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Abstract. It was recently discovered that inclusions, fatigue damage and other
types of material imperfections and defects in metals can be nondestructively
detected by noncontacting magnetic measurements that sense the thermoelectric
currents produced by directional heating and cooling. Since detection of
small defects in thermoelectric materials is ultimately limited by intrinsic
thermoelectric anisotropy and inhomogeneity of the material to be inspected,
a thorough study is required on their impact on the nondestructive capability.
Therefore, in this investigation the induced electric current densities and thermal
fluxes are first derived for a steady line heat source in an inhomogeneous
and anisotropic thermoelectric material. The exact closed-form solutions are
obtained by converting the original problem into two inhomogeneous Helmholtz
equations via eigenvalue/eigenvector separation. The material properties are
assumed to vary exponentially in the same manner in an arbitrary direction. For
the corresponding homogeneous but anisotropic material case, we also present
an elegant formulation based on the complex variable method. It is shown that
the induced magnetic fields can be expressed in a concise and exact closed form
for a line heat source in an infinite homogeneous anisotropic material and in one
of the two bonded anisotropic half-planes. Our numerical results demonstrate
clearly that both property anisotropy and gradient in thermoelectric materials can
significantly influence the induced thermoelectric currents and magnetic fields.
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1. Introduction

Thermoelectric materials, which possess the inherent property of coupled transport of heat and
electricity, are becoming increasingly important in the field of energy production, conversion,
conservation and nondestructive testing (NDT) [1]–[6]. Recently nanostructural thermoelectric
materials have shown great promise for thermoelectric applications because these nanostructural
materials can reduce the thermal conductivity more than the electrical conductivity by interface
scattering. In other words, with these novel materials, one can achieve an increase in the power
factor, with the consequence of increasing the thermoelectric figure of merit Z T [7]–[10].

It has been discovered that the noncontacting thermoelectric technique can be used to
detect various imperfections in conducting metals exhibiting thermoelectric effects, when
the specimen to be tested is subjected to directional heating and cooling [1, 11, 12]. The
physics of the process is relatively simple: an external heating or cooling is applied to the
specimen to produce a modest temperature gradient in the test material domain. Since the host
material and the inclusions (more accurately called inhomogeneities) within it have different
material properties, different temperature fields and thus different thermoelectric potentials
will be induced along the interfaces between the host material and inclusion. These potential
differences will drive opposite thermoelectric currents (and thus two local current loops)
inside and outside the inclusion, which can be finally detected by scanning the specimen
with a sensitive magnetometer. It should be pointed out that the capability of detecting these
imperfections depends on the thermoelectric background signal produced by the intrinsic
anisotropy and inhomogeneity (or grading composition) of the material. In other words,
a clear understanding of the effect of both anisotropy and inhomogeneity on the material
response is required. Nayfeh et al [2] presented an analytic model to calculate the magnetic
field produced by thermoelectric currents in homogeneous but anisotropic materials under
two-dimensional (2D) heating and cooling. Carreon et al [3], on the other hand, presented
another analytic model to calculate the normal and tangential magnetic fields produced by
thermoelectric currents in an isotropic but linearly gradient slender rectangular bar under axial
heating and cooling. However, since most materials are both inhomogeneous and anisotropic
(even though weakly), a study is needed on the coupling influence of the material anisotropy
and inhomogeneity on the material response, which motivates this investigation. For simplicity,
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here we consider an exponentially graded anisotropic material under 2D heating and cooling,
and we derive the explicit solutions by converting the original problem into two inhomogeneous
Helmholtz equations via eigenvalue/eigenvector separation. The corresponding 2D problem in
homogeneous anisotropic materials is also discussed by means of the elegant complex variable
method. These include the explicit solutions for a line heat source in an infinite homogeneous
anisotropic material and in one of the two bonded anisotropic half-planes. The correctness of the
methods is verified by reducing our results to the existing simple solutions obtained by Nayfeh
et al [2], and by comparing the results from our eigenvalue/eigenvector separation approach
and complex-variable method. The effect of the material gradient and anisotropy on the induced
fields is clearly demonstrated and its impact on the nondestructive evaluation of materials is also
discussed.

