechanical and electrical loads on the SIF and EDIF in
piezoelectric materials [34]. Here, we are interested in the
influence of the magnetic induction due to the combined
mechanical-magnetic load on the SIF and MIIF. For
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Fig. 7 Influence of the magnetic load on the stress intensity and mag-
netic induction intensity factors

convenience, a nondimensional loading parameter λM =
B0d33/(σ0γ33) is introduced to quantify the intensity of the
magnetic load. Variation of the normalized stress and MIIF
with the applied magnetic induction load is presented in
Fig. 7. Both positive and negative magnetic inductions are
considered here. The intensity of the magnetic induction
load has a neglected influence on the stress intensity factor.
Uncoupling both intensity factors under a static assumption
leads to a linear variation of the MIIF with increasing inten-
sity of the magnetic load.

Next, the strip is subjected to an impact load with the
Heaviside time variation and the intensity σ0 = 1 Pa for a
pure mechanical load and B0 = 1 Vs/m2 for a pure magnetic
induction load, respectively. Both impermeable and perme-
able boundary conditions on the crack surfaces are consid-
ered. The time variation of the normalized stress intensity
factor is given in Fig. 8. Both extreme boundary conditions
on crack surfaces have a vanishing influence on the SIF for
a pure mechanical load. The dynamic value of the SIF is
approximately doubled as compared to the corresponding
static one.

In Fig. 9a, b, we present the variation of the EDIF and
MIIF under a pure mechanical load. On contrary to the sta-
tic case a finite value for both intensity factors is predicted.
From the Maxwell‘s equations, it is known that the veloc-
ity of electromagnetic waves is equal to the speed of light,
which is much greater than the velocity of elastic waves.
Hence, the use of quasi-static approximation in governing
equations is justified for the interaction of electro-magnetic
and mechanical fields. The response of the electro-magnetic
fields is immediate, while that of the elastic ones is taken
as finite because of the finite velocity of elastic waves. On
the other hand, in a static case, the response of both the
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Fig. 8 Normalized stress intensity factor for a central crack in a strip
under a pure mechanical load σ0 H(τ − 0)

mechanical (strains, stresses) and electro-magnetic fields is
immediate. Thus, the SIF vanishes in such a case since the
stresses σ33 are zero ahead of the crack tip on the crack
line because of the immediate electro-magnetic–mechanical
interaction. In the dynamic case the stress field is not only
coupled to the immediate electro-magnetic field, but is also
affected by the inertia forces.

For the normalized EDIF and MIIF in Fig. 9a,b we have
used parameters �e = e33/h33 and �m = d33/γ33, respec-
tively. The EDIF and MIIF are higher for permeable electro-
magnetic boundary conditions than for the impermeable
ones.

Figure 10 presents normalized stress and electrical inten-
sity factors for a pure magnetic induction impact load. The
static MIIF K stat

M = 1.4 Vsm−3/2 has the same quantity as the
static SIF for a pure mechanical load due to their decoupling.
Both SIF and EDIF are oscillating around zero with high
amplitude. Therefore, they have to be considered in design
where transient processes are expected.

4.2 An edge crack in a finite strip

Next, an edge crack in a finite magneto-electric-elastic strip is
analyzed. The geometry of the strip is given in Fig. 11 with the
following values: a = 0.5, a/w = 0.4 and h/w = 1.2. Due
to the symmetry of the problem with respect to the x1-axis,
only a half of the strip is modeled. We have used again 930
equidistantly distributed nodes for the MLS approximation
of the physical fields. On the top of the strip either a uniform
tension σ0, or a uniform magnetic induction B0 is applied.
Firstly, the static loadings are considered. The functionally
graded material properties in the x1-direction are considered.
An exponential variation of the elastic, piezoelectric, dielec-
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Fig. 9 Normalized a electric, and b magnetic intensity factors for a
central crack in a strip under a pure mechanical load σ0 H(τ − 0)

tric, paramagnetic, electromagnetic and magnetic permeabil-
ity coefficients are assumed as

fi j (x) = fi j0 exp(γ x1), (42)

where the symbol fi j is commonly used for partial material
coefficients and fi j0 correspond to the material parameters
used in the previous example. It should be noted that differ-
ent exponential factor γ can be used for different material
coefficients.