2. A line heat source in an infinite exponentially gradient anisotropic
thermoelectric material

In this section, we present an analytic model to predict the magnetic background signal caused
in inhomogeneous anisotropic media.

For anisotropic materials, the electrical current density j and thermal heat flux h vectors
are related to both electric potential 8 and temperature T through [2, 4]

ji = −σi j8, j− ∈i j T, j ,

hi = −∈̄i j8, j − κi j T, j ,
(1)

where the subscript ‘, j’ to 8 and T denotes the derivative with respect to the jth coordinate
x j (x1 = x , x2 = y, x3 = z), σi j denotes the electrical conductivity measured at a uniform
temperature, κi j is the thermal conductivity at zero electrical field, ∈i j and ∈̄i j are thermoelectric
coupling coefficients. These coupling coefficients can be expressed in terms of the absolute
thermoelectric power S and the electrical conductivity σi j of the material as ∈i j= Sσi j and
∈̄i j = ST σi j . Furthermore, for gradient materials as studied in this section, σi j , κi j , ∈i j and ∈̄i j

are all functions of the coordinates x1 = x , x2 = y and x3 = z.
The electrical current density and thermal heat flux vectors should satisfy the following

equations:

∇ · j = 0,

∇ · h = qgen,
(2)

where qgen is the power generated per unit volume. It is obvious that the induced electrical
current density (thus the magnetic field) is proportional to the strength of the heat power
emanated from the source. Thus the magnitude of the induced magnetic field can be controlled
by the applied temperature source so that the associated magneto thermal transport effect can
be neglected.

Let us consider an infinite line heat source in an infinite inhomogeneous anisotropic
material. We first assume that σi j , κi j , ∈i j and ∈̄i j are exponentially varied in the (x–y)-plane in
the same manner along the x- and y-directions as follows:[

σi j ∈i j ∈̄i j κi j

]
= exp(2β1x + 2β2 y)

[
σ 0

i j ∈
0
i j ∈̄

0
i j κ0

i j

]
, (3)

where σ 0
i j , ∈

0
i j , ∈̄

0
i j , κ

0
i j , β1 and β2 are all material constants.
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We point out that functionally graded materials (FGMs) can be fabricated for special
applications (see e.g. [13, 14]). They can be varied in many different ways and in different
orientations in space. The exponential variation is a special case that has been investigated in
the FGM community for over 20 years (see e.g. [15, 16]). For such a special variation, it is often
possible to derive either an analytical solution or even an exact-closed form solution (such as the
one presented in this paper), serving as benchmarks for future numerical simulation. However,
other complicated spatial variation can be piecewise approximated when solving the real
problem via a boundary integral equation formulation. In particular, when the material gradients
are not too large, the exponential variation in material properties studied here will approximate
a linear variation in material properties. We also point out that closed-form solutions can still be
obtained for some non-exponential variations of the material properties [17, 18].

Under the above assumption the principal directions of the electrical conductivity,
thermal conductivity and thermoelectric coupling tensors do not change at different locations.
Furthermore, for the convenience of analysis, we assume that the electrical conductivity, thermal
conductivity and thermoelectric coupling tensors all exhibit the same principal directions,
though their degree of anisotropy might be very different [2]. Without loss of generality,
in the following we assume that the three Cartesian coordinates x , y and z are established
along the principal directions. The infinite line heat source is parallel to the z-axis and passes
through x = x0 and y = y0. Therefore, we can write qgen = Qδ(x − x0)δ(y − y0), where Q
denotes the total heat power emanated from a unit length of the line source and δ( ) is the
Dirac delta function. Consequently the problem becomes 2D, with the electric potential and
temperature being only functions of the coordinates x and y. By keeping the above assumptions
in mind and by substituting equation (1) into (2), we finally obtain the following set of coupled
inhomogeneous partial differential equations:


σ 0

1 ∈
0
1

∈
0
1

κ ∈
02
2

ησ 0
2




∂28

∂x2

∂2T

∂x2

+


σ 0

2 ∈
0
2

∈
0
2

∈
02
2

ησ 0
2




∂28

∂y2

∂2T

∂y2



+2β1


σ 0

1 ∈
0
1

∈
0
1

κ ∈
02
2

ησ 0
2




∂8

∂x
∂T

∂x

+ 2β2


σ 0

2 ∈
0
2

∈
0
2

∈
02
2

ησ 0
2




∂8

∂y
∂T

∂y



= −
exp(−2β1x0 − 2β2 y0) ∈

02
2 Q

ησ 0
2 κ0

2

δ(x − x0)δ(y − y0)

[
0
1

]
, (4)

where η = ∈
0
2 ∈̄

0
2/(σ

0
2 κ0

2 ) is the dimensionless thermoelectric coupling parameter. We mention
that during the derivation, we have utilized the identity ∈

0
1 / ∈

0
2 = ∈̄

0
1/∈̄

0
2. It is also worth

pointing out that, for typical metals the coupling parameter η is relatively small, somewhere
between 10−3 and 10−2 [1]–[3].
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In order to solve equation (4), we next consider the following eigenvalue problem:
σ 0

1 ∈
0
1

∈
0
1

κ ∈
02
2

ησ 0
2

 v = λ


σ 0

2 ∈
0
2

∈
0
2

∈
02
2

ησ 0
2

 v. (5)

The two eigenvalues of the above equation can be easily determined as

λ1 =
σ + κ − 2 ∈ η +

√
(σ − κ)2 − 4η(σ− ∈)(∈ −κ)

2(1 − η)
> 0,

λ2 =
σ + κ − 2 ∈ η −

√
(σ − κ)2 − 4η(σ− ∈)(∈ −κ)

2(1 − η)
> 0,

(6)

where σ = σ 0
1 /σ 0

2 , ∈ =∈
0
1 /∈

0
2 and κ = κ0

1/κ
0
2 are ratios of the material properties. The two

eigenvectors associated with the eigenvalues are

v1 =

∈
0
2 (λ1− ∈)

σ 0
2 (σ − λ1)

 , v2 =

∈
0
2 (λ2− ∈)

σ 0
2 (σ − λ2)

 . (7)

Apparently due to the fact that both
σ 0

1 ∈
0
1

∈
0
1

κ ∈
02
2

ησ 0
2

 and


σ 0

2 ∈
0
2

∈
0
2

∈
02
2

ησ 0
2


are real and symmetric, then we have the following orthogonal relationships:vT

1

vT
2




σ 0
2 ∈

0
2

∈
0
2

∈
02
2

ησ 0
2

[v1 v2
]
=

δ1 0

0 δ2

 ,

(8)vT
1

vT
2




σ 0
1 ∈

0
1

∈
0
1

κ ∈
02
2

ησ 0
2

[v1 v2
]
=

λ1δ1 0

0 λ2δ2

 ,

where

δ1 = σ 0
2 ∈

02
2

[
(λ1− ∈)(2σ− ∈ −λ1) +

(σ − λ1)
2

η

]
> 0,

(9)

δ2 = σ 0
2 ∈

02
2

[
(λ2− ∈)(2σ− ∈ −λ2) +

(σ − λ2)
2

η

]
> 0.

Now we introduce two new functions F and G, which are related to electric potential and
temperature through[

8

T

]
=
[
v1 v2

] [F
G

]
. (10)
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In view of the orthogonal relationships in equations (8), equation (4) can now be decoupled
into

∂2 F

∂x2
+

1

λ1

∂2 F

∂y2
+ 2β1

∂ F

∂x
+

2β2

λ1

∂ F

∂y
= −

2π exp(−β1x0 − β2 y0)P1
√

λ1
δ(x − x0)δ(y − y0),

(11)
∂2G

∂x2
+

1

λ2

∂2G

∂y2
+ 2β1

∂G

∂x
+

2β2

λ2

∂G

∂y
= −

2π exp(−β1x0 − β2 y0)P2
√

λ2
δ(x − x0)δ(y − y0),

where

P1 =
exp(−β1x0 − β2 y0)(σ − λ1) ∈

02
2 Q

2πηκ0
2

√
λ1δ1

,

(12)

P2 =
exp(−β1x0 − β2 y0)(σ − λ2) ∈

02
2 Q

2πηκ0
2

√
λ2δ2

.