Figures 12 and 13 present the variation of the crack open-
ing displacement and the electro-magnetic potentials on the
crack surfaces with the x1-coordinate under a pure mechan-
ical tension. We have considered the same exponential gra-
dient for all coefficients with value γ = 2 in the numerical
calculations. Then, all material parameters at the crack tip
are e1 = 2.718 times larger than in the homogeneous
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Fig. 13 Variation of a the electric, and b the magnetic potentials with
the normalized coordinate x1/2a under a pure mechanical loading σ0 =
1 Pa

material. One can see that the crack opening displacement
and potentials are significantly reduced in the nonhomoge-
neous material with gradually increasing material properties
in x1-direction. The boundary value problem for a homoge-
neous material has been analyzed also by the FEM computer
code ANSYS. One can observe a quite good agreement for
both results.

The normalized SIF for homogeneous and nonhomoge-
neous cracked specimen have the following values, f I = K I /

σ0
√
πa = 2.105 and 1.565, respectively. With increasing

gradient parameter γ the SIF is decreasing. A similar phe-
nomenon is observed for an edge crack in an elastic FGM
strip under a mechanical loading [10] and for a cracked
piezoelectric FGM specimen [35]. For a crack in a homoge-
neous magnet-electric-elastic solid analyzed in the previous
example the SIF, EDIF, MIIF are uncoupled. However, this
conclusion does not valid generally for a continuously

123



Comput Mech (2008) 42:697–714 711

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

(c330/ρ)1/2τ/a

K
I/K

Ist
at

FEM: homg

MLPG: homog

FGM

32282420161284

Fig. 14 Normalized stress intensity factor for an edge crack in a strip
under a pure mechanical load σ0 H(τ − 0)

2a

2w

2

1

3

A B
C

DE

Fig. 15 A penny-shaped crack in a finite magneto-electro-elastic cylin-
der

nonhomogeneous solid. We have obtained the following nor-
malized quantities: �e KE/K stat

I = 0.04866 and �m KM

/K stat
I = 0.00412.
Next, the strip is subjected to an impact mechanical load

with Heaviside time variation and the intensity σ0 = 1 Pa.
The impermeable boundary conditions for the electric dis-
placement and magnetic flux on crack surfaces are consid-
ered. The time variation of the normalized stress intensity
factor is given in Fig. 14, where K stat

I = 2.642 Pa m1/2.
For a mechanical FGMs along the x1-coordinate and a

uniform mass density, the wave propagation is growing with
x1. Therefore, the peak value of the SIF is reached in a
shorter time instant in functionally graded strip than in a
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Fig. 16 Variation of the crack opening displacement with the normal-
ized coordinate r/2a in the cracked cylinder under a pure mechanical
loading σ0 = 1 Pa

homogeneous one. The maximum value of the SIF is only
slightly reduced for the FGM cracked strip.

4.3 A penny-shaped crack in a finite cylinder

A penny-shaped crack in a finite cylinder as depicted in
Fig. 15 is analyzed as the third example. The following geom-
etry is considered: crack radius a = 0.5 , cylinder radius
w = 1.25, and cylinder length 2L = 3.0. On the top of the
cylinder either a uniform tension σ0, or a uniform magnetic
induction B0 are applied, firstly as static loads.

Also in this example, an exponential variation of the
magneto-electro-elastic material parameters in radial direc-
tion is assumed, i.e.,

fi j (r) = fi j0 exp(γ r).

The material coefficients at the axis of symmetry correspond-
ing to the BaTiO3–CoFe2O4 composite are given by Wang
and Mai [46]

c11 = 22.6 × 1010 Nm−2, c13 = 12.4 × 1010 Nm−2,

c33 = 21.6 × 1010Nm−2, c44 = 4.4 × 1010 Nm−2,

c12 = 12.5 × 1010 Nm−2, e15 = 5.8 Cm−2,

e31 = −2.2 Cm−2, e33 = 9.3 Cm−2,

h11 =5.64 × 10−9 C2/Nm
2
, h33 =6.35 × 10−9 C2/Nm2,

d15 = 275.0 N/Am, d31 = 290.2 N/Am,

d33 = 350.0 N/Am,

α11 =5.367 × 10−12 Ns/VC, α33 =2737.5 ×10−12 Ns/VC,
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Fig. 17 Variation of a the electric, and b magnetic potentials with the
normalized coordinate r/2a under a pure mechanical loading σ0 = 1 Pa
in the cracked cylinder

γ11 = 81.0 × 10−6 Ns2C−2, γ33 = 83.5 × 10−6 Ns2C−2,

ρ = 5500 kg/m3.

Numerical calculations are carried out for the gradient para-
meter γ = 2. A regular node distribution with 930(31 × 30)
nodes is used for the MLS-approximation of the displace-
ments and the potentials in the analyzed domain ABCDE
(see Fig. 15).