Equations (11) can be equivalently expressed by

∂2 F

∂x2
+

∂2 F

∂
(√

λ1 y
)2 + 2β1

∂ F

∂x
+

2β2
√

λ1

∂ F

∂
(√

λ1 y
)

= −2π exp(−β1x0 − β2 y0)P1δ(x − x0)δ
(√

λ1 y −

√
λ1 y0

)
,

(13)
∂2G

∂x2
+

∂2G

∂
(√

λ2 y
)2 + 2β1

∂G

∂x
+

2β2
√

λ2

∂G

∂
(√

λ2 y
)

= −2π exp(−β1x0 − β2 y0)P2δ(x − x0)δ
(√

λ2 y −

√
λ2 y0

)
.

In order to solve equations (13), we further introduce two new functions such that

F = exp(−β1x − β2 y) f, G = exp(−β1x − β2 y)g. (14)

As a result, equations (13) can be expressed into two inhomogeneous Helmholtz equations
for f and g as

∂2 f

∂x2
+

∂2 f

∂(
√

λ1 y)2
− ρ2

1 f = −2π P1δ(x − x0)δ
(√

λ1 y −

√
λ1 y0

)
,

(15)
∂2g

∂x2
+

∂2g

∂
(√

λ2 y
)2 − ρ2

2 g = −2π P2δ(x − x0)δ
(√

λ2 y −

√
λ2 y0

)
,

where

ρ1 =

√
β2

1 +
β2

2

λ1
, ρ2 =

√
β2

1 +
β2

2

λ2
. (16)
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The solutions to equations (15) can now be conveniently given by

f = P1K0

[
ρ1

√
(x − x0)2 + λ1(y − y0)2

]
,

(17)

g = P2K0

[
ρ2

√
(x − x0)2 + λ2(y − y0)2

]
,

where Kn is the nth-order modified Bessel function of the second kind.
In view of equations (10), (14) and (17), the electric potential and the temperature induced

by the line heat source can be determined as

8

Q
=

∈
03
2 (σ − λ1)(λ1− ∈)

2πηκ0
2

√
λ1δ1

K0

[
ρ1

√
(x − x0)2 + λ1(y − y0)2

]
exp [β1(x + x0) + β2(y + y0)]

+
∈

03
2 (σ − λ2)(λ2− ∈)

2πηκ0
2

√
λ2δ2

K0

[
ρ2

√
(x − x0)2 + λ2(y − y0)2

]
exp [β1(x + x0) + β2(y + y0)]

,

(18)

T

Q
=

σ 0
2 ∈

02
2 (σ − λ1)

2

2πηκ0
2

√
λ1δ1

K0

[
ρ1

√
(x − x0)2 + λ1(y − y0)2

]
exp [β1(x + x0) + β2(y + y0)]

+
σ 0

2 ∈
02
2 (σ − λ2)

2

2πηκ0
2

√
λ2δ2

K0

[
ρ2

√
(x − x0)2 + λ2(y − y0)2

]
exp [β1(x + x0) + β2(y + y0)]

.

When β1 = β2 = 0 for the homogeneous material, the present solutions are reduced to those
in Nayfeh et al [2] by noticing the following asymptotic behavior for K0(x)

K0(x) → − ln(x/2) − γ, when x → 0+ (19)

with γ = 0.577 21 being the Euler constant.
Once we obtain the expressions for the electric potential and temperature, it is not difficult

to derive the electrical current density and heat flux vectors as follows:

j1=
Qσ 0

2 ∈
03
2 (σ − λ1)(σ− ∈)

2πηκ0
2

√
λ1δ1

Y1(x, y, λ1, ρ1) +
Qσ 0

2 ∈
03
2 (σ − λ2)(σ− ∈)

2πηκ0
2

√
λ2δ2

Y1(x, y, λ2, ρ2),

j2=
Qσ 0

2 ∈
03
2 (σ − λ1)(σ− ∈)

2πηκ0
2

√
λ1δ1

Y2(x, y, λ1, ρ1) +
Qσ 0

2 ∈
03
2 (σ − λ2)(σ− ∈)

2πηκ0
2

√
λ2δ2

Y2(x, y, λ2, ρ2),

(20)

h1 =
Qσ 0

2 ∈
02
2 (σ − λ1) [σ − λ1 + η(λ1− ∈)]

2πη
√

λ1δ1
Y1(x, y, λ1, ρ1)

+
Qσ 0

2 ∈
02
2 (σ − λ2) [σ − λ2 + η(λ2− ∈)]

2πη
√

λ2δ2
Y1(x, y, λ2, ρ2),

h2 =
Qσ 0

2 ∈
02
2 (σ − λ1) [σ − λ1 + η(λ1− ∈)]

2πη
√

λ1δ1
Y2(x, y, λ1, ρ1)

+
Qσ 0

2 ∈
02
2 (σ − λ2) [σ − λ2 + η(λ2− ∈)]

2πη
√

λ2δ2
Y2(x, y, λ2, ρ2),

(21)
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where the functions Y1 and Y2 are defined as

Y1(x, y, λ, ρ) =

β1λK0

[
ρ
√

(x − x0)2 + λ(y − y0)2
]

exp [−β1(x − x0) − β2(y − y0)]

+
ρλ(x − x0)K1

[
ρ
√

(x − x0)2 + λ(y − y0)2
]

exp [−β1(x − x0) − β2(y − y0)]
√

(x − x0)2 + λ(y − y0)2
,

Y2(x, y, λ, ρ) =

β2K0

[
ρ
√

(x − x0)2 + λ1(y − y0)2
]

exp [−β1(x − x0) − β2(y − y0)]

+
ρλ(y − y0)K1

[
ρ
√

(x − x0)2 + λ(y − y0)2
]

exp [−β1(x − x0) − β2(y − y0)]
√

(x − x0)2 + λ(y − y0)2
.

(22)

The magnetic field can be obtained from Maxwell’s equation ∇ × H = j by integration.
For the current 2D problem, we have

Hz =

∫
j1dy or Hz = −

∫
j2dx, (23)

which can be obtained by simple numerical quadrature. It is interesting to point out that if
the anisotropic effect is ignored by letting σ, ∈, κ → 1, the inhomogeneity of the material as
described by equation (3) will not produce any nonvanishing thermoelectric current distribution
and the associated nonvanishing thermoelectric magnetic field. This fact can be easily observed
from the previous theoretical development.

This analytical solution can be utilized to study the effect of the grading composition
on the material behavior/response under different loadings, with the results being applied as
guidelines in noncontacting and nondestructive evaluation of materials. However, in order to
verify the correctness of the derived solution, we now present the complex variable method for
the corresponding anisotropic but homogeneous (β1 = β2 = 0) material case. It is shown that
the solution based on the complex variable method is elegant. Furthermore, the corresponding
bimaterial case can be also obtained in a very concise form. Our solution contains many previous
results as special cases, and in section 4, numerical results will be presented for both grading
and homogeneous material cases based on the two different solution approaches. The effect
of the material grading composition and anisotropy is further discussed, showing clearly the
importance of them to the material response.

3. Complex variable formulation for homogeneous anisotropic
thermoelectric materials and its applications

In the following discussions, we will first present the basic complex variable formulation for
2D problems in homogeneous anisotropic thermoelectric materials. Then we derive the explicit
solutions for a line heat source in a homogeneous anisotropic thermoelectric material and in one
of the two bonded anisotropic thermoelectric half-planes, demonstrating the proposed complex
variable method.
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3.1. Complex variable formulation

For homogeneous materials (β1 = β2 = 0) in the absence of a line source, it is found from
equation (4) that

σ1 ∈1

∈1
κ ∈

2
2

ησ2




∂28

∂x2

∂2T

∂x2

+

σ2 ∈2

∈2
∈

2
2

ησ2




∂28

∂y2

∂2T

∂y2

= 0. (24)

If we further introduce two functions F and G defined in equation (10), it is found that

∂2 F

∂x2
+

1

λ1

∂2 F

∂y2
= 0,

∂2G

∂x2
+

1

λ2

∂2G

∂y2
= 0, (25)

whose general solutions can be conveniently given by

F = Im{ f1(z1)}, G = Im{ f2(z2)}, (26)

where z1 = x + i
√

λ1 y and z2 = x + i
√

λ2 y. Consequently the electric potential and temperature
can be expressed as

u =

[
8

T

]
= A Im {f(z)} , (27)

where
A =

[
v1 v2

]
,

f(z) =
[

f1(z1) f2(z2)
]T

.
(28)