The static values of the SIF for the homogeneous and FGM
cracked cylinder are K stat

I = 0.813 Pa m1/2 and K FGM
I =

0.353 Pa m1/2, respectively. The SIF in the cracked cylin-
der with positive material properties gradient is significantly
reduced in comparison with the SIF for the corresponding
homogeneous cylinder. This is due to the significant reduc-
tion of the crack opening displacement in the FGM cylinder
as presented in Fig. 16. One can also see a good agreement
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Fig. 18 Normalized stress intensity factor for a penny-shaped crack in
a cylinder under a pure mechanical load σ0 H(τ − 0)

of numerical results obtained by the MLPG method and the
FEM for a cracked homogeneous cylinder.

Variation of the electric and magnetic potentials with the
radial coordinate under a pure mechanical loading σ0 = 1 Pa
is presented in Fig. 17. The EDIF and MIIF vanish in the
static case with a pure mechanical load in the homogeneous
cylinder. Both the electrical and magnetic potentials are sig-
nificantly reduced in the FGM cylinder with respect to the
homogeneous one. A good agreement between the MLPG
and FEM results is again observed for both potentials in a
homogeneous cylinder.

Next, the cracked cylinder is subjected to an impact
mechanical load with Heaviside time variation and the inten-
sity σ0 = 1 Pa. Impermeable boundary conditions for the
electric displacement and magnetic flux on crack surfaces are
considered. The time variation of the normalized stress inten-
sity factor is given in Fig. 18, where K stat

I = 0.813 Pa×m1/2

corresponds to the corresponding homogeneous case.
The peaks of the SIF in Fig. 18 for the FGM cylinder are

significantly reduced with respect to the homogeneous case.
The reduction is proportional to the reduction of the static
SIF in both cases. If the dynamic SIF in the FGM cylinder
is normalized by the corresponding static value K FGM

I =
0.353 Pa × m1/2 one obtains almost the same peak value
as in the homogeneous case. The peak value of the SIF in
FGM cylinder is reached at a shorter time instant than in
the corresponding homogeneous one. It is due to the higher
value of the wave velocity in the FGM cylinder than in the
homogeneous one.

For the normalized EDIF and MIIF we have used parame-
ters�e = e33/h33 and �m = d33/γ33, respectively. Numer-
ical results are presented in Fig. 19. Opposite to the static
case, finite values of EDIF and MIIF are obtained under a pure
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Fig. 19 Normalized a electric, and b magnetic intensity factors for
a penny-shaped crack in a cylinder under a pure mechanical load σ0
H(τ − 0)

mechanical impact load in the homogeneous cylinder too.
Both dynamic quantities for FGM cylinder are oscillating
around the static values which are: �e KE/K stat

I = 0.00655
and �m KM/K stat

I = −0.831 × 10−3.

5 Conclusions

A meshless local Petrov–Galerkin method is presented for
2-D and 3-D axisymmetric crack problems in continuously
nonhomogeneous and linear magneto-electric-elastic solids.
Both static and transient dynamic loadings are considered.
The analyzed domain is divided into small overlapping cir-
cular subdomains. A unit step function is used as the test
function in the local weak-form of the governing partial
differential equations. The derived local boundary-domain
integral equations are nonsingular. The MLS scheme is

adopted for the approximation of the physical field quan-
tities.

The present method provides an alternative numerical tool
to many existing computational methods like the FEM or
BEM. The main advantage of the present method is its sim-
plicity. Compared to the conventional BEM, the present
method requires no fundamental solutions and all integrands
in the present formulation are regular. Thus, no special numer-
ical techniques are required to evaluate the integrals. It should
be noted here that the fundamental solutions are not available
for magneto-electric-elastic solids with continuously varying
material properties in general cases. The present formula-
tion also possesses the generality of the FEM. Therefore, the
method is promising for numerical analysis of multi-field
problems like piezoelectric, electro-magnetic or thermoelas-
tic problems, which cannot be solved efficiently by the con-
ventional BEM.

An essential drawback of the present method is its larger
computating time in comparison with the conventional
domain-type discretization methods such as the FEM. The
main reason is the fact that a meshless approximation usu-
ally involves more nodes and the required shape functions
are more complex. To reduce the computing time, a mixed
formulation can be applied, which reduces the radius of the
support domain at the same accuracy as in the traditional
approximation. Since a small size of the support domain
decreases the bandwidth of the system matrix, the computing
time can be significantly reduced. Therefore, future research
efforts will be devoted to developing efficient meshless
approaches in order to reduce its computing time.
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