On the other hand, in the absence of source, we can introduce two functions φ1 and φ2 such
that

j1 = −
∂φ1

∂y
, j2 =

∂φ1

∂x
, h1 = −

ησ2κ2

∈
2
2

∂φ2

∂y
, h2 =

ησ2κ2

∈
2
2

∂φ2

∂x
. (29)

As a result, it follows that the two functions φ1 and φ2 can also be concisely expressed in
terms of the analytic function vector f(z) as

ϕ=

[
φ1

φ2

]
= B Re{f(z)}, (30)

where

B =

σ2 ∈2

∈2
∈

2
2

ησ2

A

√
λ1 0

0
√

λ2



=


√

λ1σ2 ∈2 (σ− ∈)
√

λ2σ2 ∈2 (σ− ∈)

√
λ1 ∈

2
2

(
λ1− ∈ +

σ − λ1

η

)
√

λ2 ∈
2
2

(
λ2− ∈ +

σ − λ2

η

)
 . (31)

The electrical current density and heat flux vectors can be obtained from equations (29)
and (30) as[

j1
h1

]
=

[
1 0

0
ησ2κ2

∈
2
2

]
B
[√

λ1 0
0

√
λ2

]
Im{f ′(z)},

[
j2
h2

]
=

[
1 0

0
ησ2κ2

∈
2
2

]
B Re{f ′(z)}. (32)
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Due to the fact that ∇ × H = j, or equivalently

∂ Hz

∂y
= j1,

∂ Hz

∂x
= − j2, (33)

then the nonzero magnetic field component Hz can also be concisely expressed in terms of f(z)
as

Hz = −φ1 = −
[
1 0

]
B Re{f(z)} = σ2 ∈2 (∈ −σ)

[√
λ1

√
λ2

]
Re{f(z)}. (34)

In addition it is found that the matrix AB−1 is symmetric, real and positive definite
given by

AB−1
= (AB−1)T

=

2∑
k=1




∈
2
2 (λk− ∈)2

δk
√

λk

σ2 ∈2 (λk− ∈)(σ − λk)

δk
√

λk

σ2 ∈2 (λk− ∈)(σ − λk)

δk
√

λk

σ 2
2 (σ − λk)

2

δk
√

λk


 . (35)

3.2. Applications

In the following, we apply the derived complex variable formulation to two interesting problems
in order to demonstrate its versatility.

3.2.1. A steady line heat source in a homogeneous thermoelectric material. We first consider a
steady line heat source of strength Q located at the origin in a homogeneous material. It follows
from equation (30) that

f(z) =
i ∈

2
2 Q

2πησ2κ2
〈ln(zα)〉B−1

[
0
1

]
, (36)

where 〈ln(zα)〉 = diag[ln(z1) ln(z2)].
Consequently, the electric potential and temperature can be obtained from equation (27),

whereas the electrical current density and heat flux vectors can be obtained from equations (32).
Particularly it follows from equation (34) that

Hz =
Q ∈2 (∈ −σ)

2πκ2(λ1 − λ2)(1 − η)

[
tan−1

(√
λ1 y

x

)
− tan−1

(√
λ2 y

x

)]
, (37)

which is just the result obtained by Nayfeh et al [2]. Thus the correctness of the complex variable
method is verified. In addition, it is observed that the solution procedure presented here is very
simple as compared to previous methods in this field.

3.2.2. A steady line heat source in anisotropic thermoelectric bimaterials. Next, we consider a
steady line heat source of strength Q located at (0, d), (d > 0) in the upper one of the two bonded
different anisotropic half-planes y > 0 (#1) and y < 0 (#2). It is assumed that the principal
directions for both half-planes are parallel to the x- and y-axes. In addition, the superscripts
(1) and (2) are attached to scalars in the upper and lower half-planes, respectively; whereas
the subscripts 1 and 2 are attached to matrices/vectors in the upper and lower half-planes,
respectively. In the following derivations, we will first replace the complex variables z1 and z2 by
the common complex variable z = x + iy due to the fact that z1 = z2 = z on the real axis [19].
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When the analysis is finished, the complex variable z = x + iy shall be changed back to the
corresponding complex variables z1 and z2.

We assume that the interface between the two half-planes is perfect, i.e. [1]

8(1)
= 8(2), T (1)

= T (2), j (1)

2 = j (2)

2 , h(1)

2 = h(2)

2 , y = 0. (38)

The above continuity conditions on the interface y = 0 can also be equivalently
expressed as

u1 = u2, ϕ1 =Λϕ2, y = 0, (39)

where Λ is a 2 × 2 diagonal matrix defined by

Λ= diag

[
1

η(2)σ
(2)

2 κ
(2)

2 ∈
(1)2
2

η(1)σ
(1)

2 κ
(1)

2 ∈
(2)2
2

]
. (40)

In view of equations (27) and (30), the interfacial continuity conditions in equations (39)
can also be expressed in terms of the two analytic function vectors f1(z) and f2(z) as

A1f +
1 (x) − A1f̄−

1 (x) = A2f−

2 (x) − A2f̄ +
2 (x),

B1f +
1 (x) + B1f̄−

1 (x) =ΛB2f−

2 (x) +ΛB2f̄ +
2 (x),

on y = 0. (41)

It follows from equation (41)1 that

f1(z) = −A−1
1 A2f̄2(z) + f0(z) + f̄0(z),

f̄1(z) = −A−1
1 A2f2(z) + f0(z) + f̄0(z),

(42)

where f0(z) is the analytic function vector for a line heat source located at (0, d), (d > 0) in a
homogeneous infinite plane given by

f0(z) =
i ∈

(1)2
2 Q

2πη(1)σ
(1)

2 κ
(1)

2

〈
ln
(

z − i
√

λαd
)〉

B−1
1

[
0
1

]
. (43)

Substituting equations (42) into equations (41)2, we finally obtain

f2(z) = 2B−1
2 (A1B−1

1 Λ+ A2B−1
2 )−1A1f0(z). (44)

Consequently, we can derive the expression of f1(z) as

f1(z) = f0(z) + A−1
1 (A1B−1

1 Λ− A2B−1
2 )(A1B−1

1 Λ+ A2B−1
2 )−1A1f̄0(z). (45)

Therefore, the full-field expressions of f1(z) and f2(z) are obtained as follows:

f1(z) =
i ∈

(1)2
2 Q

2πη(1)σ
(1)

2 κ
(1)

2

[〈
ln
(

zα − i
√

λαd
)〉

+
2∑

k=1

〈
ln
(

zα + i
√

λkd
)〉

MIk

]
B−1

1

[
0
1

]
, (46)

f2(z) =
i ∈

(1)2
2 Q

2πη(1)σ
(1)

2 κ
(1)

2

2∑
k=1

〈
ln
(

z∗

α − i
√

λkd
)〉

NIkB−1
1

[
0
1

]
, (47)

where the superscript ‘*’ is utilized to distinguish the eigenvalues associated with the lower
half-plane from those associated with the upper half-plane, and

I1 = diag
[
1 0

]
, I2 = diag

[
0 1

]
, (48)
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M = A−1
1 (A2B−1

2 − A1B−1
1 Λ)(A2B−1

2 + A1B−1
1 Λ)−1A1,

N = 2B−1
2 (A2B−1

2 + A1B−1
1 Λ)−1A1.

(49)

It follows from equation (34) that the induced magnetic field in the upper half-plane y > 0
is given by

H (1)
z =

∈
(1)2
2 Q

2πη(1)σ
(1)

2 κ
(1)

2

[
1 0

]
B1

[〈
tan−1

(√
λα(y − d)

x

)〉

+
2∑

k=1

〈
tan−1

(√
λα y +

√
λkd

x

)〉
MIk

]
B−1

1

[
0
1

]
, (50)

whereas that in the lower half-plane y < 0 is given by

H (2)
z =

∈
(1)2
2 Q

2πη(1)σ
(1)

2 κ
(1)

2

[
1 0

]
B2

2∑
k=1

〈
tan−1

(√
λ∗

α y −
√

λkd

x

)〉
NIkB−1

1

[
0
1

]
. (51)

4. Numerical examples

In this section, we first consider the following material properties:

σ 0
2 = 5.7 × 105 A mV−1, κ0

2 = 7.3 W (m ◦C)−1, ∈
0
2= −2.793 A (m ◦C)−1,

σ = 1.023, κ = 1.01, ∈= 1.055,

which are typical values of homogeneous Ti−6Al−4V, the popular aerospace titanium alloy.
In addition, we take the thermoelectric coupling parameter η = 10−2. Figure 1 demonstrates
the distributions of the electric current density component j1 along the x-axis (y = 0) induced
by a line heat source of unit strength (Q = 1) located at the origin for different values of the
gradient parameter β1 = −5, −1, 0, 1, 5 (m−1) with β2 = 0 (in this way the material is gradient
along the x-direction). It is observed from this figure that the induced j1 for nonzero β1 is no
longer anti-symmetric with respect to the origin. The magnitude of j1 at x(> 0) is greater (or
lower) than that at −x for β1 > 0 (or β1 < 0). In addition the magnitude difference becomes
larger when the absolute value of β1 increases. Therefore, the material property gradient in an
anisotropic material can exert a significant influence on the induced thermoelectric currents,
and consequently on the magnetic field. Also shown in figure 1 is the electric current density
component j1 for the homogeneous but anisotropic material using equations (32) and (36) based
on the complex-variable method (in open circles). It is clear that for this case, both solutions
(eigenvalue/eigenvector separation based and complex-variable based) predict exactly the same
results, which partially and mutually verify the correctness of the derived solutions.

Next, we present in figure 2 the distribution of the electric current density component j1
along the x-axis (y = 0) induced by a line heat source of unit strength (Q = 1) located at the
origin for different combinations of the material property ratios σ , κ and ∈ with β1 = 1 m−1 and
β2 = 0. The values of σ 0

2 , κ0
2 , ∈

0
2 and η are also the same as before. It is clearly observed that the

magnitude of j1 decreases as the material anisotropic effect becomes weak (i.e. the ratios σ , κ

and ∈ are close to 1) and that there is no induced electric current density when the material is
isotropic (σ = κ =∈= 1) even if it is inhomogeneous.
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Figure 1. Distributions of the thermoelectric current density component j1 along
the x-axis (y = 0) induced by a line heat source of unit strength (Q = 1) located
at the origin for different values of the gradient parameter β1 = −5, −1, 0, 1 and
5 (m−1) with β2 = 0. The result for the homogeneous material case (β1 = β2 = 0)
is the same as that based on the complex variable method (equations (32)
and (36)) shown with open circles.

Figure 2. Distribution of the thermoelectric current density component j1 along
the x-axis (y = 0) induced by a line heat source of unit strength (Q = 1) located
at the origin for different combinations of the material property ratios σ , κ and
∈ with β1 = 1 m−1 and β2 = 0.

New Journal of Physics 10 (2008) 083019 (http://www.njp.org/)

http://www.njp.org/


14

5. Conclusion

In this research, we presented analytical expressions of the electric potential, temperature,
electric current densities and thermal fluxes due to a steady line heat source in an exponentially
gradient and anisotropic thermoelectric material by introducing the eigenvalue/eigenvector
separation approach. We also developed an elegant complex variable formulation to study 2D
problems in the corresponding anisotropic but homogeneous thermoelectric material, which was
also utilized to verify the eigenvalue-based solutions for the special case (i.e. when the material
is homogeneous). The correctness of the developed solutions was further verified by reducing to
the existing solutions for some special cases. Our numerical results clearly indicate the effect of
both material anisotropy and gradient on the induced thermoelectric current density and thus the
magnetic fields to be detected by the magnetometer. Recent theoretical and experimental studies
have shown that the material anisotropy is required in this special noncontacting nondestructive
evaluation approach. However, since most materials are both anisotropic and inhomogeneous,
the spurious signal from material grading as well as anisotropy has to be clearly separated from
the true signal due to the material flaw. The solutions presented can be directly used to calculate
the background signal for given material anisotropy and grading (in terms of exponential
variation), and therefore, comparing this signal with the detected signal by the magnetometer
will help to identify potential material flaws in the specimen.

Besides their direct application to nondestructive evaluation, it is expected that the solutions
developed in this research can also be applied to other practical 2D problems (for example, a
crack on the interface between two anisotropic half-planes, or an elliptical anisotropic cylinder
embedded in another anisotropic matrix). Results of these problems, which are pertinent to
noncontacting thermoelectric NDT, will be reported later.
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